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Abstract. Recent video-text foundation models have demonstrated strong
performance on a wide variety of downstream video understanding tasks.
Can these video-text models genuinely understand the contents of natu-
ral videos? Standard video-text evaluations could be misleading as many
questions can be inferred merely from the objects and contexts in a sin-
gle frame or biases inherent in the datasets. In this paper, we aim to
better assess the capabilities of current video-text models and under-
stand their limitations. We propose a novel evaluation task for video-
text understanding, namely retrieval from counterfactually augmented
data (RCAD), and a new Feint6K dataset. To succeed on our new eval-
uation task, models must derive a comprehensive understanding of the
video from cross-frame reasoning. Analyses show that previous video-
text foundation models can be easily fooled by counterfactually aug-
mented data and are far behind human-level performance. In order to
narrow the gap between video-text models and human performance on
RCAD, we identify a key limitation of current contrastive approaches on
video-text data and introduce LLM-teacher, a more effective approach
to learn action semantics by leveraging knowledge obtained from a pre-
trained large language model. Experiments and analyses show that our
approach successfully learn more discriminative action embeddings and
improves results on Feint6K when applied to multiple video-text models.
Our Feint6K dataset and project page is available here.
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1 Introduction

Video-text foundation models have gained increasing attention due to their sim-
ple formulation and strong transferability [12, 16, 23]. By pretraining on web
scale video-text datasets, these models demonstrate strong performance across
a wide range of downstream tasks, such as video-text retrieval [22,28] and video
question answering [25].

* All data collection and experiments were conducted at JHU.
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As video-text foundation models evolve and achieve increasingly better per-
formance on various benchmarks, we raise the following questions: Can these
video-text model truly grasp the semantics of natural videos? Are these mod-
els genuinely reaching a level of understanding comparable to humans? Despite
the remarkable achievements made in previous works, our study suggests that
current video-text models still fall far behind human-level understanding.

We argue that existing prominent results on standard video-text tasks can
be misleading as models largely exploit the shortcuts and biases inherent in the
dataset. Many of the questions can be answered by objects or context extracted
from a single frame without capturing cross-frame relations. For the examples in
Fig. 2a, the video-text alignment can be easily inferred from shortcuts such as
“cymbals” or “football”. Moreover, the models may utilize biases in the datasets,
such as the spurious correlation between “outdoor” and “football”. Current eval-
uations of video-text understanding are compromised by shortcuts and biases,
which obscure us from analyzing the limitations of current models. As we proceed
from image-text understanding to video-text understanding, we should focus on
more challenging semantics in the video domain that require cross-frame reason-
ing to solve, such as the interaction between person and object or the change of
appearances over a sequence of frames (see Fig. 1a).

In this paper we propose a novel evaluation paradigm of video-text un-
derstanding, i.e., retrieval from counterfactually augmented data (RCAD). As
demonstrated in Fig. 2b, the goal is to retrieve the only positive caption with
matched semantics among “hard” negative captions. Negative captions are coun-
terfactually augmented so that video-text models must derive a holistic under-
standing of the video sequence for both objects and actions, in order to retrieve
the correct caption. As a comparison, negative examples from standard video-
to-text retrieval [22,24, 28] are captions of different videos in the same dataset,
often containing different object entities that are easy to distinguish.

We follow the previous human-in-the-loop system [9] and develop a bench-
mark dataset for our new RCAD task, i.e., the Feint6K dataset. We test a
wide range of public video-text methods with various pretraining strategies on
this new benchmark. Two failure examples are visualized in Fig. la and quan-
titative results are summarized in Fig. 1b. Note how state-of-the-art video-text
model, InternVideo [23], features a 87.9% rank-1 accuracy on standard video-to-
text retrieval but drops by 32.8% (pretraining only) and 29.7% (finetuned) when
tested on our benchmark with counterfactually augmented data. By establishing
a human-level baseline on our benchmark, the InternVideo model surprisingly
falls far behind human performance by 38.6%. Our findings sharply contrast
to the prominent performance obtained on previous video-text benchmarks and
question the common belief that latest video-text models can develop a fairly
effective representation for texts and videos in existing datasets.

