Power Variable Projection
for Initialization-Free Large-Scale
Bundle Adjustment

— Supplemental Material —

Simon Weber!? Je Hyeong Hong? Daniel Cremers'>?

! Technical University of Munich
2 Munich Center for Machine Learning
3 Department of Electronic Engineering, Hanyang University

This supplemental material is organized as follows:

Appendix [A] studies robustness of PoVar with respect to n and random ini-
tialization, as well as the scale of the considered problems.

Appendix |B|complements the theoretical justifications of PoVar and RiPoBA.
Appendix [C] briefly comments a recent follow-up formulation of pOSE error.
Appendix addresses the metric upgrade stage, necessary to estimate the
projective transformation and to get Euclidean reconstruction.

Appendix [E] gives more details about the 97 BAL problems used in our exper-
iments.

A Robustness

We illustrate the robustness of our solver PoVar for solving the first stage with
respect to the coefficient 7 in the pOSE formulation. Figure [I} Figure 2] and
Figure [3] represent the performance profile for n = 0.2, n = 0.3 and n = 0.4, re-
spectively. We conclude that expansion methods PoBA and Po Var are both very
competitive for the largest tolerance 7 = 0.01 for all coefficients 7, in line with

100

80

60

percentage

20

tolerance T = 0.01

tolerance T = 0.003

tolerance T = 0.001

40/

percentage

100

80

40/

20

/_/—f Y slaiaininiss—

)

- ,*I —

f ,' —— PoVar (ours)

601 |

/ PoBA [23]
SRS pOSE [11]
- iterative

percentage

100 A

80

60 1

404

204

relative time a

relative time a

relative time a

Fig. 1: With n = 0.2, performance profiles for all real-world BAL problems for solving
the first stage (6). Given a tolerance 7 € {0.01,0.003,0.001}, it represents the percent-
age of solved problems (y-axis) with relative runtime « (z-axis). Our solver PoVar is
very competitive, and most notably for the highest accuracy = = 0.001 and 7 = 0.003.



ii S. Weber et al.

tolerance T = 0.01 tolerance T = 0.003 tolerance T = 0.001
100 =
- ==
[~ ,,/—_/5-‘“
80 I,
o o S °
i)/ PoVar (ours)
§‘ E‘ 60 4/ — poBAI23] E
o g [ S OSE [11] @
o L 404 ; P o
g 2 / 4 --- iterative g
204 —==' e
4” ............
Py
5 1 2 5
relative time a relative time a relative time a

Fig. 2: With n = 0.3, performance profiles for all real-world BAL problems for solving
the first stage (6).

tolerance T = 0.01 tolerance T = 0.003 tolerance T = 0.001
100 | 100 —
7 //I—’
80 A 80 /f -
9 J g _~#  —— PoVar(ours) | &
8 60 ’ S 60 == ]
é 1 / ;E) // ~—— PoBA [23] E
g a0 | / € a0f- ,,;—‘4’, ----- POSE [11] ¢
g , R g / | -=- iterative a8
2049 2770 oensatsezest 20t
) B N 1 R
o Jd 0
1 2 5 1 2 5
relative time a relative time a relative time a

Fig. 3: With n = 0.4, performance profiles for all real-world BAL problems for solving
the first stage (6).

our analysis in the main paper with 7 = 0.1. In particular, it outperforms itera-
tive, and direct factorization (dashed green curves) shows very poor performance
due to its lack of scalability. For highest accuracy 7 = 0.003 and 7 = 0.001, Po-
Var clearly outperforms all its competitors, in line with the main paper. Note
that for each 7, we have randomly selected a new set of 97 problems. We can
also conclude from our ablation study that our analysis is robust to random
initialization.

On the other hand, we link the speed-up of PoVar and RiPoBA, to the size
of the problems. Figure [ represents the performance profiles for solving the first
two stages by considering only the BAL datasets with less than 1000 poses (small
to medium-scale problems), and Figurethe performance profiles by considering
only the BAL datasets with more than 1000 poses (large-scale problems).

B Proof of Lemma 1

The proof in Weber et al. [23] uses the positive-definiteness of Uy and S —
that still holds, to show that u < 1. It uses the positive-semi-definiteness of

_1 1
U, 2WV;IVVTU \ ° to conclude that 1 > 0. For our VarPro formulation, we

consider Vj instead of V). Note that the generalized Schur complement is written
as: S = Uy — WVJWT, where V| is the (Moore-Penrose) pseudo-inverse of

1

_1 —
Vo. Nevertheless, it is straightforward that U, * WVOTWTU ) ° is also symmetric



