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Abstract. Planning for the ego vehicle is the ultimate goal of autono-
mous driving. Although deep learning-based methods have been widely
applied to predict future trajectories of other agents in traffic scenes, di-
rectly using them to plan for the ego vehicle is often unsatisfactory. This
is due to misaligned objectives during training and deployment: a plan-
ner that only aims to imitate human driver trajectories is insufficient to
accomplish driving tasks well. We argue that existing training processes
may not endow models with an understanding of how the physical world
evolves. To address this gap, we propose RaSc, which stands for Risk-
aware Self-consistent imitation learning. RaSc not only imitates driving
trajectories, but also learns the motivations behind human driver be-
haviors (to be risk-aware) and the consequences of its own actions (by
being self-consistent). These two properties stem from our novel predic-
tion branch and training objectives regarding Time-To-Collision (TTC).
Moreover, we enable the model to better mine hard samples during train-
ing by checking its self-consistency. Our experiments on the large-scale
real-world nuPlan dataset demonstrate that RaSc outperforms previous
state-of-the-art learning-based methods, in both open-loop and, more
importantly, closed-loop settings.

1 Introduction

Using data-driven methods to achieve driving planning is a rapidly develop-
ing field in autonomous driving. Unlike trajectory prediction, planning pursues
generating feasible, safe, efficient, and comfortable motion for the ego vehicle,
not just output trajectories that are close to human driver records in terms of
distance-based metrics. In the context of planning, closed-loop testing serves
to evaluate whether the former goal is achieved, whereas open-loop testing
serves to evaluate the latter. Notably and maybe counterintuitively, closed-loop
scores and open-loop scores are often weakly correlated or even negatively corre-
lated [11,14,59,66]. One reason that leads to this phenomenon is that open-loop
testing metrics fail to reflect real driving proficiency: when model outputs devi-
ate only slightly from ground truth, collisions may actually occur; while when
deviations are large, the model may have provided another viable path.
⋆ Corresponding Author.
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Fig. 1: Different imitation learning paradigms for safe planning. (a) [8, 27, 29, 51, 61]
The trainable model is only supervised by trajectory imitation, while safety is ensured
by an additional non-parameterized safety filter/optimizer. (b) [2, 32, 65, 67] Hand-
crafted collision avoidance constraints are added as training objectives. (c) Our method
learns human awareness of risks from data and enables the model to understand the
consequences of its own actions through self-consistency constraints. This is achieved
through training objectives related to pair-wise Time-To-Collision.

Analogous to the little correlation between open-loop and closed-loop per-
formance in evaluation, existing training processes of imitation learning models
suffer from misaligned training objectives and actual deployment needs since
supervision signals almost solely come from human driver trajectories, as shown
in Fig. 1 (a-b). To improve closed-loop performance, current methods adopted
remedial approaches that explicitly avoid collisions, by incorporating a non-
parameterized safety filter/optimizer or penalizing unsafe behaviors in the net-
work output. However, we argue that these approaches are insufficient for guiding
the network to learn the motivations behind human driver behaviors.

In this paper, we adopt Time-To-Collision (TTC) [23] as the medium to cap-
ture human comprehension of dynamic information in traffic scenes and as a cue
for planning. TTC is defined as the time for two objects to collide if they continue
at their present speed and heading. Compared to distance, TTC incorporates
both position and velocity information, making it more flexible, as safe distances
obviously differ at different speeds. A larger TTC is not always better; while an
autonomous driving system maintaining a sufficiently large TTC ensures safety,
it can be overly cautious and affect efficiency. Reviewing the literature on trans-
portation, TTC has long been a vital consideration in evaluating the safety of
traffic environments [56], and the use of TTC as a cue for decision-making in traf-
fic scenarios is well-established [26]. For human drivers, information about TTC
is one of the most critical factors affecting their visual control of braking [35]. To
the best of our knowledge, We are the first to integrate the concept of TTC into
pure learning-based trajectory planning, and to demonstrate its effectiveness in
aiding neural networks to comprehend decision-making mechanisms.

