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Abstract. In multi-class histopathology nuclei analysis tasks, the lack
of training data becomes a main bottleneck for the performance of learning-
based methods. To tackle this challenge, previous methods have utilized
generative models to increase data by generating synthetic samples. How-
ever, existing methods often overlook the importance of considering the
context of biological tissues (e.g., shape, spatial layout, and tissue type)
in the synthetic data. Moreover, while generative models have shown su-
perior performance in synthesizing realistic histopathology images, none
of the existing methods are capable of producing image-label pairs at
the same time. In this paper, we introduce a novel framework for co-
synthesizing histopathology nuclei images and paired semantic labels us-
ing a context-conditioned joint diffusion model. We propose conditioning
of a diffusion model using nucleus centroid layouts with structure-related
text prompts to incorporate spatial and structural context information
into the generation targets. Moreover, we enhance the granularity of
our synthesized semantic labels by generating instance-wise nuclei la-
bels using distance maps synthesized concurrently in conjunction with
the images and semantic labels. We demonstrate the effectiveness of
our framework in generating high-quality samples on multi-institutional,
multi-organ, and multi-modality datasets. Our synthetic data consis-
tently outperforms existing augmentation methods in the downstream
tasks of nuclei segmentation and classification.

Keywords: Joint diffusion model · Data augmentation · Histopathology
nuclei segmentation

1 Introduction

Cell nuclei segmentation and classification are crucial tasks in digital pathology
for examining nuclear characteristics, such as size, shape, density, etc, which pro-
vide important evidence for disease diagnosis [6]. Given the complicated nature
of histopathology images, the adoption of deep learning-based computer-aided

* Equal contribution
† Corresponding author: wkjeong@korea.ac.kr



2 S. Min et al.

Timestep 𝒕 1001000 700 500 0300

Im
a

g
e

D
ist. M

a
p

L
a

b
el

Nucleus Centroid Layout

Text Prompt

"high-quality histopathology colon 
tissue image  including nuclei types of 
eosinophil, plasma, lymphocyte, 
epithelial, and connective tissue."

Fig. 1: Given a nucleus centroid layout and structure-related text prompt, our proposed
approach generates a pair of histopathology nuclei image, distance map, and semantic
label that aligns with the specified conditions. This process is concurrently performed
by a single joint diffusion model.

diagnosis has now become the de facto standard in computational pathology [30].
Indeed, numerous fully-supervised learning approaches have been introduced and
proven to be effective in nuclei analysis [8,13,14]. However, the potential of learn-
ing algorithms is limited by the lack of appropriate training data. This is primar-
ily attributed to the labor-intensive nature of manually generating annotations,
necessitating the domain expertise of pathologists for accurate labeling.

One notable research direction to address data insufficiency is synthetically
generating the training data (i.e., data augmentation). Recently, there has been
a growing interest in using generative models based on GANs [11] and diffusion
models [16] for data synthesis. Specifically, diffusion models have demonstrated
superior performance compared to GANs in both natural and histopathology im-
age synthesis [7,21]. Furthermore, the incorporation of semantic label conditional
diffusion models [33] has gained prominence for generating images that seam-
lessly align with provided labels. In histopathology nuclei image synthesis, the
majority of current research relies on pixel-level segmentation labels to generate
synthetic histopathology images that are accurately aligned with the provided
labels. Some studies [28, 32] employed the original reference labels as is, while
others introduced random perturbations to the original labels [10, 25] or gener-
ated randomly distributed labels prior to image generation [5, 18, 38]. Although
these methods are effective in generating histopathology image-label pairs, they
may not be as versatile in producing diverse labels and do not faithfully recon-
struct spatial and structural contexts in real histopathology specimens.

