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Abstract. Most Bundle Adjustment (BA) solvers like the Levenberg-
Marquard algorithm require a good initialization. Instead, initialization-
free BA remains a largely uncharted territory. The under-explored Vari-
able Projection algorithm (VarPro) exhibits a wide convergence basin
even without initialization. Coupled with object space error formulation,
recent works have shown its ability to solve small-scale initialization-
free bundle adjustment problem. To make such initialization-free BA
approaches scalable, we introduce Power Variable Projection (PoVar),
extending a recent inverse expansion method based on power series. Im-
portantly, we link the power series expansion to Riemannian manifold
optimization. This projective framework is crucial to solve large-scale
bundle adjustment problems without initialization. Using the real-world
BAL dataset, we experimentally demonstrate that our solver achieves
state-of-the-art results in terms of speed and accuracy. To our knowledge,
this work is the first to address the scalability of BA without initialization
opening new venues for initialization-free structure-from-motion.

Keywords: Bundle Adjustment · Initialization-Free · Schur Comple-
ment · Riemannian Manifold Optimization

1 Introduction

Bundle adjustment (BA) is the key component of many structure-from-motion
and 3D reconstruction algorithms. With the recent emergence of large-scale in-
ternet photo collections [3] and new applications (mixed reality, autonomous
driving, digital twins), the need to solve large-scale BA has become an impor-
tant challenge. Traditional BA addresses the following question: Given image
measurements and approximate landmark positions and camera parameters, can
we derive the exact positions and parameters? The gold standard is to use the
Levenberg-Marquardt algorithm [25] coupled with the Schur complement trick
and a scalable solver for the reduced camera system, which is often the precon-
ditioned conjugate gradient algorithm. Recent work [23] achieves outstanding
speed for large-scale BA by using a power series expansion of the inverse Schur
complement.
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Recently, a new line of works [11, 13, 14] has attempted to solve the BA
problem without careful initialization: Given only image measurements, how do
we derive pose parameters and 3D landmark positions? This challenge is largely
uncharted, and its scalability a blind spot. In particular, most existing works
aim to formalize the problem into a stratified BA formulation, and none of them
try to design effective solvers. It is noteworthy that even the most recent works
only use direct factorization which becomes impractical for large-scale problems
with several hundreds of cameras. In contrast to the traditional BA problem,
the deficiency of competitive solvers for initialization-free BA can be broadly
explained by the difference of convergence behaviour between a well-initialized
problem and an initialization-free problem.

Following up on the recent findings concerning inverse expansion methods,
we address the scalability of initialization-free BA. Our new solver based on the
Variable Projection algorithm overcomes the issues of convergence of the scalable
preconditioned conjugate gradients algorithm, while being efficient for thousand
of camera viewpoints. In summary, we make the following contributions:

• We introduce Power Variable Projection (PoVar) for efficient large-scale
bundle adjustment without good initialization of camera poses and 3D land-
marks. To the best of our knowledge, we are the first to address the scalability
of initialization-free bundle adjustment formulation.

• We provide theoretical proofs that justify the extension of recent inverse
expansion method to the variable projection algorithm. While sharing a close
algorithmic structure, the proposed extension and the existing power-series-
based method largely differ in the theory, in the applications and in the
convergence behaviour.

• We theoretically extend the power series expansion for bundle adjustment to
Riemannian manifold optimization. We take advantage of the matrix-specific
structure to propose an efficient storage and memory-efficient computation
for such optimization.

• We perform extensive evaluation of the proposed approach on the real-world
BAL dataset. We emphasize the benefits of PoVar in terms of scalability,
speed and accuracy. In contrast to state-of-the-art solvers, our work is the
first that solves large-scale bundle adjustment without initialization.

• We release our solver as open source to facilitate further research: https:
//github.com/tum-vision/povar.

