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Abstract. Referring Expression Comprehension (REC) aims to ground
the target object based on a given referring expression, which requires
expensive instance-level annotations for training. To address this issue,
recent advances explore an efficient one-stage weakly supervised REC
model called RefCLIP. Particularly, RefCLIP utilizes anchor features of
pre-trained one-stage detection networks to represent candidate objects
and conducts anchor-text ranking to locate the referent. Despite the effec-
tiveness, we identify that visual semantics of RefCLIP are ambiguous and
insufficient for weakly supervised REC modeling. To address this issue,
we propose a novel method that enriches visual semantics with various
prompt information, called anchor-based prompt learning (APL). Specif-
ically, APL contains an innovative anchor-based prompt encoder (APE)
to produce discriminative prompts covering three aspects of REC mod-
eling, e.g., position, color and category. These prompts are dynamically
fused into anchor features to improve the visual description power. In
addition, we propose two novel auxiliary objectives to achieve accurate
vision-language alignment in APL, namely text reconstruction loss and
visual alignment loss. To validate APL, we conduct extensive experi-
ments on four REC benchmarks, namely RefCOCO, RefCOCO+, Ref-
COCOg and ReferIt. Experimental results not only show the state-of-the-
art performance of APL against existing methods on four benchmarks,
e.g., +6.44% over RefCLIP on RefCOCO, but also confirm its strong
generalization ability on weakly supervised referring expression segmen-
tation. Source codes released at: https://github.com/Yaxin9Luo/APL.

Keywords: Weakly Supervised Referring Expression Comprehension ·
Anchor-based Prompt Learning

1 Introduction

Referring Expression Comprehension (REC) aims to locate the target object
based on a free-form language description [7, 29, 42]. As a fundamental vision-
⋆ Corresponding author
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Fig. 1: Comparison of RefCLIP and APL. (a) RefCLIP adopts the anchor-text
matching framework to conduct weakly supervised REC. However, anchor features
often lead to the visual misleading in anchor-text matching. (b) APL overcomes the
visual shortcoming of RefCLIP by fusing rich prompts into anchor features, and conduct
anchor-based prompt learning via two auxiliary losses.

language task, REC has gained increasing attention and achieved significant
progress recently [11, 29, 31, 38, 56, 64]. Driven by the great success, numerous
efforts have been devoted to weakly supervised REC to reduce the expensive
annotation costs [9, 33–35, 60, 62, 66]. Among them, most methods aim to di-
rectly apply weakly supervised objectives to a two-stage REC model, e.g., MAt-
tNet [64]. Despite the effectiveness, their two-stage modeling relies on region
proposals and incurs expensive computational overhead.

Recently, Jin et al. [15] provided an efficient one-stage framework for weakly
supervised REC, termed RefCLIP. As shown in Fig. 1, RefCLIP employs one-
stage detectors to formulate weakly supervised REC as an anchor-text matching
problem. Specifically, anchor (grid) features are first extracted from a pre-trained
one-stage detector and then ranked based on the text features. To accomplish the
REC task, RefCLIP will select the best matched anchor and decodes it to bound-
ing box via the pre-trained detection head. During weakly supervised learning,
RefCLIP adopts the anchor-text contrastive loss to achieve vision-language align-
ments using massive image-text pairs. Compared to two-stage methods, RefCLIP
removes the expensive region proposal stage and achieves real-time inference
speed, e.g., +31.6 fps.

However, we identify that the visual semantics of RefCLIP are ambiguous and
insufficient for weakly supervised REC modeling. Compared to region features,
anchor features fall short in determining the actual visual object they represent.
Despite the large receptive field of an anchor, it often encompasses noisy visual
content and incomplete object information, which hinders the accurate anchor-
text matching. As shown in Fig. 1, anchor features of the “woman” also capture
the misleading information of the “kid ”, thereby matching with the incorrect
expression “ left little kid ”. Besides, we also notice that anchor features struggle
to describe fine-grained visual semantics, e.g., color, which are crucial for un-
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derstanding diverse expressions. To explain, anchor features are pre-trained in
common detection tasks, and the learned knowledge is fixed and limited, e.g., 80
classes in COCO [27]. As shown in Fig. 1 (Exp2), RefCLIP fails to distinguish
two kids that have fine-grained differences based on the expression.

