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Fig. 1: Generated PBR materials. By tightly linking the PBR diffusion model with
a frozen RGB model, we produce high-quality PBR images conditioned on geometry
and prompts. Visit the project page at https://unity-research.github.io/holo-gen.

Abstract. Graphics pipelines require physically-based rendering (PBR)
materials, yet current 3D content generation approaches are built on
RGB models. We propose to model the PBR image distribution directly,
avoiding photometric inaccuracies in RGB generation and the inherent
ambiguity in extracting PBR from RGB. As existing paradigms for cross-
modal fine-tuning are not suited for PBR generation due to both a lack
of data and the high dimensionality of the output modalities, we propose
to train a new PBR model that is tightly linked to a frozen RGB model
using a novel cross-network communication paradigm. As the base RGB
model is fully frozen, the proposed method retains its general performance
and remains compatible with e.g . IPAdapters for that base model.
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1 Introduction

The recent meteoric rise of diffusion models has made at-scale generation of
high-quality RGB image content more accessible than ever and Text-to-Texture
and Text-to-3D approaches successfully lift this to 3D [34]. But to maximize
the usefulness of the generated textures in downstream 3D workflows, generated
content must be compatible with physically-based rendering (PBR) pipelines
for proper shading and relighting. Current approaches rely on generated RGB
images and subsequent PBR extraction through inverse rendering, suffering
from the physically inaccurate lighting in the generated RGB images as well as
from significant ambiguities in the inverse rendering. We propose a solution for
geometry-conditioned generation of PBR images by modeling the joint distri-
bution directly, avoiding the issues around photometric consistency and inverse
rendering.

To model the distribution of non-RGB modalities, existing approaches typi-
cally fine-tune the weights of a base RGB model [11, 29, 33, 40, 41, 58]. Applied to
PBR images, this means either directly predicting the entire PBR image stack or
sequentially predicting them conditioned on one another. Neither is sufficient for
our use-case: jointly predicting the entire PBR image stack is problematic as the
higher-dimensional modality does not compress well into the established latent
spaces (as we show in Sec. 5), and sequentially predicting the elements of the
PBR image stack is significantly more expensive and risks compounding errors
in the sequential generation. Furthermore, while state-of-the-art RGB diffusion
models are trained on billions of images [52], there is unfortunately no dataset
of such size at our disposal for PBR content generation. Instead, the largest
available dataset of PBR content is Objaverse [9], containing around 800,000
objects with associated PBR textures, limited to “everyday” appearances of the
objects. In light of the restricted training data available, fine-tuning the base
model results in catastrophic forgetting, forfeiting generalizability, as we illustrate
in Sec. 5.

Instead, we keep a pre-trained RGB image model frozen and train a parallel
model to generate PBR images, as shown in Fig. 2. We tightly link the PBR model
to the frozen RGB model using our proposed cross-network control paradigm, in
order to leverage its expressivity and rich internal state. As a result we are able
to generate qualitative and diverse PBR content, even for unlikely appearances of
objects (far out-of-distribution for the Objaverse dataset). Crucially, the frozen
RGB model safeguards against catastrophic forgetting and remains compatible
with techniques such as IPAdapter [73]. In summary, we:
1. Propose the novel Collaborative Control paradigm to tightly link the PBR

generator to a fully frozen pre-trained RGB model, modeling the joint distri-
bution of RGB and PBR images directly (see Sec. 4.1),

2. Illustrate that the proposed control mechanism is data-efficient, and generates
high-quality images even from a very restricted training set,

3. Demonstrate the compatibility with IPAdapter [73] specifically, and
4. Ablate our design choices to show the improvement over existing paradigms

in literature and the issues with existing paradigms.
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Fig. 2: Collaborative Control. Two parallel models collaborate to generate pixel-
aligned outputs of different modalities. We freeze the left pre-trained RGB model and
train the right PBR model with its cross-network communication layers. The cross-
communication concatenates the states of both models, processes them with a small
MLP, and residually distributes the result back to the respective models. As discussed
in Sec. 5, prompt cross-attention in the PBR model is counter-productive.