The primary motivation driving our work arises from the observation of a
critical gap in existing methods - none are capable of producing image-label
pairs with user-controllable image content (e.g., tissue type) in a highly reliable
spatial context. For example, Semantic-Palette [19] allows for the manipulation
of class proportions during layout generation, but it cannot precisely control the
spatial placement of labels. On the other hand, Abousamra et al. [1] introduced a
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Fig. 2: Overview of the proposed method. We formulate joint diffusion process to
synthesize multiple targets: image i, distance map d, and semantic label ls. We utilize
conditioning of text tc and point map pc to improve the sample quality and provide
controllable capacity. We generate highly accurate instance label li using pc, d, and ls.

technique for generating cell layouts alongside corresponding histopathology im-
ages, adhering to specified spatial contexts. However, its applicability is limited
to detection and classification tasks due to the inherent nature of point labels.
Therefore, our idea is to bridge the gap between these two methodologies by
incorporating a point map condition representing nucleus centroids and a text
condition representing tissue and nuclei types in the generation of histopathology
images and their corresponding multi-class nuclei segmentation labels, empow-
ering users with complete control over the spatial layout and content of cell
images. Additionally, we also observed a common issue in conventional nuclei la-
bel synthesis - nuclei instances in the resulting semantic labels tend to be closely
located and clustered into a larger one. To address this issue, we propose the
generation of distance maps alongside images and labels, which can be directly
used to separate individual instances. The overview of the proposed method is
shown in Fig. 2. The main contributions of our work are several-fold as follows:

– We propose a co-synthesis framework for multi-class nuclei datasets that
generates images with semantic and instance labels using a single diffusion
model. The proposed method models the joint distribution of histopathol-
ogy images, semantic labels, and distance maps, enabling the simultaneous
generation of the whole targets.

– We incorporate two conditions, a nucleus centroid layout and a text prompt,
to enhance the model’s capacity to capture the critical and intricate visual
context of real histopathology specimens. This not only gives the user full
control over the tissue and nuclei types but also provides flexibility in the
design of the spatial arrangement.

– We generate high-quality instance labels by separating individual nuclei in
the semantic labels using distance maps and the conditioned nucleus centroid
layouts. The generated instance labels are necessary for high-level nuclei
analysis such as state-of-the-art nuclei segmentation algorithms.

– We demonstrate the efficacy of our approach using multi-institutional, multi-
organ, and multi-modality datasets through quantitative and qualitative as-
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sessment of downstream tasks, including nuclei segmentation and classifica-
tion.

2 Related Work

2.1 Generative Models for Image-Label Synthesis

The task of generating image-label pairs aims to model the joint distribution
between images and their associated labels. This research area has seen signifi-
cant developments, greatly influenced by generative adversarial neural networks
(GANs) [11]. For instance, Dataset-GAN [39] initially generates images and then
uses GAN latent codes to generate corresponding semantic labels. Alternatively,
SB-GAN [2] reverses this process: starting with label generation and then synthe-
sizing images based on these generated labels. Semantic-Palette [19] introduces
controllable class proportions in the process of generating semantic layouts.

A recent milestone in generative models has been the emergence of the De-
noising Diffusion Probabilistic Model (DDPM) [16]. DDPM stochastically simu-
lates the denoising process and has showcased superior performance over state-
of-the-art generative models [7]. Notably, the diffusion model has consistently
outperformed traditional GAN-based approaches in various studies [3, 23] on
generating image-label pairs. Recently, Park et al. [26] have introduced an ap-
proach for co-synthesizing image-label pairs using a single diffusion model for
the text-to-image synthesis task. Their method efficiently captures the joint dis-
tribution of image-label pairs by applying a Gaussian diffusion process to the
images and a categorical diffusion process to the labels.

2.2 Histopathology Image Synthesis

Extensive research has been dedicated to this field, with a focus on leveraging
generative models for data synthesis. Notably, recent diffusion model-based ap-
proaches have exhibited remarkable superiority over GAN-based methods [21,
28,36].