To overcome these limitations, we propose a novel anchor-based prompt learn-
ing (APL) for one-stage weakly supervised REC. In particular, APL aims to im-
prove the visual description ability of RefCLIP with an innovative anchor-based
prompt encoder (APE). As shown in Fig. 1, APE can generate discriminative
prompts that cover various knowledge of REC, i.e., position, color and category.
By injecting these prompts into anchor features, APE can greatly alleviate vi-
sual misleading in anchor-text matching. To effectively optimize APE, we further
propose two novel auxiliary objectives in APL, namely text reconstruction loss
and visual alignment loss. Specifically, text reconstruction loss minimizes the dis-
tance between text features and anchor features. And the visual alignment loss
encourages anchor features to directly regress the pseudo-box5 of the referent.
With these training objectives, APL can achieve fine-grained vision-language
alignments through weakly supervised training on massive image-text pairs.

To validate APL, we conduct extensive experiments on four common REC
benchmarks, i.e., RefCOCO [45], RefCOCO+ [45], RefCOCOg [44] and Refer-
ItGame [17]. Experimental results show that APL achieves state-of-the-art per-
formance on four datasets, e.g., +6.44% over RefCLIP [15] on RefCOCO. Be-
sides, we also conduct a bunch of ablation studies to validate our designs in
APL. To validate the generalization ability of APL, we extend it to weakly su-
pervised referring expression segmentation (RES) and also observe promising
performance of APL against existing methods. In summary, our contributions
are three folds:
– We identify the visual shortcoming in existing one-stage weakly supervised

REC. To address this issue, we propose a novel anchor-based prompt learning
(APL) to improve the visual description ability for the popular one-stage
weakly supervised REC model termed RefCLIP.

– We propose an innovative anchor-based prompt encoder (APE) in APL,
which generates and fuses rich multimodal prompts into anchor features.
To achieve effective anchor-based prompt learning, we further equip APL
with two auxiliary objectives, namely text reconstruction loss and visual
alignment loss.

– APL achieves state-of-the-art results on four weakly supervised REC bench-
mark datasets. In addition, APL can be directly applied to weakly supervised
RES and outperforms existing methods on three benchmark datasets.

2 Related Work

2.1 Referring Expression Comprehension

Referring Expression Comprehension (REC) aims to locate the target instance
based on the given expression. Early REC methods [11,29,31,56,64] mainly follow
5 The pseudo-box is produced via the anchor-text matching.
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the two-stage pipeline, which first generates candidate regions using detection
networks such as Faster-RCNN [54] and then selects the target one that best
matches the referring expression. In spite of their success, two-stage methods
are often criticized for their slow inference speed, which greatly limits their
applications. To overcome this limitation, researchers have shifted their attention
to one-stage REC [25, 39, 42, 70, 71]. In particular, these methods often embed
text features into a one-stage detection network like YOLOv3 [53]. By directly
predicting the target box via the detection head, one-stage REC models can
achieve real-time inference speed. Based on this paradigm, existing methods
further improve the reasoning ability via deep fusions [70] or attentions [39,
42, 71]. Subsequently, driven by the progress of Transformers [18, 40, 61], recent
endeavors [7, 36, 39, 43] also explore their applications to one-stage REC, which
often stacks multiple Transformer layers for better cross-modal interactions. In
this paper, we explore weakly supervised learning for one-stage REC from a
novel perspective of anchor-based prompt learning.

2.2 Weakly Supervised Referring Expression Comprehension

Compared to fully supervised REC, weakly supervised REC limits the access
to ground-truth annotations. Most existing methods [9, 33–35, 60, 62, 66] often
explore weakly training objectives to optimize traditional two-stage REC models
with image-text pairs. Among them, sentence reconstruction [34, 35, 62] selects
the best matched region to reconstruct the given input expression. Contrastive
learning [9,66] constructs positive and negative pairs from a set of regions and ex-
pressions and computes the InfoNCE loss [47]. Despite their effectiveness, these
two-stage methods also suffer from expensive computational overhead. There-
fore, researchers attempt to explore weakly supervised learning for one-stage
REC [15, 67]. Among them, the advanced method called RefCLIP [15] adopts
anchor-text matching based on the one-stage detector. To achieve weakly super-
vised learning, RefCLIP conducts anchor-based contrastive learning with mas-
sive image-text pairs.

In this paper, we identify that anchor representations often contain ambigu-
ous object information and greatly hinder weakly supervised learning. To address
this issue, we propose a novel anchor-based prompt learning (APL) for one-stage
weakly supervised REC. APL aims to fuse rich prompt information into anchors
and prompts vision-language alignments via two novel auxiliary objectives, i.e.,
text reconstruction loss and visual alignment loss.