2 Related Work

As we address the scalability of the variable projection (VarPro) algorithm for
initialization-free bundle adjustment (BA), we review works on VarPro and on
BA from arbitrary initialization. We also provide some background on the inverse
expansion methods. A more general description of BA can be found in [22].

https://github.com/tum-vision/povar
https://github.com/tum-vision/povar
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Fig. 1: In contrast to traditional bundle adjustment problem, initialization-free BA
is a largely under-explored problem. It does not assume any approximation of pose
and landmark parameters, making the problem much harder to solve. From a random
initialization (left figure), and given only image measurements, we aim to recover pose
and landmark parameters. Our approach, that extends inverse expansion method, is
motivated by the lack of scalability of existing solvers. On the real-world BAL problems
(e.g. Venice-89, right figure), we demonstrate the efficiency of the proposed combina-
tion of our novel solver Power Variable Projection (PoVar) and Riemannian manifold
optimization framework for expansion method to solve the stratified BA problem.

Variable projection (VarPro) algorithm. VarPro is an optimization ap-
proach for solving bivariate problems that can be formulated as minimizing a
cost function f(u, v) with f : Rm×Rn → R over two sets of variables u ∈ Rm and
v ∈ Rn. Unlike alternation, which fixes u and optimizes over v and vice versa, or
joint optimization, which optimizes the stack of u and v simultaneously, variable
projection replaces v with v∗(u) := argminv f(u, v) (v always optimal over u)
such that the optimized cost function f(u, v∗(u)) =: f∗(u) becomes a function of
u only. The original VarPro algorithm by Golub and Pereyra [9] and its approx-
imations by Ruhe and Wedin [19] assume solving a separable nonlinear least
squares (SNLS) problem where v∗(u) can be obtained in closed form. VarPro
was consistently ignored in the computer vision community and even misidenti-
fied as a form of alternating optimization [5]. It first receives proper attention
when Okatani et al. [17] demonstrates VarPro equipped with a trust-region ap-
proach such as Levenberg-Marquardt can yield a wide basin of convergence for
several toy problems that can be formulated as a SNLS problem such as affine
structure-from-motion and factorization-based non-rigid structure-from-motion.
Shortly after, Strelow [20,21] extends VarPro to the nonlinear case where v∗(u)
is not in closed form such as bundle adjustment. Nevertheless, these works do not
address the issue of increased algorithmic complexity. Later, it has been shown



4 S. Weber et al.

by Hong et al. [12] that VarPro can be efficiently implemented by performing
inner iterations [2] (also known as embedded point iterations [15]) over the set of
eliminated variables u followed by performing a joint optimization step with no
damping on u. While this enables faster runtime compared to previous studies,
it has only been tested up to small-medium sized problems with around 300
camera views. To this date, no work to the best of our knowledge has improved
the scalability of the VarPro algorithm beyond [12].

Initialization-free bundle adjustment. While traditional (large-scale) bun-
dle adjustment is regularly studied ( [3,4,6,7,18,24,28]), initialization-free BA is
a recent research topic. In a seminal work, Hong et al. [13] propose to solve pro-
jective bundle adjustment from arbitrary initialization with the Variable Projec-
tion algorithm. Notably, they propose a stratified bundle adjustment formulation
with increasing difficulty. In a follow-up work, pOSE [11] incorporates the equiv-
alence between nonlinear VarPro and the Schur complement recently identified
in [12]. Additionally, they define an objective in-between affine and projective
models that leads to a wide convergence basin. Iglesias et al. [14] complements
this pseudo object space error formulation with an exponential regularization
term, and show interesting results on very-small-scale problems. Nevertheless,
to our knowledge, none of these studies look closely into the scalability of the
proposed frameworks for initialization-free bundle adjustment.

Inverse expansion method. Despite its short recent appearance in the litera-
ture, inverse expansion method is a highly efficient and competitive approach for
solving the linearized system of equations for bundle adjustment that is already
challenging established factorization and iterative methods. It links the Schur
complement [26] to the power series expansion of its inverse. Using the power
Schur complement as a preconditioner for normal equations leads to good re-
sults for physics problems such as convection-diffusion [27]. PoBA [23] proposes
to directly apply the power Schur complement to the right-hand side of the re-
duced camera system. Their solver results in improved speed and accuracy for
traditional bundle adjustment formulation with respect to the existing methods.