Instead of manually designing safety constraints for different scenarios, we
adopt pair-wise future TTC prediction to learn human drivers’ risk awareness
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and management skills from data. Such data includes not only the ego vehicle’s
experiences, but all its historical observations, as similar intelligence manifests
in all traffic participants. Furthermore, the TTCs computed from the model’s
output trajectories should be consistent with the TTCs predicted by the model,
establishing self-consistency. This enables the model to understand the conse-
quences of its own behaviors. The vision achieved by these two designs is illus-
trated in Fig. 1 (c), where the model understands the interactive relationships
between agents and better comprehends the ego vehicle’s capability of seeking
overtaking opportunities in the depicted road scene.

It is noteworthy that supervision from imitating human TTCs and the self-
consistent constraint can produce divergent gradients. To address this, we de-
signed the weighting for the self-consistency constraint at different training
stages. Moreover, by examining the network’s self-consistency, we obtain su-
perior online hard example mining (OHEM). Relevant designs enable the model
to find the right learning direction in most cases.

In summary, with the proposed RaSc model, our main contribution is three-
fold: (1) We introduce risk-aware imitation, which leverages TTC data from
human driving records to guide our model in learning human drivers’ moti-
vations and risk awareness skills; (2) We propose self-consistent planning, by
constraint our model to perform consistent trajectory planning and TTC esti-
mation, thereby teaching it to interpret its own actions and comprehend the
consequences of its behavior; (3) We present a superior OHEM strategy, which
can find more accurate hard samples by employing a self-consistency check.

We conduct experiments on the nuPlan dataset, and attain state-of-the-art
performance. We believe our method serves as a pioneering work in addressing
the fundamental mismatch between open-loop training and closed-loop deploy-
ment of imitation learning-based planning models.

2 Related Work

Ego Forecasting. Deep learning methods have shown adeptness at understand-
ing complex driving scenarios and mapping them to potential trajectories of hu-
man drivers, where they significantly outperform non-parametric methods rep-
resented by the Intelligent Driver Model (IDM) [53]. Ego forecasting models can
process raw sensor signals from cameras, lidars, etc. [5,8,9,43,47,60,62], or utilize
perception results as inputs, projecting scenes in a BEV space [2,6,13,25,34,36]
or analyzing vectorized representations [18,33,37,40,49,54]. Driven by datasets
like nuScenes [3], Argoverse [7,58], Waymo Open Motion Dataset [16], etc., and
open-loop metrics, related methods have made remarkable progress in aspects in-
cluding scene representation [15,19,20,31,63,64], model architecture with atten-
tion mechanisms [39,42,55,68], among others. Moreover, the future trajectories of
different agents influence each other. Therefore, joint prediction across multiple
targets has been shown beneficial for both performance and speed [17,20,30,41].
These studies form the foundation for the method designed in this paper.



4 Y. Fan et al.

From Ego Forecasting to Safe Planning. If our prediction of trajectories
were perfect, we would only need to control the vehicle to move along the pre-
dicted trajectory to realize driving like human drivers. However, this ideal situ-
ation has not materialized with the advancement of prediction algorithms. This
stems from the inherent limitations of behavior cloning [11,12,14,48,57,59,66],
in that they lack lucid explanations of the decision-making process.

To achieve better closed-loop performance, previous studies incorporated
manually designed prior knowledge through additional modules. The designs
of these modules differ across works, but all make important contributions to
the results of corresponding studies. In works adopting the paradigm in Fig. 1
(a), [8] designed a two-layer safety mechanism, first checking for collisions based
on trajectory prediction results, applying a hard brake if a collision is detected;
then using another neural network specialized for predicting brake values as a
safety redundancy. [61] performs safety checks on planned trajectories in order
of confidence. [27, 29] preset cost functions related to safety, comfort, etc., and
optimize trajectories through the Gauss-Newton method and CasADi [1] ipopt
solver respectively. [51] solves its proposed optimization problem using linear
programming. In works adopting the paradigm in Fig. 1 (b), [2,67] generate loss
when collisions or driving off-road occur under the rasterized representation, and
the loss is proportional to the overlapping area with corresponding objects. [32]
applies three manually designed safety constraints under the vectorized repre-
sentation. [28] utilizes both paradigms (a) and (b). In addition, sampling-based
planning methods such as [5,44,65] also incorporate the summarized safety mech-
anisms. Compared to these previous studies, our method aims to systematically
enhance the neural network’s intrinsic understanding of driving motivations.