2 Related Work

Generating natural images from text prompts. Natural image generation
has a long history: from GANs [14, 25–28] and VAEs [30], to autoregressive
models [45, 64]. More recently, the introduction of diffusion models [18, 56, 57]
was a breakthrough in the generative field — far more stable than typical GAN
training, albeit slow and computationally expensive, and easier to control and
condition. Unfortunately, these approaches require billions of images to train from
scratch [52], and for PBR image generation the largest commonly available dataset
is Objaverse [9]. With 800,000+ objects it is still several orders of magnitude
smaller than LAION-5B [52] and proves insufficient to train generative models
that can generalize to unlikely semantics (as illustrated in Sec. 5). While pre-
trained RGB models encode rich prior knowledge around structure, semantics, and
materials [11,53,59], Sarkar et al . warn that the models are often still geometrically
inaccurate [50]: we have found that this extends to material properties, as diffusion
models prefer idealized and artistic appearances over photometric accuracy.

Generating non-RGB modalities Existing works fine-tune pre-trained RGB
models to predict e.g . Depth [29,58], semantics [33] or intrinsic properties [11,40,
41], either directly or through LoRA’s [19]. Sadly, this is not plausible for PBR
image generation: compressing PBR images into the existing low-dimensional
latent space overloads it, and the alternative of sequentially predicting channel
triplets is too costly and slow. Wonder3D [41] and UniDream [40] perform joint
RGB and normal diffusion using a cross-domain self-attention aligning the two
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parallel branches, yet this scales poorly an increasing number of output modalities.
Our proposed approach instead uses a frozen RGB model, negating the risk of
catastrophic forgetting, and trains a parallel branch for all additional modalities
jointly (in the latent space of a PBR VAE), reducing cost.

Image-based conditioning Existing pixel-accurate control techniques come
in two flavors: re-training of the base model with modified input spaces [12,29],
and training of a parallel model that affects the base model’s state [10, 20, 79].
We find in Sec. 5 that the former risks losing the base model’s expressiveness
and quality. In ControlNet [79] and ControlNet-XS [10], the controlling model
only influences the base RGB model’s output while in AnimateAnyone [20] the
parallel model is only tasked with generating its own output. Instead, we leave
the RGB base model’s weights fully frozen and residually edit its internal states
from a parallel model that is itself tasked with generating PBR images: our PBR
model both controls the base model (to guide it towards the domain of rendered
images), and generates its own PBR output (based on the RGB model’s internal
state); therefore, our proposed approach requires full bidirectional connections
between both branches as shown in Fig. 5. To condition on input geometry we
concatenate it to the input of the PBR branch, as Ke et al . [29].

Text-to-3D describes the task of generating 3D objects from text prompts, often
with the aim to support downstream graphics pipelines such as game engines.
Earlier methods leverage Score Distillation Sampling [46] (SDS) to iteratively
optimize a 3D representation by backpropagating the diffusion model’s noise
predictions [15,22,35,37,42,43,55,61,62,66–68,71,80,81] through the RGB model,
or building on viewpoint-aware image models [21,38,39,41,47,54,76] for direct
fusion. Such RGB methods ignore that object appearance varies with viewing
angle, often resulting in artifacts around highlights, and their RGB output is not
useful in graphics pipelines. More recent work generates PBR properties so using
inverse rendering with a differentiable renderer [7, 40, 70, 72, 74]: a major concern
is lighting being baked into the material channels (e.g . HyperDreamer [70] uses
an ad-hoc regularization to reduce these artifacts). Text-to-Texture methods
restrict the Text-to-3D problem to objects with known structure by conditioning
the diffusion model on the object geometry [4,6,31,32,75,77,78], but face similar
issues by operating in the RGB domain. Paint3D [77] also discusses the lighting
artifacts typical with inverse rendering and introduces a custom post-processing
diffusion model to alleviate these. By directly generating PBR content, our
proposed technique promises to resolve issues related to inverse rendering in the
latter methods, all the while retaining the simplicity of the former methods.