3 Problem Statement and Motivation

We consider a typical form of bundle adjustment. Given observations mij for
pose i and landmark j, Ki, Ri ∈ SO(3), ti ∈ R3 the intrinsics, rotation and
translation of pose i, and xj ∈ R3,x̃j ∈ S4 the inhomogeneous and homogeneous
landmark 3D positions (where Sn denotes the set of all vectors on the unit n-
sphere), we aim to solve:

min
{Ri}∈SO(3),{ti},{x̃j}

∑
(i,j)∈Ω

∥π(Ki[Ri|ti]x̃j)−mij∥22 , (1)

where π is the perspective projection π([x, y, z]⊤) := [x/z, y/z]⊤.
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Recently, Eq. 1 with good initialization has been solved efficiently with a
novel inverse expansion method.

3.1 Inverse expansion method

Inverse expansion method [23, 27] relates on the expansion of the inverse of a
matrix into a power series, as stated in the following proposition:

Proposition 1. Let M be an n× n matrix. If the spectral radius of M satisfies
∥M∥ < 1, then

(I −M)−1 =

m∑
i=0

M i +R , (2)

where the error matrix

R =

∞∑
i=m+1

M i , (3)

satisfies

∥R∥ ≤ ∥M∥m+1

1− ∥M∥
. (4)

Given a linear approximation of Eq. 1 followed by the Schur complement
trick, Weber et al. [23] relates the inverse Schur complement of the Levenberg-
Marquardt algorithm to its power series. They show significant improvement in
terms of speed and accuracy to solve BA problem with good initialization. In
addition to this empirical insights, some convergence behaviour concerning the
approximated results for the BA problem are theoretically proved.

However, it is well-known in the literature (see e.g. [13]) that solving Eq. 1
from arbitrary initialization is non-feasible. Hong et al. [11] override this chal-
lenge by proposing a stratified bundle adjustment problem. Let us revisit the
formulation of this approach.

3.2 Initialization-free bundle adjustment

The stratified BA problem is decomposed in two minimization problems, followed
by a metric upgrade. Although we consider a pinhole camera model, the first
stage assumes a projective model.

First stage: separable nonlinear optimization with projective camera.
Given np poses and nl landmarks, x = (xp, xl) contains all the optimization
variables. We model the camera as a projective one. For pose i, we consider the
camera parameters xi

p ∈ R3×4 and solve the following generic nonlinear separable
problem:

min
xp,x̃l

F (xp, x̃l) =
∥∥r(xp, x̃l)

∥∥2
2
=

∥∥G(xp)x̃l − z(xp)
∥∥2
2
, (5)
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with G(.) and z(.) some linear operators, and the last coefficient of x̃j
l fixed to 1.

For instance, pOSE [11] – extensively used in our analysis (see Supplemental),
proposes the following minimization problem:

FpOSE(xp, xl) =
∑

(i,j)∈Ω

∥∥∥∥√1− η(xi,1:2
p x̃j

l − (xi,3
p x̃j

l )mij)√
η(xi,1:2

p x̃j
l −mij)

∥∥∥∥2
2

, (6)

with xi,1:2
p and xi,3

p respectively the first two rows and the third row of xi
p, and

η ∈ [0, 1].
Hong et al. [12] argue the superiority of VarPro over joint optimization to

solve the previous equation, due to the random initialization of this stage.

Second stage: projective refinement. The cameras and landmarks param-
eters obtained by solving Eq. 5 are refined by minimizing the projective stan-
dard objective [13] over the projective camera models in homogeneous form
({x̃i

p | vec(x̃i
p) ∈ S12}) and the 3D landmarks in homogeneous coordinates

({x̃j
l | x̃j

l ∈ S4}): ∑
(i,j)∈Ω

∥∥π(x̃i
px̃

j
l )−mij

∥∥2
2
. (7)

Importantly, the optimization is performed in homogeneous coordinates. Espe-
cially, Riemannian manifold optimization [1] has to be incorporated.