3 Methodology

3.1 Problem Formulation and Approach Overview

We denote the ego vehicle as A0 and the context agents as A1:N . Each agent in-
cluding the ego vehicle has a semantic class (i.e., vehicle, bicycle, or pedestrian),
and its state at time t is denoted as sti, where i is the agent index. We also
introduce a vectorized high-definition map (including map elements denoted as
M1:M ) and traffic light signals. For the ego vehicle, we have route roadblocks
identifying its target road. Assuming the current time point is t = 0, given
the states of all agents in the previous H time steps and the current time step
s−H:0
0:N , the model needs to make motion decision for the ego vehicle in the F

future time steps s1:F0 . In practice, we provide L possible plans in parallel along
with corresponding confidence scores.

We also predict K possible future trajectories for all context agents across
the F future time steps sk,1:F1:N , k = 1, · · · ,K. This is because predicting the
future trajectories of other agents in the scene holds great importance for the
ego vehicle’s planning and is also an important basis for the methodology devised
in this paper. Sec. 3.2 describes how we represent the scene and achieve joint
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Fig. 2: Overview of our proposed RaSc framework. It expands our joint trajectory
planning and prediction baseline (the gray part) by adding a pair-wise future TTC de-
coder (depicted in Fig. 3). The risk awareness imitation loss is computed by comparing
the TTCs predicted by the model with the TTCs derived from human drivers’ tra-
jectories, and the self-consistency constraint is computed by comparing the predicted
TTCs with the TTCs derived from the model’s planned and predicted trajectories.

trajectory planning and prediction. Notably, the method proposed in this paper
is generic, and this part may be flexibly adapted.

The module we propose in this paper extends the conventional joint planning
and prediction pipeline. In Sec. 3.3, we introduce our pair-wise TTC decoder,
whose function is to predict the TTCs between any two considered agents at P
future time points. Building on this, Sec. 3.4 presents how we enable the model
to learn human drivers’ risk control abilities from data, while achieving self-
consistent outputs to explain its own behaviors. We refer the reader to Fig. 2
for a visualized understanding of the model framework. To improve training
efficiency and performance, Sec. 3.5 describes how we realize precise online hard
example mining by leveraging the introduced concept of self-consistency.

3.2 Joint Trajectory Planning and Prediction

We employ a vectorized representation to encode information from traffic par-
ticipants’ historical states and the high-definition map. Each scene element is
encoded in its local coordinate system. For agents, the coordinates’ origin and
main axis orientation are their position and heading at the last observable times-
tamp. For each lane center line, the coordinate origin is the average coordinate of
all points on the segment, and the main axis orientation aligns with the direction
from the first point to the last along the driving direction. For each crosswalk
or stop line, the origin is the average coordinate of vertices of each element’s
polygon, and the main axis orientation is randomly selected.

For the ego vehicle, we encode its state at the last observable timestamp using
an MLP, following [10,21,27,61]. For each of the other agents, we use an LSTM
[24] to encode the historical states. The state of any agent at each timestamp
comprises position, velocity, acceleration, and length-width dimensions. As for
map elements, we employ PointNets [45] for encoding.



6 Y. Fan et al.

To embed global position information, the ego vehicle’s pose at the last ob-
servable timestamp is referenced for the origin and orientation of the global
coordinate system. Then the transformation between each element’s local coor-
dinate and the global coordinate is utilized to compute a position embedding for
each scene element:

pi = MLP([∆xi, ∆yi, sin∆θi, cos∆θi]) (1)

Where ∆xi, ∆yi, and ∆θi represent the displacement in x, y coordinates, and
orientation between the local coordinate system of scene element i and the global
coordinate system, respectively.