Evaluation metrics for generative methods compare the output distri-
butions with known ground-truth distributions, typically with the Inception
Score [49] (IS) or the Fréchet Inception Distance [17] (FID). CMMD [23] ar-
gues that neither is well suited to modern generative models, and compare the
distributions of CLIP embeddings rather than Inceptionv3 [60] internal states.
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Fig. 3: Bump map. Similar surface bumps in
world space (left) are dissimilar in the UV tan-
gent space (middle) because of the arbitrary UV
mapping. Representing the bump map in a tan-
gent space solely dependent on the geometry
(right) resolves this issue.

Viewpoint 1 Viewpoint 2

Fig. 4: Rendering function. The
dataset is constructed so that the
lighting remains constant with re-
spect to the camera, simplifying
the rendering function fRGB: no-
tice the similar highlight location.

Aside from comparing modelled distributions with the ground truth, we also
wish to evaluate the alignment of the generated images to their text prompts.
CLIPScore [16] compares the image’s CLIP embedding with that of the prompt:
whether all the relevant elements are represented and whether any extraneous
elements were introduced. We also report the OneAlign aesthetics and quality
metrics of the generated images [69], which have been shown to align well with
human perception, to provide a more quantitative indication of quality.

3 Preliminaries

PBR materials are a compact representation of the bidirectional reflectance
distribution function (BRDF), which describes how light is reflected from the sur-
face of an object. We use the popular Cook-Torrance analytical BRDF model [8],
using specifically the Disney BRDF Basecolor-Metallic parametrization [3] as it
inherently promotes physical correctness. In this parametrization, the BRDF com-
prises Albedo (ba ∈ R3), Metallic (bm ∈ R), and Roughness (br ∈ R) components.
To increase realism during rendering beyond the resolution of the underlying
geometry (often a mesh), graphics pipelines add small details such as wood grain
or grout between tiles by encoding them as offsets to the surface normals in an
additional bump map (bn ∈ R3). As this bump map is typically defined in a
tangent space based on an arbitrary UV-unwrapping, it entangles the surface
property with this arbitrary UV mapping. Instead, we propose to predict the
bump map defined in a tangent space based solely on the object geometry, disen-
tangling the texture from the UV mapping as shown in Fig. 3. To construct this
geometry tangent space for a point p = [px, py, pz]

T with geometry normal n, we
construct the local tangent vector as t = n× ([−py, px, 0]

T × n), corresponding
to Blender’s Radial Z geometry tangent. The geometry tangent space is then
constructed as (t/∥t∥,n× t/∥t∥,n)T .
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Diffusion models [18,56] iteratively invert a forward degradation process to
generate high-quality images from pure noise (typically white Gaussian noise).
Formally, the forward process iteratively degrades images from the data distri-
bution z0 ∼ p(z) to standard-normal samples zT ∼ N (0, I) over the course of
T degradation steps as zt ∼ N (αtzt−1, (1 − αt)I), where αt denotes the noise
schedule for timestep t. Practically, the forward process can be condensed into
the direct distribution zt ∼ N (

√
ᾱtz0, (1− ᾱt)I) with the appropriate choice of

ᾱt. The diffusion model D is trained to sample the stochastic reverse process
Dt(zt) ∼ p(zt−1|zt) to iteratively generate z0 from zT .

4 Method

We wish to train a PBR diffusion model Dpbr that models the reverse denoising
process for PBR images as represented in the latent space of a VAE [48], repre-
senting the data distribution p(zpbr). We find that we lack the data required to
train this model directly, and instead propose to model p(z′

rgb := frgb(zpbr), zpbr)
based on an RGB diffusion model Drgb for the RGB data distribution p(zrgb);
frgb is a rendering function that projects the PBR images onto the RGB domain.
To motivate this, we split the joint reverse process into two separate processes
using Bayes’ rule:

p(z′
rgb,t−1, zpbr,t−1|z′

rgb,t, zpbr,t)

∼ p(z′
rgb,t−1|z′

rgb,t, zpbr,t)p(zpbr,t−1|z′
rgb,t−1, z

′
rgb,t, zpbr,t)

