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Abstract. In the realm of deep neural network deployment, low-bit
quantization presents a promising avenue for enhancing computational
efficiency. However, it often hinges on the availability of training data
to mitigate quantization errors, a significant challenge when data avail-
ability is scarce or restricted due to privacy or copyright concerns. Ad-
dressing this, we introduce GenQ , a novel approach employing an ad-
vanced Generative AI model to generate photorealistic, high-resolution
synthetic data, overcoming the limitations of traditional methods that
struggle to accurately mimic complex objects in extensive datasets like
ImageNet. Our methodology is underscored by two robust filtering mech-
anisms designed to ensure the synthetic data closely aligns with the in-
trinsic characteristics of the actual training data. In case of limited data
availability, the actual data is used to guide the synthetic data genera-
tion process, enhancing fidelity through the inversion of learnable token
embeddings. Through rigorous experimentation, GenQ establishes new
benchmarks in data-free and data-scarce quantization, significantly out-
performing existing methods in accuracy and efficiency, thereby setting
a new standard for quantization in low data regimes. Code is released at
https://github.com/Intelligent-Computing-Lab-Yale/GenQ.

1 Introduction

A variety of model compression techniques have been developed to deploy large
deep learning models on embedded/mobile devices without significant accuracy
drops. One prominent method is neural network quantization [18], which involves
converting 32-bit floating-point models into a compact low-bit fixed-point for-
mat. This transformation leverages the efficiency of fixed-point computation and
the benefits of reduced memory usage. Other notable techniques include prun-
ing [5, 44] and knowledge distillation [24], both of which aim to reduce network
size while preserving as much of the original model’s performance as possible.

While these methods effectively accelerate neural networks, they typically
require finetuning on the original training dataset to mitigate any accuracy
loss in the compressed model. However, accessing the original training data

https://orcid.org/0000-0002-6444-7253
https://orcid.org/0000-0002-3542-7720
https://orcid.org/0000-0002-4167-6782
https://github.com/Intelligent-Computing-Lab-Yale/GenQ


2 Y. Li, Y. Kim, D. Lee, S. Kundu, P. Panda.

KW ZeroQMixMixGenie GenQ Real*50

55

60

65

70
Ac

cu
ra

cy

57.7

64.1

66.5

69.9 70.4 71.0ResNet-50 (W2A4)

Data-Free PTQ

GDFQQimera TexQ DSG GenQ Real*50

55

60

65

70

75

80

Ac
cu

ra
cy

54.2

66.3

70.7
72.0

76.1 76.7ResNet-50 (W4A4)

Data-Free QAT

ZeroQ MixMix Genie GenQ0

25

50

75

100

125

150

Sp
ee

d 
(m

in
ut

es
 p

er
 1

K
 im

ag
es

)

10

24

152

10

Data Generation Speed

Fig. 1: Comparison of GenQ with existing methods on ImageNet. (1) Data-Free PTQ,
(2) Data-Free QAT, (3) Data Generation Speed. Real* denotes using real ImageNet
data in zero-shot quantization.

can be challenging due to privacy concerns or Intellectual Property (IP) pro-
tection issues [43]. This challenge has led to the emergence of data-free quanti-
zation [7, 21, 33]. This approach involves generating synthetic data from a pre-
trained network and then finetuning the compressed or quantized model using
this synthetic data, thereby circumventing the need for original training data.

Several prior works generate synthetic data by inverting the knowledge from
pre-trained full-precision models. For instance, [7,21,69] propose to optimize the
images by aligning them with the training data in terms of activation statis-
tics. [39,62] apply generative adversarial networks [20] to synthesize the images.
However, these approaches often struggle to match the compression performance
achievable with real training data. The primary challenge lies in the inherent
complexity of reverse mapping from a lower to a higher dimension [35]. For ex-
ample, in the context of the ImageNet dataset, this involves mapping from a
1000-dimensional space to an image space of 224 × 224 × 3. Such transforma-
tion makes accurate recreation of complex objects a hard problem. Additionally,
these methods cost a significant amount of time to generate the images.