For nuclei image synthesis, previous research has often used original labels
as a reference due to the requirement of domain-specific knowledge to annotate
histopathology images. For instance, SIAN [32] employed the original reference
labels as conditioning, yielding a diverse set of stylized images using encoded
style vectors for a multi-organ, single-class nuclei dataset. NASDM [28], on the
other hand, synthesized images by referencing the original labels, leveraging a
semantic label conditional diffusion model (SDM) [33]. Alternatively, InsMix [20]
and DiffMix [25] applied random label perturbations, such as copying and past-
ing or random adjustments to nuclei positions, before generating images based on
these modified labels. In addition, some methods [5, 18, 38] generated randomly
distributed labels and used them as the basis for image generation. For example,
Yu et al. [38] introduced a two-stage diffusion model framework, comprising an
unconditional training approach utilizing a diffusion model for label generation
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followed by SDM. However, this approach was designed for single-class nuclei
data, lacked fine control over the label synthesis step, and involved inference
from two diffusion models, resulting in prolonged data synthesis times. More-
over, these approaches do not deeply consider the spatial details in the original
labels when altering or generating new ones. In contrast, Abousamra et al. [1] in-
troduced a method focused on generating structure-aware point layouts, empha-
sizing the significance of capturing spatial and structural correlations related to
nuclei positions. Nevertheless, this approach generated point labels rather than
complete pixel-level labels.

In this paper, we introduce a unified framework to generate histopathology
images and their corresponding labels simultaneously using a single joint dif-
fusion model. Furthermore, we introduce nucleus centroid layout and text con-
ditioning for better control over nuclei positioning and enhance the structural
realism of the synthesized pairs. Lastly, we incorporate highly accurate nuclei
instance labels through post-processing, expanding the applicability of the gen-
erated dataset to high-level nuclei analysis.

3 Methods

3.1 Background: Diffusion Models

Denoising diffusion probabilistic models convert noise with a specific simple dis-
tribution into data sampled from a more intricate distribution [16]. Diffusion
models employ a noise schedule denoted as β during the forward process to add
noise to the actual data. Sequential denoising then occurs in the reverse pro-
cess across time steps t ∈ [1, 2, ..., T ], resulting in the generation of synthetic
data x0 from the noise xT . Various noise distributions have been systematically
investigated to align with the characteristics of the target data.

The Gaussian diffusion model is commonly used for synthesizing continuous
distribution data such as images. The forward process with Gaussian noise that
follows a normal distribution can be described as:

q(xt |xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

The categorical diffusion model proposed by Hoogeboom et al. [17] is designed
to synthesize discrete distribution data such as texts and segmentation labels.
For K categories, using the categorical distribution C, the forward process is
defined as:

q(xt |xt−1) = C(xt; (1− βt)xt−1 + βt/K). (2)

The reverse process pθ(xt−1 |xt) unfolds with a deep neural network ϵθ. Dif-
ferent types of diffusion models primarily focus on learning the denoising step
transitioning from t to t− 1. Consequently, the definition of the training loss is
formulated as follows:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
, (3)
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Lizard  0:[-]  1:[colon] 2:[                   ]Lizard  0:[-]  1:[colon] 2:[              ] PanNuke  0:[-]  1:[lung] 2:[                   ]

PanNuke  0:[-]  1:[kidney] 2:[              ]

PanNuke  0:[-]  1:[breast] 2:[              ]

EndoNuke  0:[IHC-stained]  1:[endometrial] 2:[         ]

Lizard  0:[-]  1:[colon] 2:[                        ]

Connective tissue
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Neutrophil Lymphocyte

Epithelial

Dead
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StromaInflammatory

Text Prompt

Syn. Image Syn. Label Syn. Inst.

Real Image Point Map Syn. Dist.