(1)

The RGB model is implemented based on Drgb(zrgb,t−1) ∼ p(zrgb,t−1|zrgb,t): we
align the current RGB sample with the PBR sample and restrict it to Im(f)
(the domain of rendered images with the fixed environment map) so that its
internal states are more easily interpreted by the PBR branch1. To simplify
this alignment problem, the rendering function frgb uses fixed camera settings
and a fixed environment map as shown in Fig. 4. The PBR model now no
longer models p(zpbr,t−1|zpbr,t): it additionally has access to the RGB context
(z′

rgb,t−1, z
′
rgb,t) which simplifies the problem. The RGB and PBR models are

in practice much more intertwined than Eq. (1) implies: this derivation serves
mostly as an intuitive indication for why the joint problem is more tractable.
Note that z′

rgb,t is a degraded version of z′
rgb,0, and not a rendered version of

zpbr,t: the PBR model does not learn to do inverse rendering in degraded image
space but rather learns to denoise PBR images given additional RGB context.

1 Our intuition as to why a fixed environment map is beneficial is that it makes the
RGB model’s internal states more consistent to interpret, and makes the control
problem of projecting to Im(f) simpler. Early in training, generated sample quality
can be boosted significantly by applying the foreground mask to the RGB estimate
for the first few timesteps; a rough projection to bring the estimate much closer
to Im(f). After longer training, this is no longer necessary, as the PBR branch is
capable enough to restrict the RGB branch to Im(f).
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(a) ControlNet (b) ControlNet-Xs (c) AnimateAnyone (d) Proposed

Fig. 5: High-level overview of communication in (a) ControlNet [79], (b) ControlNet-
XS [10], (c) AnimateAnyone [20] and (d) our proposed Collaborative Control approach.
Blue represents frozen blocks, while orange elements are optimized during training.

4.1 Collaborative Control

In summary, our proposed approach comprises two models working in tandem: a
pre-trained RGB image model and a new PBR model (see Fig. 5 for a high-level
overview of our proposed control scheme). The previous section identifies two tasks
for this cross-network communication: aligning the RGB model’s output with
both the PBR model’s output and the map of the rendering function Im(f), and
communicating knowledge in the RGB model to the PBR model. ControlNet [79]
and ControlNet-XS [10] discuss solutions to the former control problem — the
authors conclude that communication from the base model’s encoder to the
controlling model’s encoder, and from the controlling model’s decoder to the base
model’s decoder, is sufficient. AnimateAnyone [20] addresses the latter problem
and concludes that, there, uni-directional communication from the left model to
the right model is sufficient. We have found that full bidirectional communication
is crucial for our approach: the PBR branch needs to extract relevant information
from the RGB model’s hidden state, while simultaneously guiding the RGB
output towards render-like images (i.e. with a black background and compatible
lighting) to ensure those hidden states are consistent with its own expectations.
We dub this Collaborative Control.

We implement the cross-network communication as a connecting layer between
the two models after every self-attention module; its inputs are the concatenation
of the model states and its outputs are residually distributed to both models
again. During training, we only optimize the weights of the PBR model and
the cross-network communication links against both models’ outputs, while the
RGB model remains fully frozen. By adopting this approach, we safeguard the
base RGB model’s weights, and do not risk catastrophic forgetting for that base
model. As we discuss in Sec. 5, we have found that a single per-pixel linear
layer is sufficient, although we also evaluate the other control schemes from
Fig. 5 as well as an attention-based communication layer. Notably, we have also
found that disabling the text cross-attention in the PBR model is crucial to
out-of-distribution performance; we attribute this to overfitting on the restricted
dataset, as this problem worsens with reduced training data. Only allowing
prompt attention through the frozen RGB model prevents such overfitting.
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4.2 Implementation

Compressing PBR images into latent space RGB diffusion models benefit
immensely from a dedicated VAE to encode the images into a lower-dimensional
latent space [48]. Existing solutions that generate an alternate modality typically
encode that modality with the RGB VAE, but PBR images cannot be compressed
into the same latent space due to the higher dimensionality. Instead, we could
select channel triplets ba, [bm, br,0], and bn and process those with the RGB
VAE, but we instead choose to train a dedicated PBR VAE — our ablation
studies indicate that the distribution mismatch between the PBR channels and
the RGB space is too large, and performance would otherwise suffer. We adopt
the VAE architecture and training code from StableDiffusion v1.5 [48], although
following Vecchio et al. [65] we set the latent space channel count to 14 for the
optimal balance between quality and compression when processing PBR images.