Metric upgrade. The last stage is a minimization problem to enforce the pro-
jective camera matrices to satisfy SE(3) properties. Note that our work mostly
focuses on the first two stages. The proposed implementation for this third stage
has illustrative purpose, see Fig. 1. We refer the reader to Supplemental for
further details.

3.3 Limitations and proposed method

In contrast to the Levenberg-Marquardt algorithm, few solvers have been de-
signed to efficiently solve VarPro. In practice, even the most recent works [11,14]
use a direct factorization (e.g. Cholesky decomposition, QR factorization), that
is well-known to be poorly scalable (see e.g. [3]), to solve Eq. 5. In particular, we
note that these works consider bundle adjustment problems with only few tens
of cameras – sometimes less than ten. On the other hand, Hong and Fitzgib-
bon [10] show that coupling VarPro with the popular preconditioned conjugate
gradients algorithm may not converge efficiently.

We propose to build on recent inverse expansion method. We first adapt the
power series expansion to the VarPro algorithm (Section 4.2). We show that the
so-called PoVar efficiently solves Eq. 5. Moving forward, we extend the power
series expansion to Riemannian manifold optimization (Section 4.3). This new
Riemannian framework, that we call RiPoBA, is necessary to use expansion
method for solving Eq. 7. We demonstrate that the combination of this two
solvers is highly competitive (Section 5).
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4 Power Variable Projection

We start by revisiting the VarPro algorithm. We refer to [9] for further details.

4.1 Revisited variable projection

In contrast to joint optimization, VarPro optimizes over landmark parameters
and camera parameters, but in a way different from the standard alternating
least squares such that landmarks are not assumed to be fixed when updating the
camera parameters. It first considers Eq. 5 as a nonlinear minimization problem
over x̃l only. Due to the separability of the equation, a closed-form solution for
optimal x̃∗

l (xp) is straightforward:

x̃∗
l (xp) = argmin

x̃l

∥G(xp)x̃l − z(xp)∥22 = G(xp)
†z(xp) , (8)

with G(xp)
† the pseudo-inverse of G(xp). As we set the last coordinate of x̃l to

1, we normalize x̃∗
l (xp) by its last coordinate and its substitution in Eq. 5 leads

to the following reduced problem:

min
xp

r∗(xp) = min
xp

∥(G(xp)G
†(xp)− I)z(xp)∥22 . (9)

Following [12], Eq. 9 can be solved with LM algorithm over xp. The Jacobian
of r∗ is approximated with the so-called RW2 approximation [16], that leads to
the normal equation: (

Uλ W
W⊤ V0

)(
∆xp

∆xl

)
= −

(
bp
bl

)
, (10)

where

Uλ = J⊤
p Jp + λD⊤

p Dp , (11)

V0 = J⊤
l Jl , W = J⊤

p Jl , (12)

bp = J⊤
p r0 , bl = J⊤

l r0 , (13)

with Jl and Jp respectively the landmark and pose Jacobians of the original
residual (Eq. 5) around an equilibrium r0, and Dp diagonal damping matrix
for pose variables. In contrast to joint optimization, only the pose Jacobian
is damped in the associated Hessian. It follows that Uλ is symmetric positive-
definite [22], whereas V0 is only guaranteed to be symmetric positive-semidefinite.
Nevertheless, we observe V0 is usually of full rank unless a 3D landmark is
observed by few cameras with narrow baselines. By using the Schur complement
trick, the update equation for VarPro becomes:

(Uλ −WV −1
0 W⊤)∆xp = bp −WV −1

0 bl . (14)

Note that the Schur complement associated to VarPro:

SV = Uλ −WV −1
0 W⊤ , (15)
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while sharing a close structure to the Schur complement of the traditional BA
problem, has a different convergence behaviour, due to the undamped landmark
Jacobian V0.