In light of our evaluation results on Feint6K, we identify a significant lim-
itation of the widely adopted contrastive representation learning on video-text
data, which is the issue of shortcut learning (see Sec. 4.1). To address this,
we propose LLM-teacher that enables a more effective learning of action se-
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Fig.1: (a): Although with large-scale pretraining on web-scale data, current video-
text model like [23] can be easily fooled by counterfactually augmented data. (b):
The performance of InternVideo on retrieval from counterfactually augmented data
(RCAD) drops by over 30% when compared to the standard video-to-text retrieval
and by 38.6% when compared to human-level performance. We also evaluate models
on standard video-text retrieval from only 6 sampled candidates and show that our
RCAD task is indeed much more challenging. Our LLM-teacher successfully improves
the performance on RCAD by enforcing a more effective learning of action semantics.

mantics by introducing extra knowledge from pretrained large language models
(LLMs). Specifically we generate synthetic captions by modifying the contents
of an existing caption and LLM serves as the teacher to determine if a synthetic
caption matches the semantics in the original caption using binary pseudo-labels
or continuous logits. This approach enables a more effective learning of action
embeddings from the available video-text data. Experimental results show that
LLM-teacher learns more discriminative action embeddings from our advanced
contrastive objectives and improves the performance of retrieval from counter-
factually augmented data when applied to multiple video-text models.

In summary, our key contributions are as follows. (1) We propose to evalu-
ate video-text models on questions that require cross-frame reasoning and de-
velop a new task, retrieval from counterfactually augmented data, and a new
dataset, Feint6K (Sec. 3). (2) Extensive experimental results on our new eval-
uation paradigm suggest that existing video-text models demonstrate very lim-
ited understanding of the action semantics in a video, which is contrary to the
prominent performance achieved on standard video-text retrieval benchmarks.
(3) From our results on Feint6K dataset, we identify a key shortcoming of con-
trastive learning approaches on video-text data. We present LLM-teacher to
enforce a more effective learning of action embeddings by injecting knowledge
from pretrained LLMs (Sec. 4). Our approach effectively improves the results on
Feint6K when applied to multiple text-video models.

2 Related Works

Video-text pretraining. With the availability of web-scale video-text paired
datasets, such as WebVid2M [1] and HowTol00M [17], recent developments of
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(a) Standard video-to-text retrieval (b) RCAD

Fig. 2: Different evaluations of video-text understanding. (a): In standard
video-to-text retrieval, negative captions are sampled from different videos in the same
dataset. Image-text models can achieve good performance by exploiting shortcuts (e.g.,
“football” and “cymbals”) and biases (e.g., spurious correlation between “outdoor” and
“football”). (b): In our proposed RCAD paradigm, we adopt a human-in-the-loop sys-
tem (see Sec. 3.2) to obtain “hard” negative captions with unchanged object entities
but modified actions. Models must develop a holistic understanding of the semantics
from the sequence of frames to retrieve the matched caption.

video-text pretraining models achieved improved results on a wide range of video
understanding tasks. Visual and textual embeddings jointly learned from the
large-scale data demonstrate strong transferability and largely reduce the efforts
in downstream tasks. Mainstream pretraining objectives can be categorized into
discriminative and generative. Discriminative approaches extend the objective
of CLIP [18] to the video-text domain and learn multi-modal representations
by contrasting between matched and unmatched pairs [15, 16,23, 26] or simply
predicting if a video-text pair is matched [16]. Generative methods follow the
masked modeling idea in BERT [5] and adopted masked language modeling
(MLM) and masked video modeling (MVM) for video-text pretraining [16,21,23].
These generative approaches are often considered superior for action recognition,
while discriminative approaches learn better semantics from texts [21].

Evaluation of video-text models. In order to analyze the effectiveness of
video-text pretraining, previous works [15,16,21,23,26,29] focused on the follow-
ing tasks: (1) video-text retrieval (zero-shot or finetuned) [22,28]: retrieving the
matched video (or text) given a text (or video) as query where the negative can-
didates are unmatched pairs from the same dataset, (2) video question answering
(finetuned) [25]: predicting the answer with a classification head, (3) video clas-
sification (zero-shot or finetuned) [6,10,20]: classifying videos using label names
as text prompts, and (4) video captioning (zero-shot or finetuned) [11,28]: sum-
marizing the contents of a video.

