
Supplemental Material
MVDD: Multi-View Depth Diffusion Models

Zhen Wang1,2†, Qiangeng Xu1, Feitong Tan1, Menglei Chai1, Shichen Liu1,
Rohit Pandey1, Sean Fanello1, Achuta Kadambi1,2, and Yinda Zhang1

1 Google
2 University of California, Los Angeles

https://mvdepth.github.io/

1 Content

The supplemental material is organized as follows:

– In Sec. 2, we introduce metrics used in the main paper;
– In Sec. 3, we introduce the detailed camera embeddings and setup;
– In Sec. 4, we provide more details on the network architectures;
– In Sec. 5, we present more quantitative and qualitative results in addition

to those in the main paper;
– In Sec. 6, we list used codebases in this paper.

2 Metrics

In line with previous research, we employ Chamfer distance (CD) and earth
mover’s distance (EMD) to quantify the similarity among point clouds. Specifi-
cally, their formal definitions are as follows, in accordance with established meth-
ods:

CD(X,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22,

EMD(X,Y) = min
γ:X→Y

∑
x∈X

∥x− γ(x)∥2.
(1)

Given two point clouds, X and Y , with an equal number of points and γ rep-
resenting a bijection between them. Consider Sg as the collection of generated
point clouds and Sr as the reference set of point clouds, both having an equal
cardinality with |Sr| = |Sr|.

Coverage (COV) calculates the proportion of point clouds within the refer-
ence set that find at least one corresponding match within the generated set.
Every point cloud within the generated set is paired with its closest neighbor
within the reference set, considering it a match.

COV (Sg,Sr) =
|{argminY ∈Sr

D(X,Y) | X ∈ Sg}|
|Sr|

. (2)

https://mvdepth.github.io/

2 Z. Wang et al.

cvpr 23

zw

November 2023

1 Introduction

X

Y

Z

OA

F

H

D

E

B

C

G X

Y

Z

O

A

B C

D

E

F

G

H

1

(a) Fixed camera (b) Dynamic camera

Fig. 1: Camera setup demonstration.

When considering D(·, ·), which can be CD or EMD, it’s important to note
that while coverage can identify mode collapse, it does not assess the quality of
generated point clouds. Surprisingly, it is feasible to attain a flawless coverage
score even when the distances between generated and reference point clouds are
excessively vast.

As a complementary to COV, Minimum matching distance (MMD) involves
calculating, for every point cloud within the reference set, the average distance
to its closest neighbor in the generated set:

MMD(Sg,Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y), (3)

where D(·, ·) is chosen as either CD or EMD. The concept behind MMD involves
computing the mean distance between point clouds within the reference set and
their nearest counterparts in the generated set, thus serving as a metric to assess
quality.

Lopez-Paz and Oquab [5] introduced this method for conducting two-sample
tests, determining the similarity between two distributions. Additionally, it has
been investigated as a metric for assessing GANs [13]. When considering S−X =
Sr ∪ Sg − X and NX representing the nearest neighbor of X in S−X , 1-NNA
denotes the leave-one-out accuracy of the 1-nearest neighbor classifier.

1−NNA(Sg,Sr)

=

∑
X∈Sg

I [NX ∈ Sg] +
∑

Y ∈Sr
I [NY ∈ Sr]

|Sg|+ |Sr|
,

(4)

where the function I[·] is the indicator. With every instance, the 1-NN classifier
distinguishes it as belonging to either Sr or Sg, depending on the closest sample’s
label. If Sr and Sg are drawn from the same source, this classifier’s accuracy
should eventually stabilize at 50% with a sufficient number of samples. The
closer this accuracy gets to 50%, the more similarity exists between Sg and

MVDD: Multi-View Depth Diffusion Models 3

Sr, indicating the model’s proficiency in modeling the target distribution. In
our scenario, computing the nearest neighbor can be done using CD or EMD.
Unlike COV and MMD, 1-NNA directly gauges the similarity in distributions,
considering both diversity and quality simultaneously.