In this paper, we introduce GenQ , a new pipeline utilizing the advanced
Generative AI model such as Stable Diffusion [56] to generate high-quality
data for quantization purposes. This approach aligns with the growing trend
of applying AI-generated content (AIGC) in deep learning and vision applica-
tions [6, 58, 61, 67]. While direct application of generative AI data risks distri-
bution shifts from original training data, we address this through two filtering
mechanisms, ensuring the selection of in-distribution synthetic data. Our method
excels in data-free quantization scenarios. More remarkably, in a majority of the
model deployment scenarios with limited training data (e.g . one image per class),
GenQ is significantly effective via prompt tuning to align generated images more
closely with the real data. We conduct comprehensive experiments to validate
the effectiveness of GenQ , including both Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT), on various neural network architec-
tures (e.g . CNNs [22,54] and ViTs [14]). Fig. 1 showcases effectiveness of GenQ
on data-free quantization. Meanwhile, compared to other data generation ap-
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proaches, our method achieves faster generation of synthetic data (up to 15×
faster), increasing both efficiency and effectiveness.

We summarize our contributions as follows:

1. We propose GenQ , the first work to leverage advanced text-to-image syn-
thetic data for quantization in data-free scenarios. To reduce the distribution
gap between synthetic data and real data, we introduce a suite of filtering
mechanisms to select in-distribution synthetic data, including energy score
filtering and BatchNorm Distribution filtering.

2. In case of limited data availability, we also propose to learn the token em-
bedding to guide the synthesis using real data.

3. We conduct extensive experiments to show the usefulness of GenQ in gen-
erating synthetic data that helps achieve SoTA quantization performance in
both PTQ and QAT. For example, our 4-bit QAT-based ResNet-50 achieves
76.10% accuracy on the ImageNet dataset, outperforming the latest existing
method [8] by 5.4%.

2 Related Work

Quantization Methods. Quantization approaches to compress pretrained Deep
Neural Networks (DNNs) can be broadly divided into PTQ and QAT. PTQ per-
forms calibration on a pre-trained DNN after quantizing its weights and activa-
tions to low bits to maintain the original accuracy [16,41,46]. For example, [3,17]
propose bias correction in the convolutional layers after quantization. [71] splits
the outliers into additional channels to reduce the quantization error. Recently,
a line of works [28, 34, 45, 60] leverage the weight rounding optimization to re-
construct the activation of the original model. While PTQ mostly adopts ad hoc
strategies to prevent accuracy loss from quantization, QAT can significantly im-
prove the accuracy of the quantized model through end-to-end finetuning. The
success of QAT is mainly based on the usage of Straight-Through Estimator
(STE) [65], enabling gradient-based optimization [9, 15, 27, 63, 68, 73]. QAT also
explores optimizing the step size [15], clipping threshold [9], non-linear inter-
val [33], non-uniform quantization levels [68] together with the weights.
Data in Quantization. To quantize a model to below 8 bits, data is essential, es-
pecially in QAT where end-to-end finetuning occurs. When access to real images
is restricted due to privacy and copyright issues, ZeroQ [7] proposes to synthesize
images in replacement of real data. There are two categories of creating synthetic
images: (1) Inverting the images directly via gradient descent [7,21,32,35,69], and
(2) Learning a Generative Adversarial Network (GAN) to continuously generate
images [39,62].

The image inversion [64] relies on Batch Normalization (BN) [7, 21] as an
optimization metric to distill the data and obtain high-fidelity images. Other
inversion methods based on loss function [72], model ensembling [35], and ad-
vanced convolutional layers [32] have been proposed to obtain better synthetic
data. However, the inversion approach is limited in certain ways: (1) Inverting
images adds a significant computation burden, which makes QAT with synthetic
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data prohibitive; (2) Models that do not have BN layers, such as ViTs, cannot
invert images [14]. The second category proposes to use GAN as an image
synthesis engine [10, 39, 49, 62, 72]. These works finetune the generator and the
quantized model simultaneously.

Our method opens a third category for quantization in low data regime, i.e.,
using text-to-image diffusion models. Additionally, we investigate how to use
limited real data to guide the generation of synthetic data. To the best of our
knowledge, this scenario is being studied for the first time.
Synthetic Data in Deep Learning. Initial studies, such as those by [4, 31, 70],
explored the use of GANs for assisting DNNs in classifier tuning, object seg-
mentation, and contrastive learning. Recently, the emergence of text-to-image
models [13, 42, 52, 53] has revolutionized the synthesis of high-quality data in
deep learning, owing to their effectiveness and efficiency. For example, [23] uti-
lized GLIDE [47] for image synthesis in classifier tuning on the CLIP model [51].
In a more advanced application, StableRep [58] leverages Stable Diffusion to
generate datasets for contrastive learning, using synthetic data from different
seeds as positive pairs. Meanwhile, [2] investigates the synthesis of data within
the ImageNet label space observing accuracy improvements. Furthermore, Fill-
up [55] employs synthetic data from text-to-image models to balance the long-tail
distribution in training datasets.