We argue that results on these video-text tasks could be deceitful as most
tasks heavily rely on the alignment of object entities in the video and text
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(which image-text models are also capable of), and “action understanding” can
often be developed through shortcuts and biases. For instance, a commonly-
used evaluation for “action recognition” is video classification on ActivityNet [6],
where a model classifies a given video into classes such as “playing badminton”,
“kayaking”, or “volleyball”. However, video-text models would classify the videos
by exploiting objects and contexts as shortcuts (e.g., “badminton” and “kayak”),
as well as other biases (e.g., spurious correlation between “kayak” and “on the
water”) without genuinely understanding the semantics of the action represented
by interactions between the person and the objects over time. For instance,
classifying the action as “kayaking” is essentially a “kayak” detection problem
in ActivityNet. Therefore we propose retrieval from counterfactually augmented
data, a new evaluation paradigm where we aim to eliminate the shortcuts from
the questions so models must establish a comprehensive understanding of the
semantics from cross-frame reasoning in order to predict the correct answer.

3 Retrieval from Counterfactually Augmented Data

Previous evaluation tasks of video-text models focused on the alignment of fea-
ture embeddings of the video-text pairs (e.g., video-text retrieval [22, 28] and
video classification [10,20]) or reconstruction of the semantics with text (e.g.,
video question answering [25] and video captioning [11,28]). However, these eval-
uation tasks are largely limited by the paired data available in existing video-text
datasets. As demonstrated by in Fig. 2a, we can extract most of the semantics
of a video, such as the objects, people, and contexts in the video, by looking at
only one frame from the video. The action in the video can be further inferred
by exploiting biases in the datasets. Therefore, models pretrained on image-text
data often perform surprisingly well on existing video-text tasks.

To effectively evaluate how video-text models can understand the contents
and semantics of videos beyond images, we must develop video understanding
tasks that are free from shortcuts and require cross-frame reasoning to solve.
To this end, we propose a new evaluation task for video-text models, i.e., re-
trieval from counterfactually augmented data (Sec. 3.1), and a new dataset
Feint6K (Sec. 3.2). In contrast to previous datasets with matched video-text
pairs scrapped from the web [24, 28] or annotated by human [22], we adopt a
human-in-the-loop system and annotate counterfactually manipulated texts as
negative pairs with the original video. This allows us to evaluate video-text mod-
els with novel tasks and better understand their limitations. Lastly we measure
human performance on our dataset as a direct comparison with the state-of-the-
art video-text models (Sec. 3.3).

3.1 Task Formulation

Retrieval from counterfactually augmented data is a variant of the standard
video-to-text retrieval. As shown in Fig. 2b, given a video sequence and a list of
candidate captions, the model is asked to retrieve the caption that best matches



Captions of Video A

[Positive] A person is shining
a shoe with a shoe shinning

machine.

[Negative 1] A person is
making a shoe with a shoe

shinning machine.

[Negative 2] A person is
wearing a shoe with a shoe

shinning machine.

Captions of Video B

[Positive] A man is standing
on the field attempting to kick
a football.

[Negative 1] Aman is
standing on the field
attempting to catch a football.

[Negative 2] Aman is
standing on the field

attempting to throw a football.

Captions of Video C

[Positive] A person wearing a
pink jacket is feeding birds
with his hand.

[Negative 1] A person wearing
a pink jacket is petting birds
with his hand.

[Negative 2] A person wearing
a pink jacket is holding birds
with his hand.

Fig. 3: Examples of RCAD on our Feint6K dataset.

the semantics in the video. However, unlike standard video-to-text retrieval
where negative captions come from other video-text pairs in the same dataset,
negative captions in our task are modified from the positive captions, with the
same text structure and object entities but different actions (see Fig. 3).

Similar to video-text retrieval, our proposed task provides the benefit of
zero-shot evaluation. This allows us to quantitatively analyze the effectiveness
of video-text pretraining without downstream finetuning.