(b) (c)

(a) “high-quality histopathology  0:[staining method]  1:[tissue type]  tissue image including nuclei types of  2:[cell types]”

Lizard  0:[-]  1:[colon] 2:[                   ]

EndoNuke  0:[IHC-stained]  1:[endometrial] 2:[         ]

Fig. 3: Synthetic samples on the Lizard [12], PanNuke [9], and EndoNuke [22] datasets
generated by our method. Each set of paired synthetic images, semantic labels, instance
masks, and distance maps is shown with conditional point maps and text prompts. Real
images are also included for color comparison with the corresponding synthetic images.
(a) is a frame for the text prompting. (b) indicates the arrangement of each component.
(c) provides a color legend for the classes of nuclei.

where the objective is to minimize the discrepancy between the predicted noise
ϵθ(xt, t) and the real noise ϵ in xt.

3.2 Joint Diffusion Process

The integrative deployment of appropriate distributions facilitates the concur-
rent generation of multiple targets in different modalities. We simultaneously
generate images, multi-class semantic labels, and distance maps to provide a
dataset with high utility for histopathology nuclei image analysis. Distance maps
are used to separate indistinguishable nuclei in semantic labels, providing spe-
cific labels for each instance. Further details on leveraging distance maps for
instance separation are described in Sec. 3.4.
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Let us denote the image, distance map, and semantic label by i, d, and ls,
respectively. These multi-modal elements collectively form a tripartite data unit
u := (i, d, ls). Considering the properties of each modality, we model the contin-
uous variables i and d with Gaussian distributions, and the discrete variable ls

with a categorical distribution. Subsequently, we define the reverse process for
u, where each component undergoes an independent forward process (Eq. (1)
and Eq. (2)), as follows:

puθ (ut−1 |ut) = piθ(it−1 |ut) · pdθ(dt−1 |ut) · pl
s

θ (l
s
t−1 |ut). (4)

To train the joint diffusion model, we utilize a composite objective function,
defined as:

Ltotal = λi · Li + λd · Ld + λls · Lls , (5)

where λi, λd, and λls are weighting factors that balance the contribution of each
generation target to the overall training objective.

3.3 Context Conditions: Nucleus Centroid Layout and Text Prompt

(a) Point Map (b) Synthetic Label (c) Synthetic Image

Fig. 4: Example of a point map condi-
tioned synthetic image-label pair. Glands
and lumens similar to those observed in
real histopathology images were generated
for epithelial cell points arranged in circu-
lar patterns.

To generate highly realistic images
and precisely control the generation
process, we incorporate two types of
nuclei image context conditions: nu-
cleus centroid layout (in the form of a
point map) and structure-related text
prompts.

Point map condition, indicated by
pc, defines the centroids of the nu-
clei instances, providing information
on their spatial positioning and class
distribution, as illustrated in Fig. 4.
This contextual overview is vital for the precise delineation and comprehension
of the complex nuclear patterns found in histopathology specimens. Moreover,
pc, in contrast to pixel-wise constraints, provides flexibility of label generation.
While full-label conditioned image synthesis can only diversify the generated
images, our approach can generate a variety of images and labels, as shown

(a) Point Map (b) Diverse Generated Image-Label Pairs

Fig. 5: Examples of diverse image-label pairs generated from a same point layout
condition.
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in Fig. 5. In terms of steerability, pc enables customizable data generation, al-
lowing control over the type, quantity, and spatial configuration of nuclei. The
encoding of pc is achieved through RRDBs proposed by [34].

Text condition, represented as tc, includes information on the tissue type of
the synthetic sample and the categories of nuclei it encompasses. Further details
on generating text prompts are described in Sec. 4. We utilize PLIP [37] to
encode tc, which is a vision-language foundation model specialized for pathology
images.

With these conditioning schemes, the output of the model is redefined as
ϵθ(ut, t, pc, tc). During the sampling, we employ classifier-free guidance [7] to
adjust the predictive noise as follows:

ϵ̃θ(ut, t, pc, tc) = ωϵθ(ut, t, pc, tc) + (1− ω)ϵθ(ut, t, pc), (6)

where ω represents the guidance scale for tc, balancing the trade-off between
overfitting and semantic alignment.