4.2 Power series for VarPro

Inspired by Weber et al. [23], the following lemma holds, even if V0 is only
symmetric positive-semidefinite:

Lemma 1. Let µ be an eigenvalue of U−1
λ WV †

0 W
⊤. Then

0 ≤ µ < 1 . (16)

Proof. We refer the reader to the Supplemental.

It follows that the pose update ∆xp in Eq. 14 can be directly approximated4 by
x(m) with Proposition 1 applied to the Schur complement SV :

x(m) = −
m∑
i=0

(U−1
λ WV −1

0 W⊤)iU−1
λ (bp −WV −1

0 bl) . (17)

Once the pose update is estimated, the landmark update is derived following
closed-form Eq. 8. That extends the inverse expansion method to Variable Pro-
jection algorithm. The difference between both solvers is the role of the damped
parameters. While it seems slight, this is enough to offer a dissimilar convergence
behaviour, as we will see in the experiments.

Before that, let us investigate Riemannian manifold optimization, that is
necessary to solve the second stage of the stratified BA problem. In particular,
we show that we can link this framework to expansion method.

4.3 Power Riemannian manifold optimization

As the projective refinement step in Eq. 7 involves both camera matrices and
3D landmarks in homogeneous forms, we exhibit local scale freedom for both
camera and landmark parameters. This necessitates incorporation of the Rie-
mannian manifold optimization framework without which the linearized system
of equations is always rank-deficient and unsolvable. While a complete theo-
retical overview of such framework can be found in [1], we formalize Eq. 7 as:

argmin
∆x̃p,∆x̃l

∥f(x̃p +∆x̃p, x̃l +∆x̃l)∥22, (18)

where x̃p ∈ R12np denotes the stack of vectorized homogeneous camera parame-
ters, x̃l ∈ R4nl denotes the stack of homogeneous 3D landmarks and ∆x̃p ∈ R12np

and ∆x̃l ∈ R4nl are the updates in homogeneous camera parameters and 3D
4 As in practice V0 is full-rank, and to avoid encumbering notations, we write V −1

0

instead of the pseudo-inverse in the rest of the paper.
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landmarks respectively. The unknowns are searched in the tangent space of
current x̃ = [x̃⊤

p , x̃
⊤
l ]

⊤, that we note x̃⊥ ∈ R(12np+4nl)×(11np+3nl) such that
(x̃⊥)⊤x = 0. To simplify notations, x̃p is considered as a vector in this sec-
tion, and x̃⊥

p ∈ R12np×11np , x̃⊥
l ∈ R4nl×3nl are block-diagonal, each block corre-

sponding to the associated pose i and landmark j, respectively. The projective
refinement becomes:

argmin
∆x̃⊥x̃

∥f(x̃p +∆x̃p, x̃l +∆x̃l)∥22 . (19)

By coupling Riemannian manifold optimization and LM algorithm, and accord-
ing to [1], we get the following normal equation, projected onto the tangent space
of x̃: (

(x̃⊥
p )

⊤Uλx̃
⊥
p (x̃⊥

p )
⊤Wx̃⊥

l

(x̃⊥
l )

⊤W⊤x̃⊥
p (x̃⊥

l )
⊤Vλx̃

⊥
l

)(
∆xp

∆xl

)
= −

(
(x̃⊥

p )
⊤bp

(x̃⊥
l )

⊤bl

)
. (20)

where ∆xp ∈ R11np and ∆xl ∈ R3nl are the camera update and the landmark
update respectively made on the tangent space of x. By keeping coherent nota-
tions we can note the projected Jacobians and the projected damping parameters
onto the tangent space of x as:

J̃p = Jpx̃
⊥
p , J̃l = Jlx̃

⊥
l , λ̃p = (x̃⊥

p )
⊤λx̃⊥

p , λ̃l = (x̃⊥
l )