What distinguishes our task from all previous video-text tasks is its focus
on questions that require cross-frame reasoning. Consider “Video B” in Fig. 3 as
an example. All captions contain the same object entities present in the video,
i.e., “a man”, “the field”, and “a football”, but differ in the action specified. We
cannot determine the most accurate caption because all suggested actions, “kick”,
“catch”, and “throw”, are plausible given the video’s context. To retrieve the
corresponding caption, it is crucial to grasp the action’s semantics by inspecting
the interactions between the man and the football across a series of frames.
This underscores the necessity of understanding the video semantics over time
in order to succeed in our task, rather than relying shortcuts or biases.

3.2 Feint6K: Data Collection

We utilize a human-in-the-loop system [9] to counterfactually manipulate the
positive captions in existing video-text datasets [22,28]. The generated counter-
factually augmented data, when paired with the original videos, forms negative
pairs to be used in our proposed task. We recruit 40 annotators to manually ma-
nipulate the actions in existing captions. Specifically, the new actions introduced
must be plausible within the context in the caption but are not occurring in the
corresponding video. In summary, a total of 6,243 videos from the validation
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Fig. 4: Overview of our data collection pipeline for Feint6K dataset featuring a human-
in-the-loop system.

set of the MSR-VTT dataset [28] and the test set of the VATEX dataset [22].
For detailed statistics of our Feint6K dataset, please refer to our supplementary
materials.

The overview of our human-in-the-loop system is demonstrated in Fig. 4. We
start by sampling a small subset of video-text pairs and manually annotate the
counterfactually augmented captions for the purpose of training and demonstra-
tion. Specific guidance and feedback are given to the annotators on the practice
questions during the training stage. Moreover, we adopt a reviewing process
during the annotation stage to further ensure the quality of our annotated data.
Each annotation is reviewed before acceptance, where rejected annotations are
marked and sent back for refinement. We refer the readers to the supplementary
materials regarding the annotation interface and annotator guidance.

3.3 Human Performance

We employ the same group of annotators to establish a human-level baseline
on our Feint6K dataset. Analyzing the human performance serves two goals: (i)
verifying the legitimacy of our Feint6K dataset — if each question is answerable
and has one unique answer, and (ii) comparing the state-of-the-art video-text
models with human-level performance.

Each annotator is first presented with the full video and then asked to select
the one out of six captions that best matches the semantics in the video. To
avoid leakage, we make sure the annotators assigned to the testing questions are
not the same annotators annotating this video. We also randomly shuffle the
order of the candidate captions to remove any biases. In Sec. 5.2 we present the
quantitative comparisons between human-level performance and current state-
of-the-art video-text models on our Feint6K dataset.

4 LLM-teacher

Contrastive learning are widely adopted in previous video-text representation
learning works [16,23,26]. The contrastive models learn to distinguish between



8 W. Ma et al.

similar and dissimilar pairs of video-text data by contrasting their feature rep-
resentations. Despite the simple formulation and great generalization ability,
our results on Feint6K show that current video-text models built heavily on
contrastive objectives have very limited understanding of action semantics in
natural videos and can be easily fooled by counterfactually augmented data.
Therefore we aim to develop a more effective contrastive approach and learns
more discriminative action representations from existing video-text data.

Sec. 4.1 discusses the limitations of current contrastive approaches due to
numerous shortcuts in video-text dataset. Inspired by this finding, we present
LLM-teacher in Sec. 4.2, a simple but effective approach to learn more discrim-
inative action embeddings by incorporating knowledge from pretrained large
language models.

4.1 Shortcuts in Video-Text Data

The CLIP model [18] trained on image-text data with a contrastive objective
demonstrated strong zero-shot capabilities in many vision tasks [13,30] and was
widely adopted as the vision encoder in many large vision-language models [14].
However, directly generalizing this idea to video-text data may face unprece-
dented challenges due to shortcuts in the video-text data.

As we proceed from image-text to video-text representation learning, we aim
to learn a powerful embedding for not only the object entities, but also the
actions specified by texts or sequence of frames. Naturally we hope to achieve
this by contrasting videos with different actions. However, as we are optimizing
the contrastive objectives in a mini-batch of videos, object entities become the
shortcuts that contrastive models exploit to saturate the contrastive objective,
leading to an ineffective action embeddings. Consider the example in Fig. 2a, the
contrastive loss would be small as long as the model learns discriminative em-
beddings for shortcut objects such as “cymbal” and “football”, even without any
understanding of the actions. Since many video-text models start with pretrained
CLIP encoders [23,26], they often posses strong embeddings for shortcut objects
from the beginning of the video-text pretraining, which hinders the model from
further learning effective action representations.