3.4 Nuclei Instance Separation

In this section, we delineate the methodology employed to derive instance labels,
li, from ls, utilizing d and pc. As depicted in Fig. 2, d quantifies the Euclidean
distance from the centroid of each nucleus, normalized to a scale from 0 to 1.
To separate ls at the instance level, we apply the marker-controlled watershed
algorithm, as referenced in [35], to d and ls with pc as a marker map. This
method allows for identifying adjacent yet separate structures within the histo-
logical samples. The integration of the synthesized i, ls, and li results in a data
structure that encompasses not only semantic information but also instance-
specific details. This comprehensive dataset is hence suited for a wide array of
downstream applications, including segmentation and classification tasks, thus
enhancing the utility of the generated synthetic histopathology images.

4 Experiments

Datasets. We tested our method on three multi-class histopathology nuclei seg-
mentation datasets: Lizard [12], PanNuke [9], and EndoNuke [22]. Each dataset
comprises image regions derived from histopathology slides.

Lizard is a large multi-institutional collection of six different datasets, con-
taining colon tissue samples with 495,179 nuclei categorized into six classes. We
applied Vahadane stain normalization [29] to standardize the color distribution
to that of a reference slide. We cropped patches from image regions to a size
of 256×256 pixels, using a stride of 128 pixels as done by NASDM [28]. We
prepared 13,064 patches for the experiment with a distribution of 95% for the
training set and 5% for the test set.

PanNuke is a multi-organ H&E-stained dataset consisting of 19 different
tissue types with 189,744 nuclei categorized into five classes. We have omitted
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Table 1: Comparative overview of generative models by conditional inputs and output
targets.

Method Condition
Generation Target
Image Dist.Map Label

Yu et al. [38] None ✓ ✓ ✓

SemanticPalette [19] Class Proportion ✓ - ✓

Park et al. [26] Text ✓ - ✓

SDM [33] Label, Instance Edge ✓ - -
Ours Text, Point Map ✓ ✓ ✓

Table 2: Comparative results of generative models, evaluated by FID, IS, and FSD.
The best results are in bold and the second best are underlined.

Method
Lizard PanNuke EndoNuke

FID↓ IS↑ FSD↓ FID↓ IS↑ FSD↓ FID↓ IS↑ FSD↓

Yu et al. [38] - - 963.36 - - 1292.05 - - 931.21

SemanticPalette [19] 86.17 2.11 0.55 109.23 3.36 1.23 90.00 1.40 1.88
Park et al. [26] 52.65 2.22 65.06 61.16 3.48 34.43 52.99 1.88 110.00

SDM [33] 45.99 2.35 - 107.80 3.82 - 105.17 2.27 -

Ours w/o pc 69.10 2.02 109.18 - - - - - -

Ours 38.78 2.40 0.13 37.35 3.77 1.44 69.94 2.17 29.57

color normalization to preserve the color variations between the different tissue
types. The dataset consists of 7,901 patches and we divided it into 80% of the
patches for training and the remaining 20% for testing.

EndoNuke is an IHC-stained dataset comprising 245,120 nuclei in endome-
trial tissue samples, categorized into three classes. This dataset is designed pri-
marily for nuclei detection tasks, but it also provides coarse semantic labels,
automatically generated by watershed [31] algorithm. We selected this dataset
to evaluate the applicability of our method across multiple image modalities, as
it uses a different staining technique than other datasets. We divided a total of
1,780 patches, with a distribution of 85% for the training set and 15% for the
test set. For the PanNuke and EndoNuke, we used provided patches of 256×256
pixels.