⊤λx̃⊥
l , (21)

and then Eq. 20 becomes:(
Ũλ̃ W̃

W̃⊤ Ṽλ̃

)(
∆xp

∆xl

)
= −

(
b̃p
b̃l

)
, (22)

where

Ũλ̃ = J̃⊤
p J̃p +D⊤

p λ̃pDp , (23)

Ṽλ̃ = J̃⊤
l J̃l +D⊤

l λ̃lDl , (24)

W = J̃⊤
p J̃l , (25)

b̃p = J̃⊤
p r0 , b̃l = J̃⊤

l r0 , (26)

We have unified the notations of bundle adjustment with Riemannian man-
ifold optimization. As the projection x⊥ is full-rank, it follows that Ũλ̃ and Ṽλ̃

are symmetric positive-definite (see Supplemental), and then the associated Rie-
mannian Schur complement:

S̃ = Ũλ̃ − W̃ Ṽ −1

λ̃
W̃⊤ (27)

satisfies the assumption of Proposition 1:

Lemma 2. Let µ̃ be an eigenvalue of Ũ−1

λ̃
W̃ Ṽ −1

λ̃
W̃⊤. Then

0 ≤ µ̃ < 1 . (28)
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Fig. 2: Average performance profiles across all BAL problems for solving the first stage
Eq. 5. Given a tolerance τ ∈ {0.01, 0.003, 0.001}, it represents the percentage of solved
problems (y-axis) with relative runtime α (x-axis). Expansion methods PoVar and
PoBA show outstanding speed-accuracy results. Our solver PoVar is competitive, and
most notably for the highest accuracy τ = 0.001.

The power series expansion can be applied to the inverse Riemannian Schur
complement:

S̃−1 ≈
m∑
i=0

(Ũ−1

λ̃
W̃ Ṽ −1

λ̃
W̃⊤)iŨ−1

λ̃
, (29)

to get pose updates, and then landmark updates by back-substitution.
Finally, the homogeneous pose and landmark updates ∆x̃p and ∆x̃l are re-

trieved by back-projecting pose and landmark updates in the tangent space to
the original vector space dimension as follows:

∆x̃p = x̃⊥
p ∆xp , ∆x̃l = x̃⊥

l ∆xl.

After above updates are added to the pose and landmark parameters x, we carry
out manifold retraction by normalizing individual vectors of camera parameters
and 3D landmarks to maintain their normalized homogeneous forms.

We call this projective framework Riemannian PoBA (RiPoBA), that extends
PoBA [23] to the Riemannian manifold optimization framework.

5 Experiments

5.1 Implementation

We implement pOSE 5 [11], PoVar and RiPoBA framework in C++, directly on
the publicly available implementation of PoBA 6 [23]. That leads to fair compar-
isons with this recent and challenging solver. pOSE differs from PoVar by the use
of a direct sparse Cholesky factorization. We also compare to VarPro with the
conjugate gradients algorithm, preconditioned with Schur-Jacobi preconditioner,
called iterative in our experiments. For the second stage, we compare RiPoBA to
5 We use our custom implementation as the official code of [11] is not publicly available.
6 https://github.com/simonwebertum/poba

https://github.com/simonwebertum/poba
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Fig. 3: Convergence plots of Dubrovnik-253 (left) from BAL datasets with 253 poses
and Ladybug-412 with 412 poses, for solving the first stage (Eq. 5). The dotted lines
correspond to cost thresholds for tolerance τ ∈ {0.01, 0.003, 0.001}.

Fig. 4: Performance profiles for all BAL problems for solving the first two stages (Eq. 5
and Eq. 7). In each combination, the first solver is used to solve the first stage, and the
second solver is used for the second stage. Our proposed combination PoVar followed
by a Riemannian expansion method outperforms by a large margin compared to other
competitors. Also, our proposed Riemannian-expansion method RiPoBA outperforms
the iterative baseline in all cases, given a same solver for the first stage.

the conjugate gradients algorithm preconditioned by Schur-Jacobi precondition-
ers with Riemannian manifold optimization framework, called RiPCG. Except
the solver itself, all implementations share much of the code with [23]. We run
experiments on MacOS 14.2.1 with an Intel Core i5 (4 cores at 2GHz).

