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1 Handling flips

As detailed in the main manuscript, flips require special care. Let (Ii, Ij) be a
source and target images respectively (for simplicity, we drop the DINO ViT
and learned features notion and use this notion). In this particular case, our loss
function reduces to

LIC =
∥∥Ij − (Ii ◦ T θi ◦ T−θj )

∥∥2
ℓ2
. (1)

To incorporate flips efficiently, we consider only horizontal flips (since vertical
flips could be reached through a horizontal flip + rotation) and compute the
gradient only between the best matching pair. Particularly, let F ki be the kth
flip configuration applied to the ith image, where k ∈ C such that C holds the
possible configuration (in our case, 2). The objective function is now

LIC =

N∑
i=1

|C|∑
ki=1

min
kj∈C

∥∥Ij ◦ F kj − ((Ii ◦ T θi) ◦ F ki) ◦ T−θj
∥∥2
ℓ2
, (2)

where (ki, kj) are the flips considered for the image pair (Ii, Ij).

2 Curriculum learning

To incorporate the Lie-algebraic curriculum learning during training, we gradu-
ally add more complex transformation modules, starting from SE(2) and later
“release" more of the transformation parameters, to obtain (invertible) affine
transformations and finally homographies. Figure 1 illustrate the process, where
additional transformation parameters are “released", as illustrated by the warped
images above the training timeline.
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Fig. 1: Lie Algebric curriculum learning. The notation SE(2) between the epochs (0, 100)
states that during that interval, the training is restricted to SE(2). At epoch 100, more
transformation parameters are “released" to allow for affine transformations.

3 Inverse-Compositional STN (IC-STN) [3]

The IC-STN [3], based on the classical Inverse-Compositional Lucas & Kanade
algorithm [4], predicts a cascade of smaller warps and composes them. In our
case, we do so by recursively feeding the STN several times with its own output.
In effect,

(θ, X ◦ T θ) = ψSTN(X) (3)

(θ′, X ◦ T θ ◦ T θ′
) = ψSTN(X ◦ T θ) (4)

(θ′′, X ◦ T θ ◦ T θ′
◦ T θ′′

) = ψSTN(X ◦ T θ ◦ T θ′
) (5)

and so on.

4 An Additional runtime comparison

We provide an additional runtime comparison with Neural Congealing [6] and
ASIC [2] on the ‘Dog’ and ‘Bike’ datasets [5]. The results are presented in Table 1.

Table 1: A comparison with recent JA methods and evaluation on 3 SPair-71K
categories [5].
Method # Params # Losses #HP Atlas-free learning #epochs Time

Cat Bike Dog

NeuCongealing [6] 28.7M 8 8 ✗ 8K 1:17:02 1:12:55 1:25:28

ASIC [2] 7.9M 4 5 ✗ 20K 1:06:48 1:07:40 1:06:11

SpaceJAM (Ours) 0.016M 1 0 ✓ 0.7K 0:05:58 0:06:11 00:05:43
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5 Architectures

A detailed overview of the Autoencoder (AE) and Spatial Transformer Network
(STN) architectures and the number of trainable parameters. Together they form
our alignment module - ψalign.

Table 2: Autoencoder Model Summary.
GFMN = GlobalFeatureMapNormalizer.
Layer (type:depth-idx) Output Shape Param

Autoencoder [1, 25, 256, 256] –
Encoder: 1-1 [1, 3, 256, 256] –
Sequential: 2-1 [1, 3, 256, 256] –
Conv2d: 3-1 [1, 32, 256, 256] 832
ReLU: 3-2 [1, 32, 256, 256] –
BatchNorm2d: 3-3 [1, 32, 256, 256] 64
Conv2d: 3-4 [1, 16, 256, 256] 528
ReLU: 3-5 [1, 16, 256, 256] –
BatchNorm2d: 3-6 [1, 16, 256, 256] 32
Conv2d: 3-7 [1, 3, 256, 256] 51
GFMN: 3-8 [1, 3, 256, 256] –

