Risk-Aware Self-Consistent Imitation Learning
for Trajectory Planning in Autonomous Driving

Supplementary Materials

Yixuan Fan, Yali Li, and Shengjin Wang*

! Department of Electronic Engineering, Tsinghua University
2 Beijing National Research Center for Information Science and Technology
fan-yx21@mails.tsinghua.edu.cn, {liyalil3, wgsgj}@tsinghua.edu.cn

1 Overview

In Sec. [2| we summarize and provide more implementation details of the RaSc
model. In Sec. [3] we compare and discuss RaSc with two state-of-the-art meth-
ods. In Sec. 4] we describe how our research responsibly uses data from human
subjects.

2 The RaSc Model

In Algorithm [I} we delineate the specific training procedure of the RaSc model.
By pre-computing the pairwise future TTCs of the recorded trajectories and
parallel computing the TTCs of trajectories planned and predicted by the model
on GPUs, we constrain the training time overhead incurred by loss computation
to within 20% of the total training time. The symbols used in Algorithm [1| have
the same meanings as the corresponding symbols in the main paper.

Tab. [1]lists the hyperparameters used by RaSc. The resulting model contains
7.3 million trainable parameters. The data augmentation method we employed
only includes randomly replacing values in the current state of the ego vehicle
and the historical states of context agents with trainable mask embeddings.

3 More Detail Comparison with State-of-the-Arts

PlanTF |[2], the previously best purely learning-based planner, demonstrated the
importance of feature modeling and data augmentation for input features related
to the ego vehicle state in enhancing the performance of learning-based planning
methods. PDM |3], the best rule-based planner equipped with post-processing,
showed the effectiveness of using the metrics of interest directly as scorers to
evaluate trajectory proposals.
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Our ideas are independent of theirs. We improve the model’s understanding
of the driving environment and decision-making motivations by adding modules
that bridge the fundamental gap between open-loop training and closed-loop
deployment on a baseline that is as simple as possible.

In simulations, we observed that (also reported in [3]), limited by the capa-
bility of the annotation system, the ego vehicle may collide with objects that
suddenly appear on the road. Additionally, because human drivers sometimes
violate traffic rules under specific circumstances (including brief instances of
wrong-way driving and surpassing the speed limit), adhering to traffic rules and
achieving the progress level of human drivers can be conflicting metrics in some
situations. Due to these phenomena, combining or extending existing methods
to achieve significantly higher closed-loop performance in the current testing
platform may be challenging. In the future, more challenging test scenarios and
more comprehensive evaluation criteria could positively impact the development
of this field.

4 Responsibility to Human Subjects

We utilize the nuPlan dataset |1] in our experiments. This dataset, collected and
made open-source by Motional, Inc., encompasses approximately 1,200 hours
of human driving data across four cities: Boston, Pittsburgh, Las Vegas, and
Singapore. The data was gathered by professional vehicle operators specifically
for data collection purposes, ensuring no risk of privacy breaches. The human
traffic participants in the vehicle’s environment were processed by the annota-
tion system into categories and bounding boxes, further mitigating any concerns
regarding privacy leakage.
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(a) PlanTF (b) PDM-Hybrid (3] (c) RaSc (ours)

Fig. 1: Comparative visualized results. Each row showcases key frames of the results
of three state-of-the-art planners (from left to right: PlanTF [2], PDM-Hybrid [3],
and our proposed RaSc) in one scenario, in the non-reactive closed-loop simulation.
The bounding box in white indicates the ego vehicle, the orange line depicts a 15-
second human driving trajectory from the dataset, and the blue line represents the
trajectory planned by our model for the next 8 seconds. From top to bottom, the
scenarios illustrate: (1) RaSc maintained a safer distance from oncoming traffic and
demonstrated better long-term planning; (2) RaSc avoided potential collisions and
smoothly completed the turn; (3) RaSc accurately identified the appropriate timing to
initiate an unprotected left turn and ensured safety.
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Algorithm 1 RaSc Training Procedure.

Input: Historical states of all agents: s> ¥

High-definition map elements: Mo.as;
Future states of all agents: s

Pre-computed pair-wise future TTCs of the recorded trajectories: {ttcf,i,j }(t i)eQ"

Output: Loss for backpropagation: £

1:

10:
11:
12:
13:
14:
15:
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17:

# Scene elements encoding in local coordinates.
Ao + MLP (s0) , A1y + LSTM (s"}.0) , Mo:amr « PointNets (Mo:ar)
# Global position encoding.

¢ po:N4+M41 — MLP([Azo:N+a+1, AYo:N+M+1, 80 ABo: N4 M1, €08 Ao Ny mr41])

# Global interaction modeling. (cat for concatenate)

2 Ao.n, Mo.ar < Transformer (cat [Ao.n, Moy + cat [po:nvar+1] + cat [attributes])

# Trajectory decoding.

: 3(1]:L,1:F7 con fidencel,; < MLP (Ao)
: s}i%yle, confidencel'® « MLP (A1:n)

# Calculate Lirqj.
Liras  Lotan (50,1.5, confidencel.; 88.r) +Lprea (55 1.5, con fidencel s sk
# Get the highest confidence planned/predicted trajectories.

0 0
st’ru.j,l:F A sargmax(confidencetl):L),I:F

;;glmax(confidence%;g),l:F

# TTC decoding. (p in inputs means global position embeddings)

{peiitijyens {ttctiitijyeq ¢ TTC_Decoder (Ao:n, po:n)

# Calculate TTCs from trajectories planned/predicted by the model.

{ttc]" 7} (tiyeq ¢ Calculate_ TTC (80 1.m)

# Calculate L.

Lra < Lete ({prag}, {tteeaits {tteii; })

# Calculate Lsc. _

Lsc < Lite ({pt,i,]’} JAttesi} {ttcirla; )

# Calculate L.

L MrajLiraj + Aralra + AscLsc

# Apply the self-consistency-induced OHEM.

if step > total steps x ohem _start progress then
do OHEM, set £ to 0 for some samples.

end if

return L

1I:N
Straj,1:F S
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Table 1: Hyperparameters of RaSc

training procedure

optimizer AdamW [4]

base learning rate 0.0006

weight decay 0.05

optimizer momentum B1: 0.9, B2: 0.999
batch size 256

training epochs 50

learning rate schedule cosine decay
warmup epochs 1.0

loss weight

classification loss weight for trajectory 0.1

imitation

regression loss weight for trajectory im- 1.0
itation

A, classification loss weight for L. 1.0
Atraj, wWeight for the trajectory imita- 1.0
tion loss

Ara, weight for the risk awareness imi- 3.0
tation loss

A%, maximum weight for the self- 9.0
consistency constraint

model

hidden dimension 256
H, observable history time steps 20
F, future time steps for planning 80
time step size 0.1s
L and K, planning and prediction 6
modes

Transformer layers 5
agent encoders layers (LSTM) 1
map encoders layers (PointNet) 2
map encoders hidden dimension 128

attention heads for Transformer layers 4
FFN dimension for Transformer layers 1024
attention heads for the cross attention- 4
based TTC decoder

data auementation  ©2° state mask ratio 0.75
g context agents state mask ratio 0.2
total scenarios 1.0M (122GB storage)

data

perception radius 80m
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