Text Prompt Generation. Since none of the datasets provide text descrip-
tions for each sample, we generated our own prompts for text conditioning. The
text prompts include information on the tissue type and the cell types it con-
tains, as follows: “high-quality histopathology [tissue type] tissue image including
nuclei types of [list of cell types].” Specifically for EndoNuke, we added informa-
tion on the staining method, which differs from the most commonly used H&E
staining as: “high-quality histopathology IHC-stained [tissue type] tissue image
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Fig. 6: Pathologists’ evaluation of authenticity and alignment for real image-label pairs
and those generated by our method.

including nuclei types of [list of cell types].”

Implementation Details. We used the Adam optimizer with β1 = 0.9 and
β2 = 0.99 for model training. The learning rates were set at 10−4 for Lizard
and PanNuke, and at 10−5 for EndoNuke. The weighting factors λi, λd, and λls

were set to 9, 1, and 3, respectively, across all datasets. The training batch size
was 16, and we employed three separate cosine schedules, one for each output
type: image, distance map, and semantic label. The sampling step T was set
to 1000. The guidance scale for the text condition was set at 3 for Lizard, 2 for
PanNuke, and 0.5 for EndoNuke. All experiments were conducted using NVIDIA
RTX A6000 GPUs.

4.1 Quantitative Evaluation

We compare the quality of generated image-label pairs quantitatively with other
methods. Since our approach is not directly comparable to existing work, i.e., no
other work uses point conditions and generates image-label pairs, we compare the
results with the methods using various conditioning techniques. Table 1 shows
the condition inputs required for each method and the output they generate.
We employ three metrics for the quality assessment, Fréchet Inception Distance
(FID) [15] and Inception Score (IS) [27] for the image, and Fréchet Segmentation
Distance (FSD) [4] for the label.

The comparative experiment was conducted for Yu et al. [38], Semantic-
Palette [19], Park et al. [26], SDM [33], and ours, as shown in Table 2. The
SDM composite data is guided pixel-wise from full semantic labels, resulting in
high correspondence with real data in the Lizard dataset. The instance edges
generated based on instance maps are also utilized as conditions, contributing
to good alignment between images and labels and enabling the generation of
high-resolution images. Furthermore, since only images are the sole generation
target, this approach focuses entirely on generating compliant quality images.
However, SDM produced unrealistic colored images with high IS scores and poor
FID scores on PanNuke, a dataset with a wide color distribution, and EndoNuke,
a dataset with relatively little training data. Yu et al. generates images, labels,
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Table 3: Comparative results of instance separation algorithms, evaluated by mDice.
The best results are in bold and the second best are underlined.

Method
mDice

Lizard PanNuke EndoNuke

Connectivity-based 0.9383 0.9146 0.5524

Yu et al. [38] 0.9374 0.9462 0.9268

Ours 0.9754 0.9980 0.9634

(b) Ground Truth (d) Yu et al. (e) Ours(a) Image (c) Connectivity-based

Fig. 7: Comparison of instance separation algorithms. Under-, over-, or mis-separated
instances are shown in red boxes.

and distance maps without any conditions. Despite the similarity to the SDM in
the image generation process, since Yu et al. was originally proposed for a single
class, the quality of both images and labels deteriorated when extended to a
multi-class task. We did not proceed with the image generation step because
Yu et al. produces noisy and unrealistic labels. SemanticPalette is a method
that conditions on the pixel proportion of different classes in the label. It has
achieved commendable FSD scores because its conditioning approach and the
measurement principle of FSD are similar.

Our approach involves generating image-label pairs simultaneously with a
single model, incorporating appropriate noise design. We have achieved supe-
rior performance compared to other methods for generating image-label pairs.
Particularly, through point conditioning, we demonstrated remarkable FSD with
guidance of only 1 pixel per instance. Our approach demonstrated superior per-
formance even compared to SDM, which uses full pixel labels. Even though ours
achieved second place in some cases, ours scored better overall compared to other
methods.