Decoder: 1-2 [1, 25, 256, 256] –
Sequential: 2-2 [1, 25, 256, 256] –
Conv2d: 3-9 [1, 16, 256, 256] 64
ReLU: 3-10 [1, 16, 256, 256] –
BatchNorm2d: 3-11 [1, 16, 256, 256] 32
Conv2d: 3-12 [1, 32, 256, 256] 544
ReLU: 3-13 [1, 32, 256, 256] –
BatchNorm2d: 3-14 [1, 32, 256, 256] 64
Conv2d: 3-15 [1, 25, 256, 256] 825

Table 3: STN Model Summary.
Layer (type:depth-idx) Output Shape Param

Conv2d-1 [1, 10, 250, 250] 1,480
AdaptiveMaxPool2d-2 [1, 10, 32, 32] 0
ReLU-3 [1, 10, 32, 32] 0
Conv2d-4 [1, 5, 28, 28] 1,255
AdaptiveMaxPool2d-5 [1, 5, 8, 8] 0
ReLU-6 [1, 5, 8, 8] 0
Linear-1 [1, 1, 32] 10,272
ReLU-2 [1, 1, 32] 0
Linear-3 [1, 1, 9] 297

We also evaluate the effect of the STN size on the resulting alignment. Fig-
ure 2 shows the average PCK@0.1 of 5 runs for the 3 subsets of the CUB200
datasets [7]. We increase the number of trainable parameters by using the same
STN architecture with larger convolutional blocks in terms of # kernels and
their size. Notably, the performance effectively saturates at as early as ∼15K
parameters. Increasing the model further even to 24M parameters, does not
results in additional gains.

6 Further Discussion of the Results

A natural question arises – why do different models perform better in some classes
and worse in others? For instance, consider the ’Dogs’ class of the SPair dataset. In
the results presented in Table 2 in the main paper, ASIC outperforms the proposed
method on that class by approximately 11 points, suggesting superior alignment.
However, the visual comparison in Figure 3 reveals that dense-correspondence
methods like ASIC often result in incoherent alignment. The warped images
display artifacts such as holes, and the dog faces become unrecognizable. This
discrepancy arises because benchmarks like SPair and CUB-200 focus on the
sparse correspondence of hand-picked key points rather than measuring global
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Fig. 2: Average PCK@0.1 score as a function of # trainable parameters of the STN
(the x-axis is log-scaled). The model reaches saturation around ∼ 15K parameters.

(a) DINO+NN (b) ASIC (c) SpaceJAM (ours)

Fig. 3: Geometric fidelity of transformed images (DINO+NN and ASIC results were
obtained from [2]).

alignment. In fact, the basic DINO-NN outperforms SpaceJAM on the same ‘Dog’
class, but yields significantly poorer visual results, as illustrated in Figure 3. This
highlights the limitations of the DINO-NN approach. Additionally, our method
outperforms ASIC in more than half of the classes while requiring 100x fewer
parameters and achieving a 10x reduction in training time. Finally, the variance
in results can also be attributed to the small set size (20-30 images) compared to
the diverse poses, illuminations, and occlusions present in each set.
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7 Additional Visualizations

7.1 Additional joint alignment results

More visual results of SpaceJAM’s joint alignment (JA) are presented below
(Figures 2-6) for the SPair-71K [5] and Samurai (‘robot’) [1] datasets. The figures
show, from top-to-bottom: 1) input images; 2) DINO ViT features (first 3 PCs); 3)
learned features 4) aligned features, and 5) aligned images. The aligned features
and images are masked by the intersection of the coarse input mask and the
median mask of the set (both after alignment). The atlas of the set appears at
the bottom right.
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Fig. 4: Joint alignment results - "train".
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Fig. 5: Joint alignment results - "cat".
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Fig. 6: Joint alignment results - "robot".
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Fig. 7: Joint alignment results - "plane".
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Fig. 8: Joint alignment results - "bus".
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7.2 Additional pairwise alignment results

More visual results of SpaceJAM’s pairwise alignment are presented below. The
figures show, from top-to-bottom: 1) input images; 2) learned features overlay;
3-7) Source-to-target pairwise alignment, where the image in the red square is
aligned to all other images.
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Fig. 9: Pairwise alignment results - "train".
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Fig. 10: Pairwise alignment results - "bus".
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