Conditioning on existing geometry We concatenate the screen-space geome-
try normals to the PBR model’s inputs to condition the joint output. Referring
to Fig. 5, Collaborative Control encapsulates the ControlNet scheme that would
typically be used for this conditioning [10]: as we jointly train from scratch, this
does not introduce additional cost.

Generating training data Our dataset for training both the PBR VAE and
the Collaborative Control scheme is based on Objaverse [9]: a dataset containing
800,000+ 3D models with annotations for what the models represent (describing
both shape and texture). After sanitizing and filtering the dataset we retain
roughly 300,000 objects. Each of the objects is rendered with Blender from 16
viewpoints encircling the object using a fixed pinhole camera model and a fixed
(camera colocated) environment map2 as in Fig. 4. For the evaluations in Sec. 5,
we leave out 2% randomly selected elements.

Training Collaborative Control For most of the experiments in Sec. 5,
ZeroDiffusion [36,63] is the base RGB model, a zero-terminal-SNR version fine-
tuned from StableDiffusion v1.5 [48]. As Collaborative Control is agnostic to
the base model, we also illustrate StableDiffusion v1.5 and v2.1 as base models
in Sec. 5. We optimize the PBR model’s weights as well as the cross-network
communication layers to minimize the training loss for the RGB and PBR
denoising jointly, while keeping the RGB model fully frozen. Unless otherwise
stated, we directly train on 512× 512 resolution for a total of 200,000 update
steps with a batch size of 12 and a learning rate of 3 × 10−5 (on one 80 GB
VRAM A100, taking roughly two days). We evaluate the effect of a larger training
budget by training on 8 A100’s for the same number of steps, increasing the
batch size by a factor of 8 without affecting training time — for environmental
and cost purposes, the training budget is kept low for the main ablation study.
2 https://polyhaven.com/a/studio_small_08

https://polyhaven.com/a/studio_small_08
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5 Results

Distribution match metrics As an evaluation of how well the data distribution
is modeled, distribution match is considered a proxy to both quality and diversity.
The Inception Score (IS [49]), which checks the distribution match against
ImageNet, is not relevant in a PBR context as it applies only to RGB images.
The Fréchet Inception Distance (FID [17]), which compares the distributions of
the last hidden state of the Inceptionv3 [60] network on both real and generated
images, has been found to better align to perceptual quality. Finally, the recently
introduced CLIP Maximum-Mean Discrepancy (CMMD [23]) compares the
distribution of the CLIP embeddings of generated images to that of a reference
dataset. It offers significantly improved sample efficiency, and was shown by the
authors to be a better indicator of low-level image quality than FID. However,
as these metrics are intended for three-channel color images, we evaluate them
on PBR images following Chambon et al. [5], by averaging the relevant scores
of multiple triplets. We report as PBR distribution match the average of the
scores over each of the PBR channels independently, as well as over three
additional triplets, as the full set of triplets is prohibitively expensive to compute
(the supplementary contains all the constituting scores). The additional triplets
are (grayscale albedo, roughness, metallic), (roughness, metallic, normal XY
norm) and (grayscale albedo, normal X, normal Y) for a balance between the
full cartesian product (which is costly) and mixing channels that are normally
relatively independent.