3 Preliminaries

3.1 Quantization

Uniform quantization maps full-precision weights into fixed-point numbers. For
a step size s ∈ R, the integer value of weights w are given by

wint = clip
(⌊w

s

⌉
+ z, n, p

)
, (1)

where ⌊·⌉ denotes the rounding-to-nearest operation, and n and p represent the
lower and upper bound of the integers, respectively. For example, under the b-bit
uniform quantization, n and p are set to 0 and 2b−1. The zero-point vector z is
an all-z vector, where z = −⌊min(w)

s ⌉. Thus, the quantized weights wq are given
by

wq = s(wint − z). (2)

Quantization-Aware Training (QAT). We utilize the Learned Step Size Quan-
tization (LSQ) [15] to update the step size s and w with gradient descent.
The gradient to step size can be computed with Straight-Through Estimator
(STE) [65], i.e., ∂⌊x⌉

∂x = 1. QAT requires a significant amount of data and GPU
resources to perform end-to-end fine-tuning.
Post-Training Quantization (PTQ). Under this PTQ regime, the training data
is much less than QAT, hindering the learning of step size. To obtain the de-
sired step size s under PTQ, we perform layerwise quantization-error minimiza-
tion [3]. In addition, we also conduct layer-wise tuning of the weight rounding
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during PTQ as did in [32, 34, 45, 60], which can significantly improve the model
performance with only 1K images.

3.2 Stable Diffusion Data Generation

Stable Diffusion utilizes the Denoising Diffusion Probabilistic Model (DDPM) [25]
to implement the training and inference. It contains a text encoder τθ(·), image
encoder E(·) and image decoder D(·), and finally a denoising U-Net ϵθ(·).
Inference Process. During inference, a random noise image latent is sampled
from Gaussian distribution z ∼ N (0,1). Suppose the text prompt is s, the
denoising U-Net fuses the text embedding τθ(s) and the image and visual em-
bedding through cross-attention layers and denoises the image latent gradually.
After T timesteps of denoising, the image latent is decoded by D(·) to generate
the high-resolution image.
Training process. Training the denoising U-Net essentially involves encoding the
images first (x̂0 = E(x)), and then diffusing the image through a Markov chain
process q(x̂t|x̂t−1) = N (x̂t;

√
1− βx̂t−1, βI). Note that t ∈ [1, T ] is the number

of diffusion timesteps and β is a hyper-parameter to control the perturbation.
When t = T , then x̂t = z. Now the denoising U-Net can be trained by a reverse
process by matching the output and the noises added before:

min
θ

Et∼U(1,T ),ϵ∼N (0,I)λ(t)||ϵ− ϵθ(x̂t, t)||2F , (3)

where λ(t) is a positive weighting function [25], ϵ is a noise vector predicted from
xt. We use Stable Diffusion v1-5 [56] in our pipeline. We refer to [52] for more
details about its principle.

4 Methodology

In this section, we introduce our methodology to synthesize the training data
with Stable Diffusion. We discuss two quantization scenarios in low data regimes:
(1) Data-Free Quantization (DFQ) where only the label space and a pre-trained
full-precision model are provided, and (2) Data-Scarce Quantization (DSQ) where
limited training data is provided in addition to the pre-trained model and label
space. We first discuss GenQ ’s data generation method under DFQ and DSQ
and then introduce the quantization techniques we used.

4.1 Data-Free GenQ

We propose a label prompt method that only uses the label as the prompt to
synthesize the images without accessing the pre-trained model. For example, for
an ImageNet pre-trained model [12], we can synthesize the images based on 1000
class names.

Prompt = "A photo of a {D} {C}", (4)
where {D} is a template adjective (e.g ., “nice, dark, small") derived from the
CLIP ImageNet template [51]3. {C} is a randomly chosen class label name. As
3 We list the full template in Appendix A
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“A photo of {𝐶!}
in the style of {𝑆}”

“A photo of {𝐶!} ”

DFQ synthesis Stable Diffusion

DSQ synthesis

Available real data
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Network

Logits
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Inference steps
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Fig. 2: The overall image synthesis and filtering procedure of GenQ . 1○ For DFQ
synthesis, we directly use the label as the text prompt, and 2○ we use several metrics
to filter our out-of-distribution synthetic images. 3○ For data-scarce synthesis, real
images are used to optimize prompt {S} (Eq. (11)). We then generate the synthetic
images with the optimized prompt.

an example, suppose we choose the class hamster, then a random prompt can
be generated as "A photo of a small hamster". Subsequently, we directly use
the text-to-image model like Stable Diffusion [52] to synthesize the data.

