Power Variable Projection for Initialization-Free Large-Scale Bundle Adjustment – Supplemental Material –

Simon Weber^{1,2} Je Hyeong Hong³ Daniel Cremers^{1,2}

¹ Technical University of Munich
 ² Munich Center for Machine Learning
 ³ Department of Electronic Engineering, Hanyang University

This supplemental material is organized as follows:

Appendix A studies robustness of *PoVar* with respect to η and random initialization, as well as the scale of the considered problems.

Appendix B complements the theoretical justifications of PoVar and RiPoBA. **Appendix C** briefly comments a recent follow-up formulation of pOSE error. **Appendix D** addresses the metric upgrade stage, necessary to estimate the projective transformation and to get Euclidean reconstruction.

Appendix E gives more details about the 97 BAL problems used in our experiments.

A Robustness

We illustrate the robustness of our solver *PoVar* for solving the first stage with respect to the coefficient η in the pOSE formulation. Figure 1, Figure 2 and Figure 3 represent the performance profile for $\eta = 0.2$, $\eta = 0.3$ and $\eta = 0.4$, respectively. We conclude that expansion methods *PoBA* and *PoVar* are both very competitive for the largest tolerance $\tau = 0.01$ for all coefficients η , in line with

Fig. 1: With $\eta = 0.2$, performance profiles for all real-world BAL problems for solving the first stage (6). Given a tolerance $\tau \in \{0.01, 0.003, 0.001\}$, it represents the percentage of solved problems (y-axis) with relative runtime α (x-axis). Our solver *PoVar* is very competitive, and most notably for the highest accuracy $\tau = 0.001$ and $\tau = 0.003$.

Fig. 2: With $\eta = 0.3$, performance profiles for all real-world BAL problems for solving the first stage (6).

Fig. 3: With $\eta = 0.4$, performance profiles for all real-world BAL problems for solving the first stage (6).

our analysis in the main paper with $\eta = 0.1$. In particular, it outperforms *iterative*, and direct factorization (dashed green curves) shows very poor performance due to its lack of scalability. For highest accuracy $\tau = 0.003$ and $\tau = 0.001$, *Po-Var* clearly outperforms all its competitors, in line with the main paper. Note that for each η , we have randomly selected a new set of 97 problems. We can also conclude from our ablation study that our analysis is robust to random initialization.

On the other hand, we link the speed-up of PoVar and RiPoBA, to the size of the problems. Figure 4 represents the performance profiles for solving the first two stages by considering only the BAL datasets with less than 1000 poses (small to medium-scale problems), and Figure 5 the performance profiles by considering only the BAL datasets with more than 1000 poses (large-scale problems).

B Proof of Lemma 1

The proof in Weber et al. [23] uses the positive-definiteness of U_{λ} and S – that still holds, to show that $\mu < 1$. It uses the positive-semi-definiteness of $U_{\lambda}^{-\frac{1}{2}}WV_{\lambda}^{-1}W^{\top}U_{\lambda}^{-\frac{1}{2}}$ to conclude that $\mu \geq 0$. For our VarPro formulation, we consider V_0 instead of V_{λ} . Note that the generalized Schur complement is written as: $S = U_{\lambda} - WV_0^{\dagger}W^{\top}$, where V_0^{\dagger} is the (Moore-Penrose) pseudo-inverse of V_0 . Nevertheless, it is straightforward that $U_{\lambda}^{-\frac{1}{2}}WV_0^{\dagger}W^{\top}U_{\lambda}^{-\frac{1}{2}}$ is also symmetric

Fig. 4: Performance profiles for real-world BAL problems with less than 1000 poses for solving the first two stages Eq. (6) and Eq. (7).

Fig. 5: Performance profiles for real-world BAL problems with more than 1000 poses for solving the first two stages Eq. (6) and Eq. (7).

positive semi-definite, and then the proof stays almost the same. In details, here is the adapted proof:

Proof. On the one hand $U_{\lambda}^{-\frac{1}{2}}WV_{0}^{\dagger}W^{\top}U_{\lambda}^{-\frac{1}{2}}$ is symmetric positive semi-definite, as U_{λ} is symmetric positive definite, and V_{0} is symmetric positive semi-definite. Then its eigenvalues are greater than 0. As $U_{\lambda}^{-\frac{1}{2}}WV_{0}^{\dagger}W^{\top}U_{\lambda}^{-\frac{1}{2}}$ and $U_{\lambda}^{-1}WV_{0}^{\dagger}W^{\top}$ are similar,

$$\mu \ge 0. \tag{1}$$

On the other hand $U_{\lambda}^{-\frac{1}{2}}SU_{\lambda}^{-\frac{1}{2}}$ is symmetric positive definite as S and U_{λ} are. It follows that the eigenvalues of $U_{\lambda}^{-1}S$ are all strictly positive due to its similarity with $U_{\lambda}^{-\frac{1}{2}}SU_{\lambda}^{-\frac{1}{2}}$. As

$$U_{\lambda}^{-1}WV_0^{\dagger}W^{\top} = I - U_{\lambda}^{-1}S, \qquad (2)$$

it follows that

$$u < 1, \tag{3}$$

that concludes the proof.