4.2 Qualitative Assessment by Pathologists

As illustrated in Fig. 3, our method effectively generates samples that satisfy the
given conditions. The synthetic images exhibit colors that closely resemble those
of real images, and the synthetic labels are well-aligned with the paired images.
To further validate our method, we conducted an expert analysis involving the
evaluation of both synthetic and real image-label pairs by five pathologists. Our
study included 20 synthetic images and 20 authentic pairs, focusing on evaluating
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their realism and alignment with their corresponding labels. The pathologists
evaluated the images based on their expertise in pathology, including determining
correspondence to actual histological structures, diagnostic quality of the tissue,
color accuracy, and presence of artifacts, etc. When evaluating the labels, they
considered various criteria, such as the accuracy of cell location and type, as well
as the distinction between difficult-to-identify cell types. As shown in Fig. 6a, the
synthetic images received higher realism ratings than the real images. Meanwhile,
Fig. 6b shows that our synthetic data achieved image-label alignment ratings
comparable to the real data. In addition, the pathologists rated the quality of
the synthetic data pairs as good overall. This finding highlights the potential of
generative models for histopathology data augmentation.

4.3 Comparison of Instance Separation Methods

We evaluate the efficiency of the point condition for instance separation using
the average of the Dice coefficient (mDice) [24], which calculates Dice score per
nucleus. Table 3 shows the results compared to traditional connectivity-based
algorithms and the distance map-based watershed approach of Yu et al.. Our
point condition-based instance separation performed best on all datasets. The
other methods struggled to split the nuclei clusters, resulting in under-, over-, or
incorrect separation as shown in Fig. 7. Connectivity-based separation failed to
separate nuclei clusters as shown in Fig. 7c. Distance map-based watershed al-
gorithm worked well, but it tends to over-separate instances as shown in Fig. 7d.

4.4 Downstream Tasks

We evaluated the effectiveness of synthetic data for data augmentation by as-
sessing performance on downstream tasks such as nuclei segmentation and clas-
sification. For training the downstream models, we used the image patches not
utilized in training the diffusion model. We synthesized image-label pairs based
on the point layout extracted from these patches and balanced the number of
real and synthetic patches at a 50:50 ratio. Additionally, we set aside 25% of the
patches used in training the diffusion model for inference in downstream tasks.
This approach ensures the inference set includes a sufficient proportion of each
nucleus class, enabling a comprehensive comparison of classification results. We
used Hover-Net [13] as a baseline network, a neural network designed to segment
clustered nuclei by predicting the horizontal and vertical distances between indi-
vidual nucleus pixels and their respective centers of mass. Since Hover-Net aims
to predict horizontal and vertical maps to improve nuclei instance segmentation
performance, it requires instance labels to generate ground truth distance masks.
Therefore, we excluded methods that do not generate distance maps, such as Se-
manticPalette [19] and Park et al. [26]. In addition, even though Yu et al. [38]
generates distance maps during unconditional label generation, the label quality
was poor, so we excluded it from the comparison.
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Table 4: Downstream segmentation and classification performance comparison for
various augmentation methods using Hover-Net [13] as a baseline network. The best
results are in bold and the second best are underlined.

Dataset Method
Segmentation Classification
Dice AJI Fd Acc Fc1 Fc2 Fc3 Fc4 Fc5 Fc6