In our label prompt method, we generate the images relying solely on the
label name of each class and the ability of Stable Diffusion (Fig. 2 1○). However,
this operation does not leverage any prior knowledge in the original training
data, which might cause a distribution shift from original training data to syn-
thetic training data. To generate better-quality data for quantization, we pro-
pose model-dependent selection to leverage the prior knowledge embedded in the
pre-trained full-precision model.

We propose a set of filtering mechanisms for model-dependent selection. We
argue that the synthetic data selection can be treated as an Out-of-Distribution
(OOD) detection problem [48]. However, contrary to OOD detection, we intend
to select in-distribution data from the generated synthetic data for quantization
purposes (Fig. 2 2○).
Energy Filtering. We use energy filtering to calculate the energy score [38] as,

E(x, f) = −α

C∑
i=1

e−fi(x)/α, (5)

where fi(x) denotes the ith value of the network’s output logits. C and α denote
the number of image classes and temperature, respectively. [38] has shown that
the energy score is an OOD detector due to its theoretical connection with the
likelihood function. The neural networks trained by cross-entropy loss inherently
decrease the energy of the training data, hence, the OOD data will have relatively
higher energy.
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To select synthetic images that have a similar quantization effect to that
of real image data, we pass the synthetic data through the full-precision pre-
trained model. Then, we calculate the energy scores of all synthetic images and
only select those images for quantization that yield energy scores lower than
a certain user-defined threshold. We will experiment with the choice of this
threshold in Sec. 5.4.
BatchNorm Distribution Filtering. Originally proposed in [7, 64], the channel
mean and channel variance distance computed in the BN layers [30] are regarded
as a standard metric for optimizing the synthetic data in Convolutional Neural
Networks (CNNs). We use this metric to evaluate the distance between synthetic
images and original training images on the full-precision pre-trained model. We
calculate the BN distance by

DBN =

n∑
ℓ=1

(||µs
ℓ − µℓ||F + ||σs

ℓ − σℓ||F ) , (6)

where µl, σl denote the running mean and variance of the layer l activation from
original training images, and µs

l , σ
s
l are the current mean and variance of the layer

l activation from synthetic images. Naively, for each generated synthetic data,
we can evaluate the BN distance DBN and filter out the ones with large DBN .
However, we find this approach does not bring improvement in the final data
quality due to the difference between single data and batched data. Evaluating
DBN on a single image will lead to biased estimation as it ignores its interaction
with other data. Ioffe [29] also demonstrates that with small batch sizes, the
estimation of the batch mean and variance used during training become a less
accurate approximation of the mean and variance used for testing.

To deal with this problem, we define a BN sensitivity metric, which measures
the independence of one image from other images in a batch. Formally, given a
batch of input images {xi}Bi=1 where B indicates the batch size, we define the
BN sensitivity of the i-th image S(xi) as

S(xi) = DBN ({xj}Bj=1)−DBN ({xj}Bj=1,j ̸=i). (7)

Here, the BN sensitivity indicates the change in BN distance after removing
the selected image. As such, a large BN sensitivity means the current image
could potentially damage the internal distribution when it is batched with other
images.
Patch Similarity Filtering for ViTs. As we discussed in Sec. 2, since ViTs do
not have BN layers, we adopt the patch similarity metric in [36] to do additional
filtering of the synthetic images after the energy filtering. Formally, given the
output features tensor o, we first calculate the cosine similarity matrices between
any two sub-tensors in the patch dimension, given by

Γ (oi,oj) =
oi · oj

||oi|| ||oj ||
, (8)

where oi denotes the i-th patch of the output featuremap. After calculation, we
get the N × N (N is the #patches) matrix Γ. To measure the diversity of the
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patch similarities, we calculate differential entropy as follows

H = −
∫

f̂h(x) · log[f̂h(x)]dx. (9)

where f̂h(x) is the continuous probability density function of Γ, which can be
obtained by the kernel density estimation [36]. A low entropy value indicates
that the patch similarity distribution is less diverse. Hence, we can select the
synthetic data that has the highest diversity in patch similarity.
Filtering Pipeline. The overall filtering pipeline is a two-stage procedure. First,
regardless of the type of pre-trained model, we apply energy score filtering.
Second, based on the category of the model (CNNs or ViTs), we either apply
BatchNorm Distribution Filtering or Patch Similarity Filtering. The selected
synthetic data is then used for quantization.