In Fig. 5 we present quantitative results of changes in cosine similarities when
the video is unchanged but the object or action in the caption is manipulated. We
find that state-of-the-art video-text models learn less discriminative embeddings
for actions as compared to objects, which also explains the small gap between
image-text and video-text models on standard video-text tasks.

4.2 LLM-teacher

We introduce LLM-teacher, an LLM-powered approach to learn better action
representations with contrastive objectives. Specifically, LLM serves as the “teacher”
and provides synthesized captions as extra knowledge for the video-text model to
learn from. These new captions serve as negative captions of the original video,
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Fig. 5: Change of cosine similarity w.r.t. objects or actions. (a): Comparison
between the change in cosine similarity when the action or object is swapped. Results
show that current video-text models learn a more effective embedding for objects than
for actions. (b): Comparison between the change in cosine similarity using InternVideo
or our LLM-teacher. This demonstrate that LLM-teacher learns a more discriminative
embedding for actions by enabling a more effective contrastive learning using knowledge
from LLMs. Refer to Sec. 5.2 for more details.

removing possible shortcuts and biases and enabling a more effective learning of
action semantics.

We start with positive captions from common video-text datasets and run an
abstract meaning representation (AMR) parser, resulting in a list of action or ob-
ject tokens. To generate the hard negative captions, two methods are considered
to find novel actions or objects given the original caption and the substitution
token w.

Method I: Mask filling. Masked language modeling (MLM) [5] is a widely
adopted self-supervised task for LLMs. In the pretraining stage, a certain per-
centage of word tokens are substituted with a special token [mask| and the LLM
is optimized to recover the masked tokens. To find negative captions with novel
actions given the original caption ¢y and substitution token a, we first substitute
the token a with [mask| and use a LLM pretrained with MLM to predict a list
of k possible tokens {u%—}le such that w; # w and w; is an action token.

Method II: LLM-powered chatbot. Although mask filling can find appro-
priate words to substitute w, it is limited by one single token. In many cases,
we want to update the prepositions following the change of verbs. For example,
when “install” is substituted by “uninstall”, we should also update the preposition
from “install ... to” to “uninstall ... from”. Here we consider a more flexible ap-
proach that builds on LLM-powered chatbots. Besides a prompt describing the
text substitution, we leverage the in-context learning ability of LLMs [2,7] and
provide multiple in-context examples to obtain the desirable negative captions.
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LLM-teacher. With the procedure above, we obtain k synthesized negative
captions {n;}¥_; besides the original positive caption p for each video v in exist-
ing datasets [22,28]. For each of the original and generated captions, LLM serves
as a “teacher” and provide binary pseudo-labels — if the caption have matched
(“1”) or unmatched (“0”) semantics with the video. Now we may optimize the
video-text model with the normalized temperature-scaled cross entropy loss

exp(sim(fy, fp)/7)
exp(sim(fy, f,)/7) + by exp(sim(fo, fu,)/7)

where f,, fp, fn, are the visual and textual embeddings.

In practice, we find that certain negative captions have unmatched but similar
semantics to the video. It is undesirable to regard them as a strictly negative
pair in the contrastive loss. Therefore, we extend the binary pseudo-labels to
soft logits by computing caption similarities with a pretrained LLM and then
optimize the video-text model to match model outputs with the soft logits from
the LLM teacher model [8].

l=—log

(1)

I = LxL(Zvideo-text> ZLLM) (2)
exp(sim(fy, ft)/7)

exp(sim(fu, f,)/7) + Yi_y exp(sim(fy, fn,)/7)

exp(sim(ep, e;)/T)

exp(sim(e,, €,)/7) + Y1 exp(sim(e,, en,)/7)

Zvideo-text,t =

ZLLM,t =

where t € {n;}¥_, U{p}, f’s are textual and visual embeddings of the video-text
model, and e’s are textual embeddings of a pretrained LLM.