Concerning Riemannian manifold optimization framework, as the projection x^{\perp} is full rank, it follows that $\tilde{U}_{\tilde{\lambda}}$ and $\tilde{V}_{\tilde{\lambda}}$ are symmetric positive-definite. Then, the previous proof can be very easily adapted to prove Lemma 2.

iv S. Weber et al.

C pOSE Formulation

We extensively use the pOSE formulation [11] for testing our solvers. Recently, the follow-up expOSE formulation [14] has been proposed to override some limitations of pOSE. However, such formulation raises some issues for the scalability analysis. In addition to the fact that the authors wrongly claim that they use VarPro, expOSE requires an experimental preprocessing step over each image measurements. Without this first step, the exponential function is equal to 0 and the algorithm does not update. Nevertheless, such preprocessing is not feasible, in terms of runtime, when the considered dataset is large enough – which is the topic of our paper, where the number of observations goes up to several tens of millions. Although interesting, expOSE is so far limited to small-scale problems, in line with the problems used by the authors – between 19 and 30 poses in their core paper. Extending this pseudo object space error to large-scale formulation is an interesting research direction, orthogonal to our work.

That being said, note that our proposed solver PoVar can be used for solving generic nonlinear problems, and is not restricted to the pOSE formulation. In particular, a recent formulation RpOSE [29] extends pOSE to take into account unknown intrinsics and can be easily adapted to PoVar.

D Metric Upgrade

The third stage of pOSE [11] is the *autocalibration* step (see e.g. [30]), aiming to find an ambiguity matrix $H \in \mathbb{R}^{4 \times 4}$ that forces the camera matrices to satisfy the SE(3) constraints, that is to find H such that, for all poses *i*:

$$x_p^i H = x_p^i \begin{pmatrix} A & 0\\ c^\top & 1 \end{pmatrix} \approx K_i[R_i t_i], \qquad (4)$$

where $\begin{pmatrix} c^{\top} & 1 \end{pmatrix}$ represents the plane at infinity. By denoting \tilde{H} the three left-most columns of H, the SE(3) constraint leads to

$$(K_i^{-1}x_p^i)\tilde{H}\tilde{H}^\top (K_i^{-1}x_p^i)^\top \approx I.$$
(5)

We find c and the camera scales α_i by solving:

$$\min_{c,\{\alpha_i\}} \sum_{i=1}^{n_p} \|\alpha_i (K_i^{-1} x_p^i) \tilde{H}(c) \tilde{H}(c)^\top (K_i^{-1} x_p^i)^\top - I \|_F^2,$$
(6)

with the VarPro algorithm.

In particular, we use the chain rule and the following therem [31]:

Theorem 1. The derivative of $\tilde{H}\tilde{H}^{\top}$ with respect to \tilde{H} is equal to:

$$\frac{d\tilde{H}\tilde{H}^{\top}}{d\tilde{H}} = (I \otimes \tilde{H}^{\top}) + (\tilde{H}^{\top} \otimes I)T, \qquad (7)$$

where T is the matrix that transforms $vec(\tilde{H})$ in $vec(\tilde{H}^{\top})$:

$$Tvec(\tilde{H}) = vec(\tilde{H}^{\top}), \qquad (8)$$

and vec(H) is the operator that creates vector by stringing together the columns of H.

E Dataset

	cameras	landmarks	observations
ladybug-49	49	7,766	31,812
ladybug-73	73	11,022	46,091
ladybug-138	138	19,867	85,184
ladybug-318	318	41,616	179,883
ladybug-372	372	47,410	$204,\!434$
ladybug-412	412	52,202	224,205
ladybug-460	460	56,799	241,842
ladybug-539	539	65,208	277,238
ladybug-598	598	69,193	304,108
ladybug-646	646	73,541	$327,\!199$
ladybug-707	707	78,410	349,753
ladybug-783	783	84,384	$376,\!835$
ladybug-810	810	88,754	$393,\!557$
ladybug-856	856	$93,\!284$	$415,\!551$
ladybug-885	885	$97,\!410$	434,681
ladybug-931	931	102,633	457,231
ladybug-969	969	105,759	474,396
ladybug-1064	1,064	$113,\!589$	509,982
ladybug-1118	1,118	118,316	$528,\!693$
ladybug-1152	$1,\!152$	122,200	$545,\!584$
ladybug-1197	$1,\!197$	$126,\!257$	563,496
ladybug-1235	1,235	129,562	576,045
ladybug-1266	1,266	132,521	587,701
ladybug-1340	$1,\!340$	137,003	$612,\!344$
ladybug-1469	$1,\!469$	$145,\!116$	$641,\!383$
ladybug-1514	1,514	$147,\!235$	$651,\!217$
ladybug-1587	$1,\!587$	150,760	663,019
ladybug-1642	$1,\!642$	153,735	$670,\!999$
ladybug-1695	$1,\!695$	$155,\!621$	$676,\!317$
ladybug-1723	1,723	$156,\!410$	678,421
	cameras	landmarks	observations
trafalgar-21	21	11,315	36,455