4.2 Data-Scarce GenQ

In this section, we describe how to synthesize and select synthetic data given a
limited amount of training data (i.e., data-scarce quantization). This case could
be more common than the DFQ scenario as in practice it is not hard to obtain
some permitted training data. We hypothesize that synthesizing a number of
images based on this limited dataset can enhance quantization performance.

Considering the ImageNet-1k dataset [12] as the original training dataset, we
assume that one image per class (i.e., 1-shot) can be accessed by the cloud server.
In this case, we propose to synthesize the images utilizing the existing informa-
tion from the training data. Specifically, we optimize a text token embedding
{S} with the prompt shown below

Prompt[i] = "A photo of a {C[i]} in the style of {S}". (10)

Here, the learnable token embedding {S} indicates the dataset characteristics
of ImageNet. To optimize this learnable token embedding, we associate each
class name and the corresponding image into pairs ({C[i],x[i]}, where [i] is the
class index), and let the Stable Diffusion generate x[i] given Prompt[i]. The
optimization objective is given by:

Et∼U(1,T ),i∼U(1,M),ϵ∼N (0,I)λ(t)||ϵ− ϵθ(x[i]t, t,Prompt[i])||2F , (11)

where M is the number of all object classes. This method learns the token across
multiple objects, aiming to characterize the whole dataset4. Fig. 2 3○ illustrates
the data-scarce prompt optimization. After optimization, we directly used the
learned token embedding and the class label to generate images and filter the
output images using the same technique in Fig. 2 2○.

4 We provide more technical details in Appendix A.
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4.3 Quantization with Synthetic Data from GenQ

The selected synthetic data from GenQ is then used to quantize a full-precision
pre-trained model using QAT or PTQ. For PTQ, we adopt the state-of-the-art
reconstruction-based rounding optimization methods [32, 34]. As for QAT, we
propose to finetune the quantized network on top of a PTQ model. Specifically,
after the rounding optimization in PTQ, the quantization becomes

wint = clip
(⌊w

s

⌋
+ sgn(v) + z, n, p

)
, (12)

where sgn(v) is the learned rounding indicating up or down, which is already
well-optimized in the PTQ reconstruction stage. To initialize from the PTQ
model and stabilize the training process, we freeze all previous learnable variables
including w and v, and reinitialize an all-zero vector u. The new quantization
function is thus given by

wint = clip
(⌊w

s

⌋
+ sgn(v) +

⌊u
s

⌉
+ z, n, p

)
. (13)

The de-quantization step remains the same with Eq. (2). By introducing an ad-
ditional variable u and freezing the previous variable, we start from the original
PTQ model and avoid passing the gradient through floor operation. As a result,
the u can be safely updated through STE in finetuning. Note, during PTQ or
QAT, we only use the synthetic data from GenQ to perform quantization.

5 Experiments

In this section, we empirically demonstrate the effectiveness and the efficiency
of our GenQ synthetic data in both a qualitative and a quantitative way. For
the PTQ scenario, we follow the conventional setup [32, 34, 35] to synthesize
1k images. As for the QAT scenarios, we synthesize 1.2M images with 1200
images in each object class to match the original ImageNet dataset volume.
Unless specified, we use Stable Diffusion v1-5 [1] and set the guidance scale to
3.5. We will first provide the visualization of our synthetic data, the latency
comparison of generating the data, and then compare them against existing
state-of-the-art methods across multiple setups. Finally, we analyze GenQ by
conducting various ablation studies. All experiments and accuracy noted are for
the ImageNet dataset.

5.1 Analysis on Synthetic Data

Visualization. As shown in Fig. 3, the GenQ images after filtering are high-
quality and visually similar to real images. To compare the synthetic data with
existing data-free quantization, we also provide the images from [32,35,50]. It can
be observed that our method can generate much higher quality synthetic data
than previous inversion-based methods. For example, [50] only demonstrates
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Data-Scarce GenQ

Data-Free GenQ DSQ (Qin et al. 2021)

Mixmix (Li et al. 2021)

Genie (Jeon et al. 2023)

Fig. 3: Visualization of DF/DS GenQ and existing data synthesis method for quanti-
zation in low data regimes.