2.3 Prompt Learning

Prompt learning is an emerging research hot topic in natural language processing
(NLP), which inserts text instructions into the input of a pre-trained language
model for a better understanding of the task [14, 48, 58]. Early works [4, 6, 14,
48, 51] focus on manually selected prompts to improve the zero-shot and few-
shot performance of language models. Recently, most works regard learnable



Abbreviated paper title 5

vectors as prompts and optimize them via task-specific fine-tuning. These meth-
ods can greatly improve the adaptation ability of language models to various
downstream tasks [10, 12, 24, 37, 68, 69]. Inspired by these progresses, prompt
learning has been a popular transfer learning scheme for pre-trained vision mod-
els. For example, VPT [68] adopts the deep prompt tuning strategy to transfer
ViTs [8] to downstream tasks efficiently. CoOp [68] significantly improves the
generalization ability of CLIP [50] on various out-domain tasks.

Different from previous work, APL dynamically constructs rich multimodal
prompts, e.g., position and color, to improve the anchor representations. We
also introduce two novel objectives to achieve accurate anchor-based prompt
learning.

3 Preliminary

We first recap the framework of RefCLIP [15], which defines weakly supervised
REC as an anchor-text matching problem. In particular, given an input im-
age I ∈ RH×W×3, anchor features Fa ∈ R(h×w)×d are extracted from the last
convolution feature map in YOLOv3 [53]. Based on anchor features, YOLOv3
employs the detection head to predict their corresponding bounding boxes. To
accomplish REC, RefCLIP selects the target anchor that best matches with the
given expression T ∈ RL, and predicts the bounding box of the referent via the
detection head. This process can be formulated by

b = Fdet(argmax
fa∈Fa

ϕ(fa, ft)), (1)

where fa ∈ Rd and ft ∈ Rd denote anchor features and expression features,
respectively. ϕ denotes the dot product similarity. And Fdet(·) is the detection
head of YOLOv3 [53]. As defined in Eq. 1, once the target anchor is correctly se-
lected, RefCLIP can directly predict the bounding box of the referent. Compared
to two-stage methods, RefCLIP is much more efficient due to the elimination of
the region proposal stage.

To achieve weakly supervised training, RefCLIP adopts anchor-text con-
trastive learning, defined by

Latc = − log
exp

(
ϕ(f̂ai, fti)/τ

)
N∑
j=0

I(i ̸=j) exp
(
ϕ(faj , fti))/τ

) , (2)

where f̂ai denotes the best matched anchor features in i -th image, and N is the
batch size. τ is the temperature for contrastive learning. With Eq. 2, RefCLIP
can be directly optimized with massive image-text pairs.

As shown in Eq. 1, the effectiveness of RefCLIP lies in the accurate anchor-
text matching. Nevertheless, anchor feature fa suffers from the shortcoming of
object representation. Compared to instance-level region features, anchor fea-
tures are more fragmented and noisy, where an anchor often contains incomplete
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Fig. 2: Illustration of the proposed anchor-based prompt learning (APL).
APL contains a novel anchor-based prompt encoder (APE), which fuses rich prompts
into anchor features for accurate anchor-text matching. To promote anchor-based
prompt learning, APL is equipped with two auxiliary losses, namely text reconstruc-
tion loss and visual alignment loss.

object information. Besides, anchor features also lack sufficient visual semantics
for REC modeling, e.g., color. Therefore, the visual shortcoming of anchor fea-
tures inevitably hinders the vision-language alignment of RefCLIP.

4 The APL Framework

4.1 Overview

To address the above issues, we propose a novel weakly supervised REC frame-
work, namely anchor-based prompt learning (APL). The core idea of APL is
to improve object representations of RefCLIP [15] with various prompts. To
achieve this target, APL is equipped with a novel anchor-based prompt encoder
(APE) to generate discriminative prompts covering position, color and category.
Then, these prompts are dynamically fused into anchor features. Therefore, the
anchor-text matching process can be re-written by

b = Fdec( argmax
fa∈Fa,fp∈Fp

ϕ(Fprompt(fa, fp), ft)). (3)

Here, Fprompt(·) denotes the anchor-based prompt encoder. fp ∈ Rh×w×d is
prompt features that describe position, attribute and category for anchor fea-
tures fa ∈ Rh×w×d. Similar to RefCLIP, APL conducts the anchor-text ranking
and the box decoding to locate the referent. For weakly supervised training, in
addition to the contrastive objective of RefCLIP, we further propose two novel
objectives to promote vision-language alignment in APL, i.e., text reconstruc-
tion loss and visual alignment loss.
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4.2 Anchor-based Prompt Encoder

As discussed above, anchor features often fall short of encoding discriminative
object information. To tackle this challenge, the anchor-based prompt encoder
(APE) first generates a set of prompt information for each candidate anchor.
Then, these prompts are dynamically fused into anchor features to improve the
visual description power.