5 Experiments

5.1 Experimental Setup

Datasets. We use MSR-VTT dataset [28] and VATEX dataset [22] for stan-
dard video-to-text retrieval and our Feint6K dataset for retrieval from counter-
factually augmented data. Note that Feint6K dataset contains the same video
sequences for evaluation as in MSR-VTT dataset and VATEX dataset.

Evaluation metrics. For standard video-to-text retrieval we report rank-1 ac-
curacy (R@1) as this is the most challenging metric and distinguish the per-
formance of previous video-text models. For retrieval from counterfactually-
augmented data we use rank-1 accuracy (R@1), rank-2 accuracy (R@Q2), and
mean rank (MeanR).

Video-text models. We consider multiple state-of-the-art public models in
this work. CLIP4Clip [15] extends CLIP model [18] to the video domain using a
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MSR-VTT Feint6K (MSR-VTT) VATEX Feint6K (VATEX)

Model
R@1 R@1 R@2 MeanR R@1 R@1 R@2 MeanR

Human 95.2 96.8
Random <le-3 16.7 <le-3 16.7
Zero-Shot
CLIP [18] 26.3 37.3 55.3 2.6 38.8 34.8 54.3 2.7
VideoCLIP [27] 14.5 35.1 71.3 2.6 13.7 33.0 70.7 2.7
InternVideo [23] 37.5 45.8 63.6 2.3 76.9 44.1 63.9 2.3
LanguageBind [31] 42.8 41.3 77.0 2.4 42.3 77.0 2.4
Finetuned
LanguageBind [31]
CLIP4Clip [15] 43.1 50.8 72.4 2.0
VindLU |[3] 46.6 53.4 70.9 2.0
SimVTP [16] 50.2 35.7 70.8 2.6 76.6 33.6 68.4 2.6

w/ LLM-teacher-lbl 49.0 y1.2  40.0 t4.3 73.1 12.3 2.3 J0.3 74.8 41.8 37.3 43.7 72.2 13.8 2.4 0.2
w/ LLM-teacher-lgt  49.5 10.7 43.5 17.8 75.0 14.2 2.2 0.4 75.3 /1.3 40.1 16.5 73.5 15.1 2.3 10.3
InternVideo [23] 49.1 58.6 80.2 1.8 87.9 58.2 76.9 1.9

w/ LLM-teacher-1Ibl 48.2 10.9  64.2 t5.6 82.5 12.3 1.7 J0.1  85.2 2.7 63.8 15.6 80.5 13.6 1.7 10.2
w/ LLM-teacher-lgt 48.9 (0.2  65.8 17.2 83.8 13.6 1.7 0.1  87.3 0.6 65.6 17.4 81.7 t4.8 1.7 |0.2

Table 1: Performance of standard video-to-text retrieval on MSR-VTT dataset
[28] and VATEX dataset [22], as compared to performance of retrieval from
counterfactually-augmented data on our Feint6K dataset. In the “zero-shot” setting,
models are evaluated directly after the pretraining stage, while in the “finetuned” set-
ting, models are finetuned on the training set of MSR-VTT or VATEX. With LLM-
teacher, we enable a more efficient learning of action semantics and effectively improves
R@1 accuracy on Feint6K. Here “LLM-teacher-1bl” stands for our approach with binary
pseudo-labels and “LLM-teacher-lgt” uses soft logits.

mean pooling mechanism for zero-shot video-text retrieval and a contrastive loss
for finetuning. SImVTP [16] is pretrained on the WebVid2M dataset [1] with a
combination of contrastive learning and masked modeling. InternVideo [23] is a
video-text foundation model pretrained on a combination of 7 large-scale video-
text datasets, with a supervised video post-pretraining for better video recog-
nition. LanguageBind [31] is a language-based multi-modal pretraining model
with remarkable performance on a wide range of benchmarks.

To demonstrate the efficacy of our LLM-teacher, we adopt this method on
two state-of-the-art video-text models, SImVTP and InternVideo. In the default
setting we generate 10 action-based captions with LLM for each training video.
For text generation we use a pretrained XLM-RoBERTa [4] for mask filling.
To measure text similarities and compute soft logits, we utilize a pretrained
Sentence-BERT model [19]. In Sec. 5.3 we ablate on the choices of parameters
and caption generation.