Table 1: Comparison of synthetic data generation approaches w.r.t. (a) generation
speed and (b) data quality.

(a) Latency

Method Type Latency Reusable
Genie [32] Image inversion 152 min ✓
TexQ [8] GAN-based 10 min ✗
GenQ Text-to-image 24 min ✓

(b) BatchNorm Distance

Data Source Res50 MBV2
Genie [32] 0.014±0.001 1.03±0.296
TexQ [8] 0.045±0.013 N/A
GenQ 0.024±0.002 0.78±0.106

certain textures rather than objects, [35] shows some objects but the scene shows
less resolution and clarity.

Data Synthesis Cost. We further study the cost of each synthetic data genera-
tion method. Specifically, we measure the latency of Genie [32], TexQ [8], and
our method corresponding to image inversion, GAN-based, and text-to-image
synthesis approaches, respectively, for 1000 images on the ImageNet dataset.
The pre-trained model used for filtering or input optimization is ResNet-50. We
report the latency in Table 1a, from which we can find using text-to-image syn-
thesis provides faster data generation than image inversion-based techniques.
Although GAN-based data generation is faster than GenQ , their data is not
reusable across model types, which increases the overall latency if many models
have to be quantized.

Data Quality Assessment. We further measure the quality of the synthetic data
through some quantitative evaluation metrics. Specifically, we measure the av-
erage BN distances of the generated data as well as the original training data
on ResNet-50 and MobileNetV2. The results are shown in Table 1b, from which
we can find that GenQ largely closes the gap between synthetic data and real
training data.
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Table 2: Evaluation of data-free PTQ on CNN models (top-1 accuracy (%)).

Quant. Method Syn. Method #Bits W/A Res18 Res50 MBV2 MB-b MNas-1
Full Prec. N/A 32/32 71.08 77.00 72.49 74.53 73.52

Brecq [34]

Real Data

4/4

69.62 75.45 68.84 - -
ZeroQ‡ [7] 69.32 73.73 49.83 55.93 52.04
KW‡ [21] 69.08 74.05 59.81 61.94 55.48
IntraQ [72] 68.77 68.16 63.78 - -
Qimera [10] 67.86 72.90 58.33 - -
MixMix‡ [35] 69.46 74.58 64.01 65.38 57.87
Genie-D 69.40 75.35 67.81 64.24 65.02
GenQ 69.52 75.47 68.34 67.08 66.33
Real Data 69.82 75.51 69.11 69.26 68.40

Genie-M∗ [32] Genie-D [32] 4/4 69.72 75.61 68.62 67.31 67.03
GenQ 69.77 75.50 68.96 68.74 68.06

Brecq [34]

Real Data

2/4

65.25 70.65 54.22 - -
ZeroQ [7] 61.63 64.16‡ 34.39 23.53 13.83
KW‡ [21] - 57.74 - - -
IntraQ [72] 55.39 44.78 35.38 - -
Qimera [10] 47.80 49.13 3.73 - -
MixMix‡ [35] - 66.49 - - -
Genie-D [32] 63.93 69.72 49.75 38.01 45.53
GenQ 65.04 69.90 53.08 47.31 50.84
Real Data 66.05 70.96 56.42 55.00 54.66

Genie-M∗ [32] Genie-D [32] 2/4 64.86 69.89 51.47 47.69 48.38
GenQ 65.72 70.35 54.82 52.77 52.76

‡ The figures are taken from [35].
∗ Denotes our implementation based on the open-source code.

5.2 Quantization Performance Evaluation

In this section, we test the quantization accuracy with our synthetic data and
compare it with various existing methods. We will introduce the experiment
setup in each scenario individually.
Comparisons on Data-Free PTQ. We start with evaluating our proposed method
by testing it on data-free PTQ including (1) CNNs such as ResNet [19], Mo-
bileNet [26, 54], and MnasNet [57] and (2) Vision Transformers like original
ViT [14]. For PTQ on CNNs, we employ the state-of-the-art PTQ algorithms,
Brecq [34] and Genie-M [32] to perform the W4A4 and W2A4 quantization,
which reconstruct the activation output in a block-wise manner. In this case,
we use 1024 synthetic images for quantization evaluation. For PTQ on ViT, we
perform PTQ4ViT [66] and RepQ-ViT [37] across 5 different models, including
ViT-M [14], DeiT-M [59], and Swin-B [40]. We follow the open-source code im-
plementation and generate 32 images as the calibration dataset to obtain the
quantized ViTs. For all cases, we generate 2× synthetic data and filter 50% of
them to match the volume.