Power Variable Projection — Supplemental iii

tolerance T = 0.01 tolerance T = 0.003 tolerance T = 0.001

-

Sy Ve
PoVar (ours) - RiPoBA (ours)
PoVar (ours) - RiPCG
PoBA [23] - RiPoBA (ours)
PoBA [23] - RiPCG
iterative - RiPCG
- iterative - RiPOBA (ours)

percentage
percentage
percentage

relative time a relative time a relative time a

Fig. 4: Performance profiles for real-world BAL problems with less than 1000 poses
for solving the first two stages Eq. (6) and Eq. (7).

tolerance T = 0.01 tolerance T = 0.003 tolerance T = 0.001
100 47

80 o :
i —— PoVar (ours) - RiPoBA (ours) ~
f- ——— PoVar (ours) - RiPCG

: - PoBA [23] - RiPoBA (ours)
PoBA [23] - RIPCG

iterative - RiPCG

iterative - RiPOBA (ours)

60 4

percentage
percentage
percentage

relative time a relative time a relative time a

Fig. 5: Performance profiles for real-world BAL problems with more than 1000 poses
for solving the first two stages Eq. (6) and Eq. (7).

positive semi-definite, and then the proof stays almost the same. In details, here
is the adapted proof:

1

1 _
Proof. On the one hand U, * VVVOTWT U, ? is symmetric positive semi-definite,
as U, is symmetric positive definite, and Vj is symmetric positive semi-definite.
1 1
Then its eigenvalues are greater than 0. As Uy 2W Vi WU, 2 and Uy 'WViW T
are similar,
uw=>0. (1)

1

R
On the other hand U, *SU, * is symmetric positive definite as S and U, are. It
follows that the eigenvalues of U5 1S are all strictly positive due to its similarity

with Uy 2 SU; 2. As

UTWViwT =1-Uts, (2)
it follows that
p<l, (3)
that concludes the proof.
1

Concerning Riemannian manifold optimization framework, as the projection x
is full rank, it follows that U5 and V3 are symmetric positive-definite. Then, the
previous proof can be very easily adapted to prove Lemma 2.



iv S. Weber et al.
C pOSE Formulation

We extensively use the pOSE formulation [11] for testing our solvers. Recently,
the follow-up expOSE formulation [14] has been proposed to override some limi-
tations of pOSE. However, such formulation raises some issues for the scalability
analysis. In addition to the fact that the authors wrongly claim that they use
VarPro, expOSE requires an experimental preprocessing step over each image
measurements. Without this first step, the exponential function is equal to 0 and
the algorithm does not update. Nevertheless, such preprocessing is not feasible,
in terms of runtime, when the considered dataset is large enough — which is the
topic of our paper, where the number of observations goes up to several tens of
millions. Although interesting, expOSE is so far limited to small-scale problems,
in line with the problems used by the authors — between 19 and 30 poses in their
core paper. Extending this pseudo object space error to large-scale formulation
is an interesting research direction, orthogonal to our work.

That being said, note that our proposed solver PoVar can be used for solving
generic nonlinear problems, and is not restricted to the pOSE formulation. In
particular, a recent formulation RpOSE [29] extends pOSE to take into account
unknown intrinsics and can be easily adapted to PoVar.

D Metric Upgrade

The third stage of pOSE [11] is the autocalibration step (see e.g. [30]), aiming to
find an ambiguity matrix H € R*** that forces the camera matrices to satisfy
the SE(3) constraints, that is to find H such that, for all poses i:

i i (A0
po =1, (CT 1) ~ K; [Riti] y (4)

where (c—r 1) represents the plane at infinity. By denoting H the three left-most
columns of H, the SE(3) constraint leads to

(K; ') HH (K '2i) " ~ 1. (5)
We find ¢ and the camera scales a; by solving:
TLP

f?in}Z||0lz'(Kflxé)ﬁ(c)ﬂ(c)T(Kflxé)T — 1|7, (6)
Ordar

with the VarPro algorithm.

In particular, we use the chain rule and the following thorem [31]:

Theorem 1. The derivative of HHT with respect to H is equal to:

dHHT N .
— =(IoH")+(H ®IT, (7)
dH




Power Variable Projection — Supplemental

where T is the matriz that transforms vec(H) in vec(H " ):

Tvec(H) = vec(H"),

v

(8)

and vec(H) is the operator that creates vector by stringing together the columns

of H.