5.2 Main Results

Performance of previous state-of-the-art. In Tab. 1 we report the quanti-
tative results of standard video-text retrieval on MSR-VTT and VATEX, and of



12 W. Ma et al.

retrieval from counterfactually augmented data on our Feint6K. We also report
a “Random” performance where a model predicts random guesses. We make the
following observations: (i) Results show that previous state-of-the-art video-text
models demonstrate limited understanding of the action semantics in a video
with less than 60% R@1 accuracy on RCAD, given a 16.7% R@Q1 accuracy when
taking random guesses. (ii) Although it is hard to compare the quantitative re-
sults between two tasks, we note that our RCAD is much more challenging given
the performance gap between “Random” and previous state-of-the-arts. This sup-
ports our previous arguments that our RCAD removes shortcuts from standard
video-text datasets and focuses on harder questions in the video domain that
require cross-frame reasoning.

Performance of LLM-teacher. We apply our LLM-teacher to two pretrained
video-text models, SImVTP [16] and InternVideo [23]. Specifically, we consider
the two objectives in Eq. (1) and Eq. (2), labeled as “LLM-teacher-1bl” and
“LLM-teacher-1gt” respectively. Results in Tab. 1 show that by exploiting knowl-
edge from pretrained LLMs, LLM-teacher enables a more efficient leaning of
action semantics and achieved improved results on various metrics of RCAD, in-
creasing the RQ1 accuracy on RCAD by 7.2% and 7.4%. We also note that with
binary pseudo-labels, results demonstrate a trade-off between the performance
on standard video-to-text retrieval and RCAD; and in comparison, LLM-teacher
with soft logits achieves the highest performance on RCAD (65.8% and 65.6%)
with negligible drops (0.2% and 0.6%) on standard retrieval. This is because
soft logits account for the text similarities between different actions and avoid
overfitting on binary pseudo-labels.

Comparison with human-level performance. The human-level performance
are reported in Tab. 1. We see that human annotators achieved an almost perfect
performance on Feint6K dataset, with a 95.2% accuracy on MSR-VTT videos
and a 96.8% accuracy on VATEX videos. These results show that: (i) most ques-
tions for retrieval from counterfactually-augmented data are answerable with an
unique answer, and (ii) this task is fairly simple for human. As a comparison,
all previous video-text models with large-scale pretraining fall behind by a wide
margin. Specifically, the state-of-the-art video-text model InternVideo [23] fea-
tures a heavy two-stage pretraining on a collection of 7 large-scale video-text
datasets but falls behind by 36.6% and 38.6% even with downstream finetuning.

Analyses of failure cases. In Fig. 1b we present two failure cases by the Intern-
Video [23] model on our Feint6K dataset. Both examples are trivial for human,
yet challenging from video-text models due to incapability of cross-frame rea-
soning. For the first example, a model must analyze the interactions between the
person and the rock over a sequence of frames to predict the correct answer. And
in the second example, the model must observe the change of appearances over
time. As we can see, with the counterfactually augmented data in our Feint6K,
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models cannot “guess” the correct answer by exploiting shortcuts extracted from
a single frame. The findings on Feint6K highlight significant weaknesses in cur-
rent video-text models, offering valuable insights for future researches in this
area. Additional qualitative examples of video-text models on Feint6K dataset
are provided in the supplementary materials for readers’ reference.

Sensitivity to the change of object or action. With the counterfactually
augmented data collected, we investigate how the cosine similarities between the
video and text change when the object or action in the text are swapped with
an object or action not present in the image. Given the original video-text pair
(v,t) and a counterfactually-augmented text #, the change in cosine similarity
is given by As = s(v,t) — s(v,t). As t contains objects or actions not present
in the video, As should be negative for an ideal video-text model. Moreover,
larger |As| implies the model being more sensitive to the changes. We compute
As using the InternVideo with pretraining only (“IntVid-pt”), InternVideo with
downstream finetuning (“IntVid-ft”), and our LLM-teacher (“LLM-teacher”).