For CNNs, we select SOTA existing methods including ZeroQ [7], the Knowl-
edge Within [21], IntraQ [72], Qimera [10], MixMix [35], Genie-D [32]. For ref-
erence, we also include the performance of PTQ using 1024 real ImageNet-1k
images. We summarize all the accuracy results in Table 2. It can be observed
that our GenQ achieves the highest accuracy in most cases. Interestingly, we
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Table 3: Evaluation of data-free QAT on CNN models (top-1 accuracy (%)).

Method #Real Data #Syn Data #Bits W/A Res18 MBV2 Res50
LSQ [15] 1.2M 0 4/4 71.10 69.50 76.70
GDFQ [62] 0 1.2M

4/4

60.60 59.43 54.16
ZAQ [39] 0 4.6M 52.64 0.10 53.02
Qimera [10] 0 1.2M 63.84 61.62 66.25
IntraQ [72] 0 5k 66.47 65.10 -
ARC+AIT [11] 0 1.2M 65.73 66.47 68.27
DSG [50] 0 1.2M 62.18 60.46 71.96
AdaDFQ [49] 0 1.2M 66.53 65.41 68.38
TexQ [8] 0 1.2M 67.73 67.07 70.72
GenQ 0 1.2M 70.03 69.65 76.10
LSQ [15] 1.2M 0 3/3 70.20 65.30 75.80
GDFQ [62] 0 1.2M

3/3

20.23 1.46 0.31
AdaDFQ [49] 0 1.2M 38.10 28.99 17.63
TexQ [8] 0 1.2M 50.28 32.80 25.27
GenQ 0 1.2M 68.18 59.15 73.99
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Fig. 4: Evaluation of data-
scarce GenQ .

Table 4: Evaluation of data-free PTQ on ViTs (top-1
accuracy (%))
Quant. Method Syn. Method #Bits W/A ViT-B DeiT-B Swin-B
Full Prec. N/A 32/32 84.54 81.80 85.27

PTQ4ViT [66]
Real Data

4/4
58.07 63.57 75.20

PSAQ-ViT [36] 60.26 65.18 72.12
GenQ 63.17 67.08 74.27

RepQ-ViT [37]
Real Data

4/4
67.93 75.99 72.80

PSAQ-ViT [36] 60.18 74.69 54.21
GenQ 67.50 76.10 70.08

find that the network architecture affects the performance of synthetic data. On
ResNet architectures, GenQ and Genie-D have similar accuracy (0.1-0.5%) lev-
els, however, GenQ largely outperforms other data-free algorithms on lightweight
network architectures due to their lower quantization resilience. As an exam-
ple, GenQ increases 5% accuracy compared to Genie-D on MobileNet-b W2A4
quantization and 4.4% accuracy on MnasNet W2A4 quantization.

Given that there is only one data-free algorithm for ViTs, PSAQ-ViT [36],
we compare GenQ with PSAQ-ViT in Table 4. GenQ consistently outperforms
PSAQ-ViT [36]. For example, on ViT-B and Swin-B, our method has 7.3% and
15% accuracy improvement using the RepQ-ViT method. This result proves that
GenQ can achieve state-of-the-art performance on both CNNs and ViTs.
Comparisons on Data-Free QAT. We then compare GenQ with existing data-
free QAT methods, such as GDFQ [62], ZAQ [39], Qimera [10], IntraQ [72],
ARC [11], AdaDFQ [49], TexQ [8]. Note that these methods jointly optimize
GAN and quantized model. Thus, they can generate unlimited synthetic data
during finetuning. We originally have 1.6M synthetic images (1600 images/class),
and then filter 0.4M (400 images/class) images using energy score and BN dis-
tance filtering. We use the SGD optimizer with a learning rate of 0.001 followed
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Fig. 5: Accuracy vs # syn.
data with data-free PTQ
using Genie-M.

Table 5: Cross-model evaluation on synthetic data. We
compare the data transferability between (a) existing
methods and (b) GenQ .