Out-of-distribution (OOD) performance metrics indicate the level to
which our generator can align to conditioning that it was not trained on. Recent
work has introduced the CLIP alignment score [13, 16], which estimates the
average distance between the text prompt CLIP embedding and the generated
image’s CLIP embedding, indicating how faithfully the prompt was followed.
Additionally, OneAlign [69] is a neural model that estimates aesthetics and quality
scores for images, shown to align well with human opinions, summarized in a
QAlign score for both aesthetics and general quality. In order to evaluate the
OOD performance, we randomly select 50 objects from Objaverse, and generate
unlikely appearance prompts for them using ChatGPT4 [1]. These results, as
well as a t-SNE plot of the embeddings of the original and OOD prompts, are
integrally shown in the supplementary material.

5.1 Comparisons and Ablations

To the best of our knowledge, there are no published PBR generation models
that generate PBR images for entire objects or scenes (only for generation of
single materials [51,65]). Therefore, we perform an extensive ablation study on
our design choices, taking care to include typical approaches from techniques that
generate other modalities than PBR. Please refer to Fig. 6 for the qualitative
comparisons, while Tab. 1 contains quantitative results.
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Comparison between control paradigms We compare the performance of
the proposed bidirectional cross-network communication layer against two other
paradigms: one inspired by ControlNet-XS [10], and one inspired by AnimateAny-
one [20]. In the former, dubbed one-way communication, the communication
layers receive as input only the RGB model’s internal state, and they only affect
the PBR model’s internal state. The latter, dubbed clockwise communication,
functions in the same way for the encoder part of the architecture, but reverses
the information flow to go from the PBR model to the RGB model for the decoder
half of the architecture. We see that the one-way attention does not perform
well, with lower distribution match scores as well as OOD performance scores;
the frozen RGB model cannot realign to the conditional distribution required
from it in Eq. (1), and we see that the positions it generates for the objects does
not align at all with the mask from the normal image. The clockwise attention
performs significantly better, but is likely still hampered by z′

rgb,t−1 not being
easily available to the PBR model — a similar reasoning as to why the authors
of ControlNet-XS included the direct communication link between the base and
controlling models’ encoders.

Comparison between communication types In terms of the type of commu-
nication, we compare the proposed single-layer per-pixel communication against
a per-pixel MLP-based communication layer, and a global attention layer. The
latter performs surprisingly well considering that it lacks pixel correspondences;
it is hard to enforce pixel-wise alignment through a global attention layer, which
we hypothesize to be the reason for the lower quantitative performance. As Jin
et al. [24] discuss, an attention-based architecture is also less robust to resolution
changes. The per-pixel MLP, containing four hidden per-pixel linear layers with
normalization layers [2] in-between, does not qualitatively perform notably better
than the single-layer communication layer, so that we settle for the simpler and
more computationally efficient choice.

Comparison against fine-tuning We also compare Collaborative Control
against the alternative where we edit the first and last layers of the pre-trained
network to match the dimensionality of the PBR images (optionally with the
rendered image), and then fine-tune the entire network end-to-end. Although the
distribution match scores for these fine-tuning variants are similar to Collaborative
Control, the fine-tuning methods strongly overfit to the training data and perform
very poorly in a qualitative OOD comparison.

PBR-specific VAE vs RGB VAE We compare the performance of Col-
laborative Control with a PBR-specific VAE against a version that uses the
triplets-based RGB VAE mentioned in Sec. 4 to encode the PBR channels (en-
coding albedo, roughness+metallic, and bump maps in separate triplets and
concatenating their latent representations). The mismatch within the PBR do-
main is clear, both quantitatively through the worse distribution matching scores,
and qualitatively in the produced images.
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Fig. 6: Generated albedo, roughness/metallic and bump map images from the ablation
studies. While significant quality differences are visible, only the fine-tuning approach
and the data-sparse regime with PBR prompt cross-attention fail completely. The
version that was trained on a smaller resolution does not break but does not result in
maximum detail either. Best viewed digitally.
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Table 1: Quantative results for all evaluated variants. The ablation baseline is high-
lighted in bold, duplicated for easier comparisons within the individual ablations.