Anchor-based prompt generation. The key to APE is how to generate
valuable and discriminative prompts for different anchors. As shown in Fig. 2,
we first define a prompt template that contains three slots, i.e., position, color
and category. Then, we extract these pieces of information from the image to
obtain the anchor-based prompt.

In particular, given an anchor feature fa ∈ Rd, we obtain its corresponding
detected box b ∈ R4 and category c ∈ R1 via the detection head. Then, the
spatial prompt fps ∈ Rd is defined by

fps = ρpos(
b0 + b2

2
,
b1 + b3

2
), (4)

where ρpos(·) is the positional embedding function [61]. fps indicates the spatial
information for anchor a. As defined in Eq. 4, we first obtain the center coor-
dinates of the detected bxo b and then transform it to spatial prompt via the
positional embedding. In practice, the spatial prompt can also be represented as
a word, e.g., “left” and “right”, but it can only reflect the rough location.

Afterward, we define the color and category prompts as natural language
descriptions, e.g., “black sofa” and “white cup”. Specifically, the category can be
directly obtained through the class name of c. The color information is calculated
based on the pixel values of the image region b6. Then, we transform the obtained
RGB color to natural words via a pre-defined color table. Finally, the color and
the category are combined and processed to obtain textual features fpt ∈ Rd,
which is defined by

fpt = Ftext(tpWp), (5)

where tp ∈ Rlp and Wp ∈ Rlp×d are tokenized prompt words and weights of the
word embedding, respectively. As defined in Eq. 4 and 5, the generated prompts
contain detailed object information, which can be combined with anchor features
for better visual understanding.

Anchor-prompt fusion. To achieve the above target, we propose a dynamic
weighting strategy to fuse the prompt features, i.e., fps and fpt, into the anchor
features fa, which is formulated by

fp = w0fa + w1fps + w2fpt, (6)

where fp ∈ Rd is the anchor-based prompt features that are used to conduct
anchor-text matching. w0, w1, w2 ∈ R1 are three attention weights, defined by

w0, w1, w2 = softmax(σ((fa + fps + fpt)W1)W2). (7)
6 We adopt average pooling and K-means to capture colors of objects accurately.
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Here, W1 ∈ Rd×d and W2 ∈ Rd×2 are two projection weights. σ(·) denotes the
activation function of ReLU [1]. According to Eq. 7, weights of different features
are dynamically adjusted for different samples.

4.3 Anchor-based Prompt Learning

Similar to RefCLIP, we adopt the contrastive loss to achieve weakly supervised
learning. Besides, we propose two novel objectives to further facilitate the anchor-
based prompt learning, namely text reconstruction loss and visual alignment loss.
Therefore, the weakly supervised learning of APL can be written by

min
θ

Lptc(Fp, ft; θ) + Ltr(Fp, ft; θ) + Lva(Fp; θ), (8)

where Lptc is the anchor-text contrastive loss defined in Eq. 2. Ltr and Lva
denote the text reconstruction loss and the visual alignment loss, respectively. θ
denotes the model parameters.

In Eq. 8, Ltr aims to reconstruct expression features ft with the best matched
anchor-based prompt features f̂p, which is defined by

Ltr = (Fmlp(f̂p)− ft)
2. (9)

Here, Fmlp is a multi-layer MLP to project f̂p into a latent space. In practice, f̂p
is selected from Fp based on the similarity of ϕ(fp, ft). With Eq. 9, anchor-based
prompt features can learn fine-grained visual knowledge from diverse expressions
and achieve better vision-language alignments.

In addition, we adopt the visual alignment loss to directly reconstruct the
pseudo bounding box of the referent b based on Fp and ft, which is defined by

Lva = Ldet(Frec(Fp, ft), b). (10)

Here, Frec denotes the REC decoder of SimREC [41], which contains a mul-
timodal fusion layer, a GARAN layer [70] and a detection head [53]. Ldet is
the detection losses [26], which consists of the IoU loss [55] and the confidence
loss [52]. Note that the bounding box b is generated via Eq. 3, which is still in
line with the definition of weakly supervised learning. Since the bounding box
b is often noisy at the beginning of training, we apply Lva after a short train-
ing phase. Compared to the text reconstruction loss, the visual alignment loss
encourages anchor-based prompt features to encode discriminative semantics so
that the target box can be directly predicted in a regression manner.