(a) Genie-D & PSAQ-ViT
Source model Res18 MBV2
Res18 64.86 48.37
MBV2 64.21 51.47
ViT-B-16 47.27 17.96

(b) GenQ
Source model Res18 MBV2
Res18 65.72 54.32
MBV2 65.52 54.82
ViT-B-16 65.44 54.24

by a cosine annealing decay schedule for 50 epochs of QAT. Additionally, we re-
port the LSQ results using 1.2M real ImageNet data. The results are summarized
in Table 3. Our method largely outperforms other data-free QAT methods and
nearly approaches the accuracy of LSQ baseline. Remarkably, GenQ improves
the accuracy of W3A3 quantization by a large margin, for instance, GenQ ex-
ceeds the accuracy of TexQ, the best-performing method, by 48% on ResNet-50.
Comparisons on Data-Scarce QAT. In this section, we evaluate the data-scarce
QAT scenarios. Our main comparison is LSQ [15] using different amounts of real
data. We show how much of the real data can our GenQ generated synthetic data
match in practice. We experiment this on a ResNet-50 with W3A3 quantization.
We initialize the QAT model by performing Genie-M on 1k real data and then
finetune the model using {1k, 10k, 100k, 300k, 1.2M} real data, corresponding
to 1-shot, 10-shot, 100-shot, 300-shot, and full-shot data regimes, respectively.
To generate GenQ data, we initialize the token embedding as ImageNet, and
train the embedding for 50k iterations, (see Appendix A for more details).

As demonstrated in Fig. 4, the performance of QAT is highly correlated
with the number of real data. Our method can boost the performance of QAT
under the low data regime. For example, when only 1k real images are provided
(i.e., 1-shot), GenQ can achieve 68.88% ImageNet accuracy, similar to the QAT
performance that needs 300× more training data.

5.3 Data Transferability Evaluation

It is demonstrated that the synthetic data extracted from one model has low
transferability on other models [35]. To demonstrate that GenQ has relatively
high transferability, we conduct a cross-model evaluation, e.g ., synthesizing im-
ages based on model A, and evaluate the quantization on model B. In Table
5a we provide the results of Genie-D and PSAQ-ViT, tested on data-free PTQ
W2A4 scenarios. We then summarize the results of GenQ in Table 5b. We use
Genie-M as our PTQ method for CNN architectures and PASQ-ViT for ViT. We
observe that the GenQ data, although filtered by a different model, only drops
0.2-0.5% final accuracy, while the existing methods drop 0.6-33% accuracy, es-
pecially when using ViT synthetic data for MobileNetV2 (MBV2) quantization.
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Fig. 6: Accuracy vs filtering strength with data-free PTQ.

5.4 Ablation study

In this section, we conduct ablation studies on two variables, (1) the number of
synthetic data, and (2) the image filtering strength.
Number of synthetic data in PTQ. In practice, synthesizing images using GenQ
requires very low latency (1 image/second). Hence, we can safely increase the
number of synthetic data with minimal overhead in PTQ cases. Yet retrieving
more real data seems much more difficult if the training data is private or under
IP protection. In Fig. 5, we show that increasing the synthetic data can con-
sistently improve the PTQ performances of W2A4 quantized ResNet-50. GenQ
even outperforms the quantized model baseline (optimized using PTQ on the 1k
real training data) when using only 4k synthetic input images.
Energy Score Filtering Strength. Given a fixed number of synthetic data (N)
used for quantization and a percentage r representing how many images are fil-
tered out, the total amount of generated images is N

1−r . We test different options
of r from {0.1, 0.3, 0.5, 0.7, 0.9} to test the effect of energy score filtering. We
choose ResNet-18 and use W2A4 data-free PTQ (with Genie-M) for evaluation.
The test performance is shown in Fig. 6(a). We generally find that a higher filter-
ing ratio leads to better test accuracy. However, it will also increase the number
of generated images. Nevertheless, the accuracy variation is rather small.
BN Sensitivity Filtering Strength. We run the same test for the BN sensitivity
filtering mechanism. The results are shown in Fig. 6(b). Unlike the energy score,
setting the ratio to 50% has the best performance. We hypothesize that the
networks need more diverse synthetic data to effectively quantize a model.

6 Conclusion

In this paper, we have introduced GenQ , a novel attempt to synthesize images
with text-to-image models for data-scarce quantization. Our GenQ generates
images in both data free (no real data) and data scarce (few real data) regimes
and refines the images with several filtering mechanisms and a token embedding
learning algorithm. Extensive experiments show that GenQ establishes a new
state of the art in both PTQ and QAT.
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