E Dataset

cameras landmarks observations
ladybug-49 49 7,766 31,812
ladybug-73 73 11,022 46,091
ladybug-138 138 19,867 85,184
ladybug-318 318 41,616 179,883
ladybug-372 372 47,410 204,434
ladybug-412 412 52,202 224,205
ladybug-460 460 56,799 241,842
ladybug-539 539 65,208 277,238
ladybug-598 598 69,193 304,108
ladybug-646 646 73,541 327,199
ladybug-707 707 78,410 349,753
ladybug-783 783 84,384 376,835
ladybug-810 810 88,754 393,557
ladybug-856 856 93,284 415,551
ladybug-885 885 97,410 434,681
ladybug-931 931 102,633 457,231
ladybug-969 969 105,759 474,396
ladybug-1064 1,064 113,589 509,982
ladybug-1118 1,118 118,316 528,693
ladybug-1152 1,152 122,200 545,584
ladybug-1197 1,197 126,257 563,496
ladybug-1235 1,235 129,562 576,045
ladybug-1266 1,266 132,521 587,701
ladybug-1340 1,340 137,003 612,344
ladybug-1469 1,469 145,116 641,383
ladybug-1514 1,514 147,235 651,217
ladybug-1587 1,587 150,760 663,019
ladybug-1642 1,642 153,735 670,999
ladybug-1695 1,695 155,621 676,317
ladybug-1723 1,723 156,410 678,421

cameras landmarks observations
trafalgar-21 21 11,315 36,455



vi

S. Weber et al.

trafalgar-39 39 18,060 63,551
trafalgar-50 50 20,431 73,967
trafalgar-126 126 40,037 148,117
trafalgar-138 138 44,033 165,688
trafalgar-161 161 48,126 181,861
trafalgar-170 170 49,267 185,604
trafalgar-174 174 50,489 188,598
trafalgar-193 193 53,101 196,315
trafalgar-201 201 54,427 199,727
trafalgar-206 206 54,562 200,504
trafalgar-215 215 55,910 203,991
trafalgar-225 225 57,665 208,411
trafalgar-257 257 65,131 225,698

cameras landmarks observations
dubrovnik-16 16 22,106 83,718
dubrovnik-88 88 64,298 383,937
dubrovnik-135 135 90,642 552,949
dubrovnik-142 142 93,602 565,223
dubrovnik-150 150 95,821 567,738
dubrovnik-161 161 103,832 591,343
dubrovnik-173 173 111,908 633,894
dubrovnik-182 182 116,770 668,030
dubrovnik-202 202 132,796 750,977
dubrovnik-237 237 154,414 857,656
dubrovnik-253 253 163,691 898,485
dubrovnik-262 262 169,354 919,020
dubrovnik-273 273 176,305 942,302
dubrovnik-287 287 182,023 970,624
dubrovnik-308 308 195,089 1,044,529
dubrovnik-356 356 226,729 1,254,598

cameras landmarks observations
venice-52 52 64,053 347,173
venice-89 89 110,973 562,976
venice-245 245 197,919 1,087,436
venice-427 427 309,567 1,695,237
venice-744 744 542,742 3,054,949
venice-951 951 707,453 3,744,975
venice-1102 1,102 779,640 4,048,424
venice-1158 1,158 802,093 4,126,104
venice-1184 1,184 815,761 4,174,654
venice-1238 1,238 842,712 4,286,111
venice-1288 1,288 865,630 4,378,614
venice-1350 1,350 893,894 4,512,735



Power Variable Projection — Supplemental vii

venice-1408 1,408 911,407 4,630,139
venice-1425 1,425 916,072 4,652,920
venice-1473 1,473 929,522 4,701,478
venice-1490 1,490 934,449 4,717,420
venice-1521 1,521 938,727 4,734,634
venice-1544 1,544 941,585 4,745,797
venice-1638 1,638 975,980 4,952,422
venice-1666 1,666 983,088 4,982,752
venice-1672 1,672 986,140 4,995,719
venice-1681 1,681 982,593 4,962,448
venice-1682 1,682 982,446 4,960,627
venice-1684 1,684 982,447 4,961,337
venice-1695 1,695 983,867 4,966,552
venice-1696 1,696 983,994 4,966,505
venice-1706 1,706 984,707 4,970,241
venice-1776 1,776 993,087 4,997,468
venice-1778 1,778 993,101 4,997,555

cameras landmarks observations
final-93 93 61,203 287,451
final-394 394 100,368 534,408
final-871 871 527,480 2,785,016
final-961 961 187,103 1,692,975
final-1936 1,936 649,672 5,213,731
final-3068 3,068 310,846 1,653,045
final-4585 4,585 1,324,548 9,124,880
final-13682 13,682 4,455,575 28,973,703

Table 1: List of all 97 BAL problems [3] including number of cameras, landmarks
and observations.

References

29. Iglesias, J.P., Olsson, C.: Radial distortion invariant factorization for structure from
motion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5906-5915 (2021)

30. Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction in-
spite of varying and unknown intrinsic camera parameters. International Journal of
Computer Vision 32(1), 7-25 (1999)

31. Wang, X., Yang, W., Sun, B.: Derivatives of kronecker products themselves based
on kronecker product and matrix calculus. Journal of Theoretical and Applied In-
formation Technology 48(1) (2013)



	Power Variable Projection  for Initialization-Free Large-Scale  Bundle Adjustment[2mm] – Supplemental Material –