3 Cameras

3.1 Camera embeddings

In each step of the diffusion process, we also condition a set of extrinsic camera
parameters c ∈ RF×16 into the model. According to [11], we found that embed-
ding camera parameters with a 2-layer MLP leads to the most satisfying image
quality with distinguishable view differences and we also add camera embeddings
to time embeddings as residuals.

z = MLP
(
PosEnc

(√
ᾱt

))
+ MLP(Embedding(c)), (5)

where PosEnc is the sinusoidal positional encoding used in Transformer [12] as
follows:

PosEnc
(1)
t,i = sin

(
t

10000
i

d−1

)
,

PosEnc
(2)
t,i = cos

(
t

10000
i

d−1

)
.

(6)

Embedding is the embedding layer. We use adaptive group normalization lay-
ers (AdaGN) following [4] to incorporate embedding vector z into every resid-
ual block. AdaGN realize group normalization through channel-wise scaling and
shifting w.r.t. normalized feature maps in each block of U-Net.

3.2 Camera placement

For shape generation task as we describe in Sec. 4.1 in the main paper, since we
have the control over the location of the camera, we place the eight cameras on
the eight vertices (A, B, C, D, E, F, G and H) of a cuboid as shown in Fig. 1(a)
to make sure it covers the whole object. All vertices are on a sphere of radius
r =

√
3. Specifically, vertices A, F, H, D are placed with elevation angle 30◦ and

azimuth angle 45◦, 135◦, 225◦ and 315◦, respectively. Vertices G, C, B, E are
placed with elevation angle −10◦ and azimuth angle 45◦, 135◦, 225◦ and 315◦,
respectively.

For depth completion task as we describe in Sec. 4.2 in the main paper, as
the input depth image might come with any random pose, therefore, we place
the first camera (denoted as node A in Fig. 1(b)) in a random location on the
sphere. After that, we want to uniquely obtain the locations of the remaining
cameras assuming that all the cameras are on a cube. Denoting the coordinate of
the first freely placed camera A as (X,Y, Z), we assume that the plane ABCD

4 Z. Wang et al.

Table 1: Hyper-parameters for diffusion models.

Parameters Values

Learning rate 2e−4

Number of levels 4
U-Net base channels 64
U-Net channel multiplier 1, 2, 4, 8
U-Net residual block groups 8
U-Net attention head 4
U-Net attention head channels 32
U-Net norm layer type GroupNorm
Diffusion steps 1000
Noise schedule Cosine
Clip input range [−1, 1]

always coincides with the plane x/X = z/Z. In this way, the coordinates of the
remaining vertices can be obtained as:

B = Rot
(
nABCD, 2 arctan(

√
2)
)
·A,

C = Rot
(
nABCD, 2 arctan(

√
2) + 2 arctan(1/

√
2)
)
·A,

D = Rot
(
nABCD, 4 arctan(

√
2) + 2 arctan(1/

√
2)
)
·A,

E =
A+B

2
+

AB ×AD

||AB ×AD||
· ||AB||

2
,

F =
A+B

2
− AB ×AD

||AB ×AD||
· ||AB||

2
,

G =
C +D

2
+

AB ×AD

||AB ×AD||
· ||AB||

2
,

H =
C +D

2
− AB ×AD

||AB ×AD||
· ||AB||

2
,

(7)

where nABCD is the normal vector of the plane ABCD and Rot(·, ·) represents
the rotation matrix with the first term as the axis to be rotated along and the
second term as the angle to rotate along the axis. To be concrete, following
Euler–Rodrigues formula [3], we have:

Rot(n, θ) =

a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)
2(bc+ ad) a2 + c2 − b2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 + d2 − b2 − c2

 ,

(8)
where a = cos(θ/2), b, c, d = − n

||n|| sin(θ/2).