2% held-out evaluation data OOD

CMMD ↓ FID ↓ QAlign ↑ QAlign ↑ CLIPScore ↑Ae Q Ae Q
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Communication

one-way 16.44 13.38 20.90 16.39 1.95 1.97 2.37 2.48 1.91 1.59 2.35 1.69 23.08 23.40
clockwise 6.78 2.76 12.21 11.53 2.04 2.02 2.63 2.64 2.14 1.70 2.77 1.74 26.45 24.53

bi-directional 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41
Pixel-wise zero-conv 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41

Pixel-wise MLP 5.43 1.87 11.43 10.67 2.10 2.02 2.74 2.66 2.26 1.75 2.96 1.81 27.15 25.95
Global Attention 7.60 5.22 13.61 11.93 1.94 1.98 2.51 2.60 1.99 1.72 2.71 1.80 24.50 24.01

Collaborative Control 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41
Fine-tuning (with RGB output) 13.40 2.78 14.42 10.79 2.05 2.02 2.60 2.61 2.10 1.76 2.62 1.86 25.04 22.69

Fine-tuning (without RGB output) 5.25 2.88 11.41 11.37 2.03 1.99 2.58 2.58 2.26 1.71 2.97 1.81 25.66 23.31
PBR VAE 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41

RGB VAE on triplets 84.66 5.99 25.81 11.63 2.16 1.99 2.67 2.55 2.30 1.71 2.95 1.80 25.27 23.98

Training budget
1 A100, two days 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41

8 A100s, two days 2.96 1.12 9.55 9.76 2.08 2.04 2.68 2.67 2.01 1.73 2.82 1.82 26.78 25.22

Training resolution 256×256 2.23 1.44 9.82 10.20 2.10 2.04 2.73 2.68 2.20 1.78 3.13 1.80 26.71 25.21
512×512 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41

Training
data

No PBR
prompt

attention

1% 6.25 1.43 11.87 10.79 2.18 2.04 2.86 2.69 2.35 1.76 3.35 1.89 26.58 25.11
5% 5.77 1.45 11.49 10.54 2.13 2.04 2.78 2.69 2.09 1.73 3.01 1.84 27.28 25.04

20% 5.97 1.68 11.50 10.61 2.12 2.03 2.78 2.67 2.23 1.76 3.23 1.88 25.72 24.99
98% 6.30 1.79 11.65 10.64 2.11 2.03 2.75 2.66 2.12 1.76 2.78 1.73 26.76 25.41

PBR prompt
attention

1% 20.61 4.25 18.35 12.16 2.19 2.03 2.76 2.62 2.25 1.61 2.83 1.80 24.75 23.25
5% 12.17 2.58 14.95 10.97 2.13 2.04 2.71 2.65 2.27 1.80 2.97 1.98 26.89 25.53

20% 11.35 2.33 14.78 10.78 2.13 2.03 2.74 2.65 2.29 1.76 3.07 1.77 26.79 25.39
98% 9.18 2.57 13.25 11.02 2.10 2.03 2.68 2.64 2.17 1.80 2.84 1.87 25.80 24.83

Impact of the training budget Comparing the version training on a single
A100 with the version trained with 8 A100s (for eight times the batch size), we see
that the latter performs significantly better quantitatively in terms of distribution
match, but not quality. Visually, the differences are less clear, although the higher-
budget model appears to follow complex prompts slightly better.

Impact of the training resolution We compare the performance of Collabora-
tive Control with two training resolutions: 256×256 and 512×512, both evaluated
on 512× 512 (ZeroDiffusion’s native resolution). While the low-resolution model
quantitatively performs better, visually it is clear that it does not capture the
same level of detail as the high-resolution model — we explain this through the
metrics focusing on high-level encoding of the images, and the lower resolution
enables smoother training through a larger batch size (42).

Impact of training dataset size Now, we evaluate the performance of Col-
laborative Control under data sparsity by evaluating models trained on 98%,
20%, 5% and 1% of the full 6M training images. The proposed approach proves
very data-efficient and performs well even when trained on only a few thousand
images (1%). We observe that it is necessary to disable prompt cross-attention in
the PBR model, and that this effect gets more pronounced with fewer data: we
hypothesize that the model overfits to the training data and that forcing prompt
attention to occur through the frozen RGB base model prevents this overfitting.
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Fig. 7: A re-lit generated texture in Pep-
permint Powerplant and Pine Attic and
lightfield slice under environment rotation.