5.2 Experimental settings

Setup. For each stage, we set the maximum number of iterations to 50, stopping
earlier if a relative function tolerance of 10−6 is achieved. The damping factor λ
starts for each stage at 10−4 and is updated accordingly to the success or failure
of the iteration. For expansion methods, we set the maximal order of power
series to 20 and a threshold to 0.01. For iterative methods, we set the maximum
number of inner iterations to 500. We set η for pOSE (Eq. 6) to 0.1.
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Fig. 5: Convergence plots of Ladybug-460 (left) from BAL datasets with 460 poses and
Venice-1672 with 1672 poses, for solving the second stage (Eq. 7). The dotted lines
correspond to cost thresholds for tolerance τ ∈ {0.01, 0.003, 0.001}. Note that for fair
comparison, the initial cost is derived before the first stage. The second cost – that
may be higher than the initial one, is the initial cost of the second stage, after the first
stage has been run. The runtime includes the time spent to solve the first stage.

Fig. 6: Example of dense landmark block in the tangent space with 3 observations from
a single landmark. We project the initial dense landmark block (left) onto the tangent
space by applying to each i-th pose Jacobian Jpi ∈ R2×12 the projection x̃⊥

pi , and to
each j-th landmark Jacobian Jlj ∈ R2×4 the projection x̃⊥

lj
. The resulting pose and

landmark Jacobians in the tangent space (right) belong to R2×11 and R2×3 respectively.

Efficient storage for Riemannian manifold optimization framework. As
in [23], we leverage the special structure of BA problem and propose a memory-
efficient storage. We organize the landmarks into dense blocks. In particular, we
apply on each row associated to a landmark the block-matrices of the projec-
tion x̃⊥

lj
, x̃⊥

pi
corresponding to the landmark and to the cameras stored in the

considered dense landmark block (see Fig. 6).

Dataset. We extensively evaluate our solver and the baselines on the 97 real-
world bundle adjustment problems from the BAL project page [3]. The number
of poses goes from 16 to 13682. We refer the reader to Supplemental for further
details about these problems. For each problem, we only keep the observation
measurements. Pose parameters are randomly drawn from an isotropic Gaussian
distribuaton with mean 0 and variance 1, and landmark parameters are deduced
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with Eq. 8. Notably and contrary to previous works on initialization-free BA,
each solver is ran on the same randomized problem, for fair comparisons.

5.3 Performance profile

We jointly evaluate both runtime and accuracy with performance profiles [8].
Given a solver, the performance profile maps the relative runtime α to the per-
centage of problems solved with accuracy τ . Graphically, the performance profile
of a given solver is the percentage of problems solved faster than the relative
runtime α on the x-axis. Let be S and P the sets of solvers and problems, re-
spectively. In practice, we can define the objective threshold for a problem p by:

fτ (p) = f∗(p) + τ(f0(p)− f∗(p)) , (30)

with f0(p) the initial objective and f∗(p) the smallest error reached by the family
of solvers. The runtime a solver s needs to reach this threshold is noted Tτ (p, s).
The performance profile of a solver for a relative runtime α is defined as:

ρ(s, α) =
100

|P |
|{p ∈ P |Tτ (p, s) ≤ αmin

s∈S
Tτ (p, s)}| . (31)

Graphically, a curve on the left of the performance profile is linked to better
runtime, whereas a curve on the right is related to better accuracy. Note that
for meaningful comparison, all solvers should have the same initial objective.