MVDD: Multi-View Depth Diffusion Models 5

Table 2: Unconditional generation on ShapeNet categories. MMD (CD) is multiplied
by 103. • represents the best result and • represents the second-best result.

Vox-diff [15] DPM [6] 3D-LDM [7] IM-GAN [2] PVD [15] LION [14] MVDD (Ours)

Airplane
MMD (CD) 1.322 1.300 4.000 0.800 • 1.300 1.100 0.900 •
COV(CD) 11.82 37.95 46.20 47.90 43.97 50.74 • 48.25 •

1-NNA (CD) 99.75 88.56 74.00 67.74 69.22 64.36 • 66.75 •
Car

MMD (CD) 5.646 1.200 - 1.103 1.200 1.100 • 1.000 •
COV(CD) 6.530 30.84 - 48.60 • 31.11 36.72 47.93 •

1-NNA (CD) 99.56 93.31 - 66.74 • 80.81 72.95 65.15 •
Chair

MMD (CD) 5.840 3.400 16.80 3.700 4.100 2.826 • 3.200 •
COV(CD) 17.52 48.27 42.60 48.29 50.07 • 47.42 50.52 •

1-NNA (CD) 97.12 64.77 58.90 • 60.19 62.70 60.34 57.90 •

Algorithm 1 Sampling for unconditional generation (Sec. 4.1)
Require: Diffusion model ϵθ (xt, t), αt, βt

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−α̃t
ϵθ (xt, t)

)
+

√
βtϵ

5: end for
6: return x0

4 Network Architectures

We summarize the parameters of diffusion model in Tab. 1. To build the encoder
of the U-Net, we utilize downsampling residual blocks and it consists of various
levels, each with a distinct number of channels: 64, 128, 256, 512. The process
begins with an input resolution of 128 and progressively reduces to 64, 32, 16, 8
through downsampling. For the decoder, we employ upsampling residual blocks.
The number of output channels for each level in the decoder is set to 512, 256,
128, 64. For activation of each layer, a SiLU (Sigmoid Linear Unit) is used after
convolution layer. The input depth map has a resolution of 128 × 128. We use
cosine noise scheduling defined as follows [8]:

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

(9)

The details of the inference process for unconditional generation and depth com-
pletion are summarized in Algorithm 1 and Algorithm 2, respectively.

5 Additional Results

We demonstrate the generated point cloud in more angles in Fig. 2, Fig. 3
and Fig. 4. More qualitative results can be found in the accompanying supple-
mentary webpage index.html. We provide more quantitative results in Tab. 4
in addition to Tab. 1 in the main paper. The generated point cloud, derived
from our depth maps, showcases robust 3D coherence and validates efficacy of

6 Z. Wang et al.

Algorithm 2 Sampling for conditional generation (Sec. 4.2)

Require: Diffusion model ϵθ (xt, t), αt, βt, input depth map xin
0

1: xother
T ∼ N (0, I)

2: for t = T, . . . , 1 do
3: xin

t−1 ∼ N
(√

ᾱtx
in
0 , (1− ᾱt) I

)
4: x̂other

t−1 ∼ N (
√
1− βt µθ(x

r1:rR
t , t), βtI) ▷ First pass

5: xother
t−1 ∼ N (µθ(x̂

other
t−1 ,xin

0 , t), βtI) ▷ Second pass
6: end for
7: return xother

0

Table 3: Auto-regressive generation v.s. our simultaneous generation on the
ShapeNet [1] chair category.

1NN-A

CD EMD

Auto-regressive 70.23 68.13
Simultaneous 57.90 54.51

our suggested attention mechanism focusing on epipolar "line segments" and
the depth fusion module. Conversely, existing point cloud-based diffusion mod-
els such as those in [6, 14,15] are constrained by their capacity to generate only
2048 points. This limitation hampers their ability to accurately capture intricate
details within 3D shapes.