4.4 Network Settings

Feature extraction. We deploy APL based on RefCLIP [15]. In particular,
we use a bi-directional GRU layer [3] and a self-attention layer [61] to extract
text features ft ∈ Rl×d from the expression T . For the visual backbone, we
employ DarkNet-53 [53] to process the input image I and obtain the anchor
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Table 1: Ablation study of APL on val set of RefCOCO and RefCOCO+.

APE Lptc Ltr Lva RefCOCO RefCOCO+

- ✓ - - 60.36 40.39
✓ ✓ - - 62.89 41.54
✓ ✓ ✓ - 63.01 42.31
✓ ✓ ✓ ✓ 64.51 42.71

features Fa ∈ Rh×w×d. Following RefCLIP, we also adopt multi-scale fusion to
fuse anchor features of different layers. Then, we filter most anchor features with
low detection confidences. And the remaining anchor features are fused with
prompt features to obtain the anchor-based prompt features Fp.

Training and inference. For weakly supervised training, we directly sum
three losses and optimize the model via backpropagation. During inference, APL
has two different ways to predict the bounding box of the referent. The first way
is based on the anchor-text ranking, as defined in Eq. 3. The second way adopts
the predictive branch using Eq. 10, which calculates the visual alignment loss.
We adopt the second one for inference, which performs slightly better.

5 Experiments

5.1 Datasets and Metrics

RefCOCO [45] contains 142,210 referring expressions and 50,000 objects in
19,994 images from MSCOCO [27]. Expressions of RefCOCO mainly describe
about absolute position. RefCOCO+ [45] consists of 141,564 referring expres-
sions for 49,856 bounding boxes in 19,992 MSCOCO images. Different from Re-
fCOCO, RefCOCO+ contains more descriptions of relationships and attributes.
RefCOCOg [44] has 104,560 referring expressions and 54,822 bounding boxes
for 26,711 images, where its expressions are longer and more complex than that
of RefCOCO and RefCOCO+. RefCOCOg includes two different splits, i.e., umd
split [45] and google split [44]. We use the Google split in our experiments. Refer-
ItGame [17] includes 120,072 referring expressions for 99,220 bounding boxes of
19,997 images. ReferItGame includes background descriptions, making it more
challenging than RefCOCO and RefCOCO+.

For REC task, we use IoU@0.5 as the metric. In particular, a prediction is
considered correct when the intersection over union (IoU) between the prediction
and the ground truth is larger than 0.5. For the RES task, we follow previous
works [2,21,28,30,49,57,63] to use mIoU as the metric, which averages the IoU
scores of all testing samples.

5.2 Implementation Details

Following RefCLIP [15], the image resolution is set to 416×416, and the text
length is 15, 15 and 20 for RefCOCO, RefCOCO+ and RefCOCOg, respectively.
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Table 2: Ablation study of the anchor-based prompt encoder (APE) on Re-
fCOCO and RefCOCO+. “S-prompt” and “T-prompt” denote the spatial prompt
and the text prompt, respectively. Our final choice is colored in grey.

Settings Choices RefCOCO RefCOCO+
val testA testB val testA testB

S-prompt Text 57.88 56.34 57.98 41.17 42.07 39.46
Pos. Func. 64.51 61.91 63.57 42.71 42.84 39.80

T-prompt BLIP [22] 63.47 60.72 63.16 42.11 41.84 39.44
Template 64.51 61.91 63.57 42.71 42.84 39.80

Fusion
Add 64.69 61.75 63.67 42.10 42.00 38.89

Concat 64.23 61.53 64.08 39.59 39.49 38.54
Dynamic Sum 64.51 61.91 63.57 42.71 42.84 39.80

Table 3: Comparison of different prompt learning methods on three REC
datasets. For fair comparisons, RefCLIP is used as the structure for VPT and CooP.

Method RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g

VPT [13] 55.39 53.30 53.94 33.56 33.74 31.72 40.79
CooP [68] 60.33 59.11 59.63 37.63 36.87 37.84 49.38
APL (ours) 64.51 61.91 63.57 42.70 42.84 39.80 50.22

We use YOLOv3 [53] pre-trained on MSCOCO7 [27] as the detection network.
In APL, dimensions of prompt features, anchor features and text features are
set to 512. For the text reconstruction objective, we adopt a three-layer MLP
with a hidden size 512 for projecting anchor features. During weakly supervised
training, we use Adam [19] as the optimizer. And the learning rate and the batch
size are set to 1e-4 and 64, respectively. Training consists of 25 epochs, and the
visual alignment loss is applied after 9,000 steps. The remaining settings are kept
the same with RefCLIP.