Van Gogh
→ red

seed 42
→ 43

Fig. 8: Interpolation on text embeddings
and initial noise shows the stability of the
proposed approach in both of these spaces.

Image
Condition

Albedo Roughness Metallic Bump Map

Fig. 9: Our PBR diffusion remains com-
patible with control techniques trained for
the base frozen RGB model. We illustrate
this using StableDiffusion 1.5 as the base
model using a public IP-Adapter [73].

Fig. 10: Our most common failure case is
the constant roughness, metallic or bump
maps. Prompting a porcelain barrel with
intricate designs for two different random
seeds illustrates this behaviour.

Compatibility with other control techniques As a closing experiment,
we illustrate that Collaborative Control is compatible with other control tech-
niques [10, 44, 73], which drastically expands the practical applications of our
proposed method. We demonstrate this specifically with IP-Adapter [73], which
allows us to condition the final output on a style image by introducing additional
style cross-attention layers within the base model. We can apply an IP-Adapter
to the base model and still generate PBR content, as illustrated in Fig. 9.

Relighting For a small qualitative indication that the PBR materials we generate
also look natural under different environment lighting, Fig. 7 shows a generated
texture when relit in two novel environment maps. Furthermore, a slice of the
lightfield under rotation of the second environment map shows that the highlights
and shadows move smoothly (hinting that the bump map is meaningful).

Interpolation To illustrate the stability of our proposed approach in terms of
both initial noise and the text prompt, we (separately) interpolate between two
prompts and between two initial noises in Fig. 8. We perform prompt interpolation
in CLIP space, and for noise interpolation we rescale the final image to have unit
standard deviation and zero mean after blending. The resulting images appear
natural yet meaningfully interpolate between both extremes.

https://polyhaven.com/a/peppermint_powerplant_2
https://polyhaven.com/a/peppermint_powerplant_2
https://polyhaven.com/a/pine_attic
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5.2 Limitations and failure cases

We identify two major failure cases: lack of detail in the roughness, metallic,
and bump maps, and a failure to follow OOD prompts. In the former, we see
(e.g . Fig. 10) that the model outputs a constant (though varying per instance)
roughness and metallic value, and a flat bump map. We attribute this to the
training data: Objaverse contains many objects with constant roughness and
metallic properties and a flat bump map — likely biasing the model towards
such outputs. Anecdotally, we have found that selecting a different random seed
will often succeed where the first generation disappointed — practically, the
model produces very diverse results even for the same prompt and the same
conditioning geometry, so that we argue that this is either not a significant issue
or can be resolved with better training data.

A failure to follow out-of-distribution prompts happens mostly when structural
features in the prompt are incompatible with the conditioning geometry, such
as for example a gilded lion for a table mesh. We hypothesize that the control
signal from the PBR model conflicts with the text cross-attention in the frozen
RGB model, resulting in lackluster outputs. Different random seeds occasionally
resolve this issue, albeit more rarely.

Finally, we note that the model does come at the cost of executing two parallel
diffusion models. We note that the motivation for this was mainly to retain a
frozen copy of the base RGB model: in applications where these requirements
are prohibitively expensive, distilling our approach into a direct PBR model is
likely to bring relief.

6 Conclusion

In this work, we have proposed Collaborative Control, a new paradigm for
leveraging a pre-trained image-based RGB diffusion model for generating high-
quality PBR image content conditioned on object geometry. We have shown that
this bi-directional control paradigm is extremely data-efficient while retaining
the high quality and expressiveness of the base RGB model, even when faced
with text queries completely out of distribution for the PBR training data.
The plug-and-play nature of our proposed approach is compatible with existing
adaptations of the base RGB model, which we have illustrated with IP-Adapter
for style guidance of the PBR content. The availability of high-quality PBR
content generation as offered by our proposed approach opens up new avenues
for graphics applications, specifically in Text-to-Texture.
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