5.4 Analysis

First stage. Fig. 2 shows the performance profiles for all BAL datasets with
tolerances τ ∈ {0.01, 0.003, 0.001} to solve Eq. 5. As expected, the direct factor-
ization solver (dashed green) used in Hong et al. [11] shows poor performance.
Our solver PoVar (blue) challenges PoBA for the largest tolerance 0.01, and is
by far the most competitive solver for the smallest tolerance τ = 0.001, that is
for the highest accuracy. For τ = 0.003, PoVar slightly outperforms PoBA. We
also highlight that our solver outperforms the two competitors associated to the
VarPro algorithm, iterative (dashed red) and direct factorization.

Fig. 3 shows two examples of the cost decrease during the first stage. Notably,
PoVar (blue) converges much more smoothly than its main challenger PoBA
which gets stuck in early iterations. By considering the intersections of the solvers
with the cost thresholds (dashed grey lines), it also demonstrates the slowness
of the iterative method compared to expansion methods in terms of runtime.

First and second stage. Fig. 4 shows the performance profiles for all BAL
datasets with tolerances τ ∈ {0.01, 0.003, 0.001} to solve the first two stages, that
are Eq. 5 followed by Eq. 7. Note that we compare in this experiment the cost
of the second stage only, as the first stage is only used to get an approximated
initialization for the projective formulation. As direct factorization shows poor
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performance during the first stage, we only take into account the most promising
combinations of solvers. PoVar followed by RiPoBA (blue) outperforms all the
competitors both in terms of runtime and accuracy. The combinations with
RiPoBA outperform RiPCG for the highest accuracy τ = 0.001 for all relative
time greater than α = 2, that reflects the better convergence of Riemannian
expansion method compared to RiPCG. We also note, given a same solver for first
stage, RiPoBA outperforms RiPCG during the second stage across all tolerances.

Fig. 5 illustrates on two examples the cost decrease during the second stage.
On the left figure (Ladybug-460 ), the best two solvers in terms of final conver-
gence are built on our framework RiPoBA. On the right figure (Venice-1672 ), all
the solvers using RiPoBA converge to a smaller error than their iterative com-
petitor RiPCG. By considering the intersection between the solvers and the cost
thresholds (dashed grey lines), the combination PoVar -RiPoBA outperforms all
other combinations, and most notably for the largest problem with 1672 poses.

Conclusive remark. The experiments emphasize the high efficacy of our solvers
PoVar and RiPoBA, during both first and second stages of the stratified BA
problem. Concerning the first stage, the convergence of PoVar is much smoother
than its competitors, that explains its larger speed with respect to PoBA to reach
the cost thresholds, albeit both are built with power series. Regarding the sec-
ond stage, for a same given solver in the first stage, our RiPoBA outperforms
the preconditioned conjugate gradients with Riemannian manifold optimization
framework in terms of speed and accuracy, especially when coupled with PoVar.

6 Conclusion

We have introduced a novel approach to address the scalability challenge for
initialization-free bundle adjustment. Our proposed Power Variable Projection
(PoVar) algorithm, theoretically justified, offers new insights to this uncharted
problem. By extending recent inverse expansion techniques to the VarPro al-
gorithm on one hand, and to Riemannian manifold optimization on the other
hand, we have demonstrated the capability to efficiently solve large-scale strati-
fied BA problem with thousands of cameras. Notably, we achieve state-of-the-art
results in terms of speed and accuracy on the real-world BAL dataset. While
initialization-free BA is still in its nascent stage, we hope that our method will
pave the way for further exploration of this difficult optimization problem, and
will generate further steps towards initialization-free structure-from-motion.

Limitations and future work. First, our analysis applies to the BA problem
in which excess outlier point tracks are assumed to have been filtered out as in
previous formulations [11–14]. Second, the 3D reconstruction in Fig. 1 assumes
that the intrinsics are known during the metric upgrade stage. In practice, we
use the approximated focal lengths given in the BAL dataset, that results in
imperfectly accurate illustration. However, some formulations based on pOSE
handle unknown intrinsics and could be easily adapted to PoVar.
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