5.3 Quantitative Results

Ablation Studies. We conduct extensive experiments to validate designs of
APL in Tab. 1, 2 and 3. In particular, Tab. 1 shows the cumulative ablations
of APL. From this table, the first observation is that all designs obviously con-
tribute to the final performance. Specifically, APE provides the most apparent
gains of all designs, e.g., +2.53% on RefCOCO, suggesting the significance of
discriminative anchor semantics. With the help of auxiliary losses, the perfor-
mance of APL can be further boosted, e.g., +1.62% on RefCOCO. Besides, We
also notice that the text reconstruction loss yields more significant improve-
ments on the dataset containing more diverse expressions, i.e., RefCOCO+. In
contrast, the visual alignment loss offers more benefits on RefCOCO, where vi-
sual understanding is the main challenge. These results extensively validate the
effectiveness of the proposed auxiliary losses for vision-language alignments.
7 Validation and testing images in REC task are removed.
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Table 4: Comparison with state-of-the-art methods on four REC bench-
mark datasets. GT proposals means that official annotations of MSCOCO are used
as candidates. Pseudo Label denotes that the student REC model is trained using
pseudo-labels generated by a teacher model. For example, RefCLIP_SimREC means
that RefCLIP and SimREC are the teacher and the student, respectively.

Method RefCOCO RefCOCO+ RefCOCOg ReferIt Inference
val testA testB val testA testB val-g test speed

GT Proposals:
VC [46]CVPR’18 - 33.29 30.13 - 34.60 31.58 30.26 - -
ARN [33]ICCV’19 38.05 36.43 36.47 34.53 36.40 36.12 39.62 - -
KPRN [34]MM’19 36.34 35.28 37.72 37.16 36.06 39.29 38.37 33.87 -
DTWREG [60]TPAMI’21 39.21 41.14 37.72 39.18 40.01 38.08 43.24 - -
EARN [32]TPAMI’22 38.08 38.25 38.59 37.54 37.58 37.92 45.33 36.86 -
RefCLIP_MAttNet 69.31 67.23 71.27 43.01 44.80 41.09 51.31 - -
APL_MAttNet(ours) 74.24 73.29 76.39 48.59 53.02 44.04 57.08 - -

Det Proposals:
VC [46]CVPR’18 - 32.68 27.22 - 34.68 28.10 29.65 14.50 -
KAC Net [5]CVPR’18 - - - - - - - 15.83 -
MATN [67]CVPR’18 - - - - - - - 13.61 -
ARN [33]ICCV’19 32.17 35.25 30.28 32.78 34.35 32.13 33.09 26.19 5.7fps
IGN [66]NeurIPS’20 34.78 37.64 32.59 34.29 36.91 33.56 34.92 - -
DTWREG [60]TAPAMI’21 38.35 39.51 37.01 38.91 39.91 37.09 42.54 - 5.9fps
RelR [35]CVPR’21 - - - - - - - 37.68 -
NCE+Dist [62]CVPR’21 - - - - - - - 38.39 -
RefCLIP [15]CVPR’23 60.36 58.58 57.13 40.39 40.45 38.86 47.87 39.58 31.3fps
APL (ours) 64.51 61.91 63.57 42.70 42.84 39.80 50.22 41.80 26.7fps

Pesudo Labels:
RefCLIP_SimREC [15] 62.57 62.70 61.22 39.13 40.81 36.59 45.68 42.33 54.8fps
RefCLIP_Transvg [15] 64.08 63.67 63.93 39.32 39.54 36.29 45.70 42.64 19.3fps
APL_SimREC (ours) 63.94 64.72 61.21 42.11 44.85 38.31 48.35 45.22 54.8fps
APL_Transvg (ours) 64.86 64.89 63.87 39.28 41.08 36.45 46.11 43.25 19.3fps

In Tab. 2, we further compare different designs for anchor-based prompt en-
coder (APE). For the choice of the spatial prompt, we observe that the text
description, e.g., “left”, performs much worse than the positional function, e.g.,
-6.63% on RefCOCO. In practice, the positional function can provide more ac-
curate and continuous spatial information than the text description. Besides,
we attempt to use BLIP [22] to generate region captions as the text prompt,
but the performance declines. To explain, the generated captions often include
noisy and unrelated descriptions, which potentially causes the visual misleading.
In Tab. 2, we compare different strategies for anchor-prompt fusions, and our
dynamic fusion still outperforms other methods.