S. Weber et al.

trafalgar-39	39	18,060	$63,\!551$
trafalgar-50	50	20,431	$73,\!967$
trafalgar-126	126	40,037	148,117
trafalgar-138	138	44,033	$165,\!688$
trafalgar-161	161	48,126	181,861
trafalgar-170	170	49,267	$185,\!604$
trafalgar-174	174	$50,\!489$	188,598
trafalgar-193	193	$53,\!101$	196,315
trafalgar-201	201	$54,\!427$	199,727
trafalgar-206	206	$54,\!562$	200,504
trafalgar-215	215	$55,\!910$	203,991
trafalgar-225	225	$57,\!665$	208,411
trafalgar-257	257	$65,\!131$	$225,\!698$
	cameras	landmarks	observations
dubrovnik-16	16	22,106	83,718
dubrovnik-88	88	64,298	$383,\!937$
dubrovnik-135	135	$90,\!642$	$552,\!949$
dubrovnik-142	142	$93,\!602$	$565,\!223$
dubrovnik-150	150	$95,\!821$	567,738
dubrovnik-161	161	$103,\!832$	$591,\!343$
dubrovnik-173	173	111,908	$633,\!894$
dubrovnik-182	182	116,770	$668,\!030$
dubrovnik-202	202	132,796	750,977
dubrovnik-237	237	$154,\!414$	$857,\!656$
dubrovnik-253	253	$163,\!691$	$898,\!485$
dubrovnik-262	262	$169,\!354$	919,020
dubrovnik-273	273	$176,\!305$	$942,\!302$
dubrovnik-287	287	182,023	$970,\!624$
dubrovnik-308	308	$195,\!089$	1,044,529
dubrovnik-356	356	226,729	$1,\!254,\!598$
	cameras	landmarks	observations
venice-52	52	$64,\!053$	$347,\!173$
venice-89	89	$110,\!973$	$562,\!976$
venice-245	245	$197,\!919$	$1,\!087,\!436$
venice-427	427	309,567	$1,\!695,\!237$
venice-744	744	542,742	$3,\!054,\!949$
venice-951	951	$707,\!453$	3,744,975
venice-1102	1,102	779,640	4,048,424
venice-1158	$1,\!158$	802,093	$4,\!126,\!104$
venice-1184	$1,\!184$	815,761	$4,\!174,\!654$
venice-1238	1,238	842,712	$4,\!286,\!111$
venice-1288	1,288	$865,\!630$	$4,\!378,\!614$
venice-1350	$1,\!350$	893,894	4,512,735

vi

	venice-1408	$1,\!408$	$911,\!407$	$4,\!630,\!139$
	venice-1425	$1,\!425$	$916,\!072$	$4,\!652,\!920$
	venice-1473	$1,\!473$	929,522	4,701,478
	venice-1490	$1,\!490$	$934,\!449$	4,717,420
	venice-1521	1,521	938,727	4,734,634
	venice-1544	1,544	$941,\!585$	4,745,797
	venice-1638	$1,\!638$	$975,\!980$	$4,\!952,\!422$
	venice-1666	$1,\!666$	$983,\!088$	4,982,752
	venice-1672	$1,\!672$	$986,\!140$	$4,\!995,\!719$
	venice-1681	$1,\!681$	$982,\!593$	4,962,448
	venice-1682	$1,\!682$	$982,\!446$	$4,\!960,\!627$
	venice-1684	$1,\!684$	$982,\!447$	4,961,337
	venice-1695	$1,\!695$	$983,\!867$	4,966,552
	venice-1696	$1,\!696$	$983,\!994$	4,966,505
	venice-1706	1,706	984,707	4,970,241
	venice-1776	1,776	$993,\!087$	$4,\!997,\!468$
_	venice-1778	1,778	993,101	$4,\!997,\!555$
_		cameras	landmarks	observations
	final-93	93	61,203	$287,\!451$
	final-394	394	100,368	$534,\!408$
	final-871	871	$527,\!480$	2,785,016
	final-961	961	$187,\!103$	$1,\!692,\!975$
	final-1936	1,936	$649,\!672$	$5,\!213,\!731$
	final-3068	3,068	$310,\!846$	$1,\!653,\!045$
	final- 4585	4,585	$1,\!324,\!548$	$9,\!124,\!880$
	final-13682	$13,\!682$	$4,\!455,\!575$	$28,\!973,\!703$

Table 1: List of all 97 BAL problems [3] including number of cameras, landmarks and observations.

References

- Iglesias, J.P., Olsson, C.: Radial distortion invariant factorization for structure from motion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5906–5915 (2021)
- Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. International Journal of Computer Vision 32(1), 7–25 (1999)
- Wang, X., Yang, W., Sun, B.: Derivatives of kronecker products themselves based on kronecker product and matrix calculus. Journal of Theoretical and Applied Information Technology 48(1) (2013)