Lizard

Baseline 0.620 0.383 0.619 0.763 0.012 0.548 0.318 0.146 0.050 0.252

w/ Aug. 0.676 0.425 0.646 0.818 0.062 0.599 0.351 0.268 0.264 0.367

w/ SDM 0.718 0.488 0.699 0.862 0.185 0.679 0.413 0.350 0.333 0.455

w/ Ours 0.716 0.484 0.694 0.866 0.161 0.676 0.434 0.346 0.341 0.447

PanNuke

Baseline 0.782 0.598 0.763 0.668 0.420 0.356 0.102 0.301 0.475 -

w/ Aug. 0.816 0.641 0.791 0.708 0.492 0.394 0.107 0.380 0.524 -

w/ SDM 0.821 0.654 0.800 0.702 0.481 0.398 0.130 0.336 0.528 -

w/ Ours 0.824 0.662 0.806 0.736 0.516 0.434 0.127 0.420 0.561 -

EndoNuke

Baseline 0.878 0.594 0.815 0.891 0.734 0.504 0.013 - - -

w/ Aug. 0.889 0.602 0.820 0.905 0.747 0.598 0.008 - - -

w/ SDM 0.900 0.642 0.848 0.909 0.768 0.654 0.013 - - -

w/ Ours 0.899 0.645 0.844 0.926 0.787 0.665 0.008 - - -

Therefore, we chose to compare our method with SDM [33] (see Table 4).
We conducted experiments with the following configurations: Baseline (with con-
ventional augmentations), SDM, and our method. For the dataset used in this
task, we generated an equal number of patches using both the SDM method
and our approach. Table 4 shows the nuclei segmentation and classification per-
formance using the baseline method. For segmentation, the Dice coefficient and
Aggregated Jaccard Index (AJI) metrics are employed to measure performance
for semantic and instance segmentation performance, respectively. For classifica-
tion, F ci represents the F1 score for the i-th nulceus class (type) and Fd indicates
the detection quality to measure the quality of instance detection. We analyzed
the performance improvements resulting from the application of conventional
augmentation (denoted as w/ Aug.), as well as the addition of SDM and our
synthetic data. In particular, our synthetic data led to significant improvements
across all datasets compared to using conventional augmentation alone. In the
Lizard dataset, our method secured second place for most metrics by small mar-
gins, typically less than 0.5%. Especially, in the case of AJI metrics which implies
instance segmentation performance, there was a gap of around 0.4%. Given that
SDM relies on complete labeling for conditions and demonstrates high efficiency
in generating images matching these label conditions, this suggests that our
masks, employed in this downstream task, are effectively created, contributing
to robust performance. In the PanNuke and EndoNuke datasets, our approach
predominantly achieved first place, demonstrating robustness across different
tissue types and staining modalities in histopathology datasets.

Furthermore, we demonstrate the effectiveness of generating diverse labels by
our scheme (see Fig. 5) for data augmentation, as shown in Fig. 8. In this exper-
iment, we trained the models exclusively with synthetic data by increasing the
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Fig. 8: Benefits of point condition-based diverse label generation on downstream tasks

number of augmentation sets. Our approach is compared to SDM, which gener-
ates images based on full-pixel labels. To perform this comparison, we prepared
point layouts for our method and full-pixel labels for SDM. As we increased the
number of synthetic sets, we evaluated the downstream segmentation and clas-
sification performance on the Lizard dataset. As shown in Fig. 8 (a) and (b),
SDM exhibits performance saturation in both the Dice and AJI metrics at a
lower point compared to our method, demonstrating continuous improvement.
Moreover, as shown in Fig. 8 (c) and (d), our method achieves higher accuracy
(an increase by over 10%) compared to SDM when the number of synthetic sets
reaches 4, which also reflects a higher Fd value. These results indicate that our
synthetic data, with its diverse labels, leads to a more diverse set of synthetic
image samples, effectively improving the data distribution.

5 Conclusion

In this work, we introduced a novel approach to concurrently generate image-
label pairs for histopathology nuclei images. We model the joint distribution of
image, semantic label, and distance map using a single joint diffusion model. In
addition, we introduced two context conditioning methods, a point map and text
prompts, to enable precise control over the label synthesis process and faithful
synthesis of histopathology images. Lastly, we use the synthesized distance mask
to obtain instance label maps which are useful for downstream tasks such as
nuclei instance segmentation.

For future work, we plan to reduce the time cost for data synthesis while
maintaining the quality of the sampling to address the challenges of time-efficient
synthesized data collection. Although we can employ existing methods (e.g.,
Abousamra et al. [1]) to generate the input point layout, developing a generative
method for synthesizing more realistic point layouts is another research direction
to explore.
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