In Tab. 3, we compare APL with existing prompt learning methods, i.e.,
VPT [13] and CooP [68]. The first observation is that APL greatly outperforms
the other two methods on three datasets, e.g., up to +5.97% on RefCOCO+
testA. From Tab. 3, we also find that VPT performs worse on three datasets,
which achieves 55.39% on RefCOCO. To explain, prompts of VPT are not condi-
tioned on anchors, which may produce useless and harmful prompt information.
In contrast, CooP can generate anchor-based prompts and demonstrate promis-
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Table 5: Comparison of APL and existing methods on weakly supervised
RES. PKS [21] uses click annotations for supervision, so we mark it in gray.

Method RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g

AMR [49]AAAI’22 14.12 11.69 17.47 14.13 11.47 18.13 15.83
GroupViT [63]CVPR’22 18.03 18.13 19.33 18.15 17.65 19.53 19.97
CLIP-ES [28]CVPR’23 13.79 15.23 12.87 14.57 16.01 13.53 14.16
GbS [2]ICCV’21 14.59 14.60 14.97 14.49 14.49 15.77 14.21
WWbL [57]NeurIPS’22 18.26 17.37 19.90 19.85 18.70 21.64 21.84
TSEG [59]arXiv’20 30.12 - - 25.95 - - 22.62
ALBEF [23]NeurIPS’21 23.11 22.79 23.42 22.44 22.07 22.51 24.18
I-Chunk [20]ICCV’23 31.06 32.30 30.11 31.28 32.11 30.13 32.88
TRIS [30]ICCV’23 31.17 32.43 29.56 30.90 30.42 30.80 36.00
PKS [21]arXiv’22 49.27 52.23 45.64 37.79 42.09 32.87 36.43
APL (ours) 55.92 54.84 55.64 34.92 34.87 35.61 40.13

ing performance on RefCOCOg. Nevertheless, CooP is limited in weak spatial
and attribute information, so it still lags behind APL by large margins on Ref-
COCO and RefCOCO+. These results greatly validate the design of APL.

Comparison with existing methods on REC. In Tab. 4, we compare
APL with a set of methods on four REC benchmark datasets. From this table, we
find that most methods adopt the two-stage modeling and their inference speed
is vastly inferior to the one-stage one, e.g., 5.9 fps of DTWREG [60] vs. 26.7
fps of APL. Regarding performance, one-stage models have obvious advantages
in RefCOCO, suggesting its better spatial understanding ability. Nevertheless,
on more challenging datasets like RefCOCO+ and ReferIt, one-stage models
perform similarly to the two-stage ones. As discussed in Sec.1, existing one-
stage models often adopt a simple anchor-text matching, which lacks sufficient
visual semantics for fine-grained REC modeling. Compared to these methods,
APL achieves the best performances on four datasets, e.g., +6.44% over RefCLIP
on RefCOCO, and also maintains remarkable inference efficiency, i.e., 26.7 fps.
Compared to RefCLIP, APL has obvious performance gains on some complex
splits, e.g., RefCOCO testB and RefCOCOg val. Notably, APL can even achieve
comparable performance with early supervised REC models on RefCOCO, e.g.,
63.57 of APL vs. 64.85 of Spe+Lis+Rl [65] on testB. These results further confirm
that our APL can greatly promote fine-grained vision-language alignments.

In Tab. 4, we further validate APL under the pseudo-label learning setups.
Following RefCLIP [15], we use the well-trained APL to generate pseudo-labels
for training common REC models. As shown in Tab. 4, the REC model taught
by APL greatly outperforms the one taught by RefCLIP, e.g., up to +4.04%
for SimREC [41]. Besides, we also notice that APL brings more benefits for
the student REC model on challenging datasets like ReferIt and RefCOCOg. In
particular, SimREC supervised by APL can even outperform APL by +3.42%
in ReferIt, suggesting that APL can produce high-quality pseudo-labels in this
dataset. Nevertheless, we also find that performance gains of TransVG are not
obvious as SimREC. We conjecture that the Transformer structure of TransVG
has higher requirements for data quality.
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Exp-4: Black sheep 

Baseline +APE + Aug LossesImage

(a) Comparison of different designs in APL .