Auto-regressive v.s. our simultaneous generation. We also compare with the
baseline where each view of depth map is generated sequentially, i.e. the first
view is generated first, the second view is conditioned on the first view and then
the third view is generated conditioned on the first two views etc. As the results
show in Tab. 3, our simultaneous strategy yields better results on unconditional
generation task in ShapeNet [1] chair category.

We train our model on 13 classes simultaneously and report the results
in Tab. 4. Since there is no significant performance drop for training on 13
classes together vs training on each class separately, this demonstrates MVDD’s
scalability.

6 Used codebases

Our diffusion model is based off of the github repo. The following codebases of
the baselines are used:

– PVD [15]: https://github.com/alexzhou907/PVD
– LION [14]: https://github.com/nv-tlabs/LION

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/alexzhou907/PVD
https://github.com/nv-tlabs/LION

MVDD: Multi-View Depth Diffusion Models 7

Table 4: Generation results on ShapeNet Car.

Ours (each class trained separately) Ours (trained on ShapeNet 13 classes)

Car
MMD (EMD) 0.620 0.640
COV (EMD) 49.53 48.57

1-NNA (EMD) 56.80 57.93

– DPM [6]: https://github.com/luost26/diffusion-point-cloud

We use other codebases for visualization and evaluation purposes:

– We use the MitSuba renderer for visualizations [9]: and the code to generate
the scene discription files for MitSuba:
https://github.com/zekunhao1995/PointFlowRenderer.

– We utilize SAP [10] for mesh generation with the code at https://github.com/
autonomousvision/shape_as_points.

– For calculating the evaluation metrics, we use the implementation for CD at
https: //github.com/ThibaultGROUEIX/ChamferDistancePytorch and for
EMD at https://github.com/daerduoCarey/PyTorchEMD.

https://github.com/luost26/diffusion-point-cloud
https://github.com/mitsuba-renderer/mitsuba3
https://github.com/zekunhao1995/PointFlowRenderer
https://github.com/ autonomousvision/shape_as_points
https://github.com/ autonomousvision/shape_as_points
https: //github.com/ThibaultGROUEIX/ChamferDistancePytorch
https://github.com/daerduoCarey/PyTorchEMD

8 Z. Wang et al.

Fig. 2: Generated chairs from more angles. Please see accompanying supplemental
webpage index.html for more results.

MVDD: Multi-View Depth Diffusion Models 9

Fig. 3: Generated cars from more angles. Please see accompanying supplemental web-
page index.html for more results.

10 Z. Wang et al.

Fig. 4: Generated airplanes from more angles. Please see accompanying supplemental
webpage index.html for more results.

MVDD: Multi-View Depth Diffusion Models 11

References

1. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015) 6

2. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 5939–5948 (2019) 5

3. Dai, J.S.: Euler–rodrigues formula variations, quaternion conjugation and intrinsic
connections. Mechanism and Machine Theory 92, 144–152 (2015) 4

4. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780–8794 (2021) 3

5. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. arXiv preprint
arXiv:1610.06545 (2016) 2

6. Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2837–2845 (2021) 5, 6, 7

7. Nam, G., Khlifi, M., Rodriguez, A., Tono, A., Zhou, L., Guerrero, P.: 3d-ldm:
Neural implicit 3d shape generation with latent diffusion models. arXiv preprint
arXiv:2212.00842 (2022) 5

8. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning. pp. 8162–8171. PMLR (2021) 5

9. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retargetable
forward and inverse renderer. ACM Transactions on Graphics (TOG) 38(6), 1–17
(2019) 7

10. Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as
points: A differentiable poisson solver. Advances in Neural Information Processing
Systems 34, 13032–13044 (2021) 7

11. Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. arXiv preprint arXiv:2308.16512 (2023) 3

12. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017) 3

13. Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.: An
empirical study on evaluation metrics of generative adversarial networks. arXiv
preprint arXiv:1806.07755 (2018) 2

14. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis,
K.: Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978 (2022) 5, 6

15. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5826–5835 (2021) 5, 6

	Supplemental Material MVDD: Multi-View Depth Diffusion Models