Results in Fig. 5a show that the As are almost always negative when the
objects are swapped and the absolute changes are larger. In comparison, As
are sometimes positive when actions are modified and the absolute changes are
smaller. This demonstrate that InternVideo learns a more effective embedding
for objects than for actions. This further highlights the necessity of our new
evaluation paradigm for exploring the limitations of video-text models beyond
existing tasks. Moreover, in Fig. 5b we note that with LLM-teacher the action
embeddings are more effective than the ones learned by InternVideo, as shown
by the more reasonable changes in cosine similarity when actions are swapped.

Please refer to the supplementary materials for a detailed discussion regard-
ing the influence of textual encoders.

5.3 Ablation Study

We conduct ablation studies on the VATEX dataset [22] and our Feint6K dataset.
We follow the same settings as above and report rank-1 (R@1) accuracy for
standard video-to-text retrieval and rank-1 accuracy (R@Q1), rank-2 accuracy
(R@2), and mean rank (MeanR) for counterfactual augmented data.

Choice of captions in LLM-teacher. Tab. 2 shows the comparison between
different numbers and types of LLM captions generated. In the “default” setting
we use 10 action-based LLM captions and compare to settings with 5 action-
based LLM captions or 5 action-based and 5 object-based LLM captions. Results
show with 5 action-based LLM captions the R@Q1 accuracy on Feint6K drops by
0.9% while the R@1 accuracy on VATEX increases by 0.3%. We also experiment
on object-based LLM captions and find them not beneficial for both standard
video-to-text retrieval or our RCAD. This is consistent with our assumption
that pretrained video-text models already learns a discriminative embedding for
objects and a more efficient training objective for action is needed.



14 W. Ma et al.

VATEX  Feint6K (VATEX)

Model

R@1 R@1 R@Q2 MeanR
Default 87.3 65.6 81.7 1.7
(10 action captions; XLM-RoBERTa)
5 action captions 87.6 10.3 64.7 10.9 81.0 10.7 1.7
5 object + 5 object captions 87.510.2 64.2 11.480.6 |1.1 1.7
LLM Chatbot 87.0 0.3 65.9 10.3 81.8 10.1 1.7

Table 2: Ablation studies on the number of LLM captions and caption generation
methods. In the default setting we use a total of 10 action-based LLM captions and
utilize a pretrained XLM-RoBERTa [4] for mask filling.

Choice of caption generation. Besides a pretrained XLM-RoBERTa model
for mask filling, we also experiment on generating captions with LLM-powered
agents that are finetuned on chat datasets for dialogue applications. Specifically
we use the “chat” model finetuned for dialogue applications. Empirically we
find that captions generated by LLM chatbots achieves a higher overall quality,
exploring a more diverse caption space and better flexibility. However we don’t
observe significant improvements from our ablation study experiments — the RQ1
accuracy on VATEX drops by 0.3% and the RQ1 accuracy on Feint6K increases
by 0.3%. We choose XLM-RoBERTa in our main experiments as the model runs
faster and scale up easily to bigger settings. We provide qualitative comparisons
between the two types of caption generation in our supplementary materials.

6 Conclusions

In this work we propose a new evaluation task, retrieval from counterfactually
augmented data, and a benchmark dataset, Feint6K. The idea is to remove short-
cuts in the video-text questions with a human-in-the-loop system and produce
more challenging questions where the video-text model must derive a compre-
hensive understanding of the video with cross-frame reasoning. Quantitative and
qualitative evaluation results on our Feint6K dataset show that despite the task
is trivial for human, previous state-of-the-art video-text models can be easily
fooled by the counterfactually augmented data. This implies that the promi-
nent results on previous video-text benchmarks could be misleading — models
may largely exploit shortcuts without genuinely understand the video contents.
Moreover, we identify a key limitation of current contrastive learning on video-
text data being the shortcut learning and propose LLM-teacher that enables
a more effective learning of action semantics by utilizing knowledge from pre-
trained LLMs. Experimental results and analyses show that our method can
learn a more discriminative representation for actions.

Supplementary materials. We present the following: (1) limitations of our
work, (2) more details about our Feint6K dataset, (3) ethics statements, and
(4) extra quantitative and qualitative results.
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