Exp-3: Not cut piece but 7pm of cut piece

Exp-1: Closest car 

Exp-5: In black guarding 33 Exp-6: Yellow cab 

(b) Predictions of APL with different anchor-based prompts.

Exp-8: Person reclining left

APL w.o Colorw.o Spatial

Exp-9: Person behind white bowl Exp-10: Toilet

Exp-7: Green apple on the left

Baseline +APE +Aug LossesImage

w.o Category  

Exp-2: Yellow round fruit with blemish

APL w.o Spatial w.o Color w.o Category  

Exp-11: From bottom right row second up Exp-12: Yellow and blue truck second from left

Fig. 3: Visualizations of APL. Subfig-(a) compares different designs of APL and
visualizes their predictions. Subfig-(b) compares predictions of APL with different
prompts. Predictions and ground-truths are colored in red and blue, respectively.

Generalization results on RES. In Tab. 5, we extend APL to weakly
supervised RES and compare it with a set of existing methods. To accomplish
the RES task, we use the YOLOv5-Seg [16] as the detection network in APL,
which can produce segmentation masks based on anchor features. From Tab. 5,
we observe that APL demonstrates obvious performance gains against exist-
ing methods. For example, APL outperforms the state-of-the-art method, i.e.,
TRIS [30], by up to 26.08%, which is a remarkable improvement. In other RES
datasets, the obvious benefits of APL can also be witnessed, e.g., +4.81% and
+4.13% in RefCOCO+ and RefCOCOg, respectively. Compared to PKS [21],
which uses additional click annotations for supervision, APL still performs bet-
ter in RefCOCO and RefCOCOg.

5.4 Qualitative Analysis

To gain in-depth insights into APL, we visualize and compare predictions of APL
in Fig. 3. In Fig. 3 (a), we ablate the proposed APE and auxiliary losses and
visualize the predictions. This figure shows that the default baseline often falls
short in fine-grained recognition, e.g., “black sheep” of Exp-4. With the help of
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Exp-1: Bride throwing
bouquet

Exp-3:Gray top jeans on 
left face partially hidden

Exp-2: Far-right Carrot 
just the orange part

Exp-4: Frontmost folded
down chair

Exp-5: Bottom section
third from left

Exp-6: Left top donut
with chunk of sugar

Exp-7: Yucky broccoli
front most piece

Exp-8: Elephant just
to right of baby

Exp-9: Standing
chappie far left

Exp-10: Chair of guy
looking at you in front

Fig. 4: Failure cases of APL on RefCOCO, RefCOCO+ and RefCOCOg.

APE, APL can better capture visual appearances such as color. However, APL
still fails in some examples that involve complex descriptions, e.g., Exp-2. These
examples are correctly predicted after adopting two auxiliary losses. As shown
in Fig. 3 (a) Exp-2, the “orange” can be located from a bunch of fruits.

In Fig. 3 (b), we further compare the effects of different prompt information
in APE. As shown in Fig. 3 (b), removing the spatial information leads to the
failure of APL on spatial-related expressions, e.g., “person reclining left” of Exp-
8. Besides, we observe that the color prompt is significant for locating the referent
in a diverse scenario. Without the color prompt, APL can not correctly ground
the “green apple” from various fruits in Exp-7. Moreover, the category prompt
helps APL distinguish objects of similar appearances, e.g., the “toilet”.

To better understand the limitation of APL, we visualize its failure cases
in Fig. 4. From this figure, we observe that APL still struggles to address long
expressions, e.g., Exp-3 and Exp-10, which requires strong reasoning ability.
Besides, we can also see that complex visual scenes cause some failure cases,
e.g., the occluded objects in Exp-2. From these examples, we believe that APL
has much room for improvement in reasoning ability and visual understanding.

6 Conclusion

In this paper, we focus on one-stage weakly supervised REC and identify that
existing methods suffer from the ambiguous visual semantics in their REC mod-
eling. To address this issue, we propose a novel approach, namely anchor-based
prompt learning (APL). APL formulates weakly supervised REC as an anchor-
text matching problem, equipped with an innovative anchor-based prompt en-
coder (APE) to enrich anchor semantics with a set of prompts. Moreover, we
propose two novel auxiliary losses to achieve the effective anchor-based prompt
learning, namely text reconstruction loss and visual alignment loss. Experimen-
tal results not only validate the state-of-the-art performance of APL in REC but
also confirm the strong generalization ability of APL in RES.

Acknowledgements: This work was supported by the National Natural Science
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