Attributes including scene element types, traffic light states for each lane, and
binary variables indicating whether each lane belongs to the route for the ego
vehicle, are represented by learnable embeddings, respectively. The agent and
map embeddings are summed with their corresponding attribute embeddings
and position embeddings, and then concatenated into a combined sequence. We
employ Transformer [55] Encoder layers to achieve information passing. Finally,
MLPs are applied to tokens of the ego vehicle and other agents to obtain the
planned and predicted trajectories. The output size of the planning head and
prediction head are L×F×3 and K×F×3, respectively. 3 for the lateral position,
longitudinal position, and orientation. There are also output heads for estimating
confidence scores. Predicting multiple possible future trajectories for context
agents accounts for the multi-modality of intelligent agents’ behaviors. Predicting
multiple ego vehicle trajectories retains backup plans during deployment. By
default, we use the trajectory with the highest confidence.

3.3 TTC Prediction

𝐴! 𝐴"

Fully Connected

ReLU

𝐴! 𝐴"

Cross Attention

𝑡𝑡𝑐# 𝑡𝑡𝑐$
trainable queries

TTC Head

Predicted TTCs

Fully Connected

ℒ!"#ℒ$%&

(b)

𝑝! 𝑝"
+ +

𝐴! 𝐴"

Fully Connected

ReLU

𝐴! + 𝐴"

TTC Head

Predicted TTCs

(a)

𝑝! 𝑝"
+ +

Fig. 3: Diagram of the two pair-wise TTC decoder
designs. Lcls and Lreg are introduced in Sec. 3.4.

Estimating future TTCs be-
tween traffic participants with
neural networks is one of the
central pieces of our method.
Future TTCs refer to TTCs at
a future time point, it is cal-
culated by agents’ position, ve-
locity, and heading at that time
point. The hyperparameter in-
troduced here is how far into
the future we want to predict
TTCs. We can also estimate
TTCs at multiple future time
points simultaneously. The con-
textualized tokens output by the Transformer Encoder are utilized by the tra-
jectory decoder to plan or predict trajectories in the local coordinate systems
of agents. However, computing TTCs requires the relative positional relation-
ship between two agents. Therefore, we re-add the global position embeddings
to these output tokens to form the input for the pair-wise TTC decoder.
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For the input tokens constructed for the TTC decoder, we first apply a trans-
formation to the feature space using a fully connected linear layer, followed by
a ReLU activation. The basic requirement the TTC decoder needs to satisfy
is permutation invariance. Accordingly, we design two optional structures, as
shown in Fig. 3. In structure (a), we simply add up the input tokens represent-
ing the two agents; in structure (b), we use a learnable embedding as the query
for each future time point we estimate TTCs, and inquire about the two agents
through a multi-head cross attention layer. Finally, a fully connected layer is
utilized as the head to output prediction results. Regarding structure (a), the
output head dimension is P ∗ 2, where P is the number of future time points we
estimate TTCs; for structure (b), the output head dimension is 2. The specifics
of what the outputs stand for will be described in Sec. 3.4. We use structure (b)
by default because it has better performance.

3.4 Training Objective

Trajectory Imitation. For trajectory planning and prediction, we adopt the
Winner-Takes-All principle for loss computing, which applies loss to the trajec-
tory deemed best for each agent. Here, best refers to the trajectories with the
minimum final displacement error compared to the trajectories recorded in the
dataset. We use the Smooth L1 loss for trajectory regression and the Cross En-
tropy loss for confidence estimation, the trajectory imitation loss for each agent
is a weighted sum of them. Recognizing the importance of trajectories at ear-
lier timestamps, we apply an exponentially decaying weight to the loss at each
timestamp. Considering that context agents closer to the ego vehicle typically
have a greater impact on its planning and also more accurate position and size
annotations (since they are closer to the ego vehicle’s sensing system), we weight
the loss for each context agent based on its distance from the ego vehicle, using
an exponentially decaying law. We denote the trajectory imitation loss for the
ego vehicle and the weighted sum of the losses for all context agents are Lplan

and Lpred, respectively, the total trajectory imitation loss for each scenario will
be Ltraj = Lplan + Lpred.
Risk Awareness Imitation. Our model learns human risk control abilities
in traffic scenarios by encouraging the future TTCs predicted by our model
to match the corresponding TTCs of human traffic participants. For the N + 1
agents in a scenario, their pairwise combinations at each future time point where
TTC needs to be estimated result in N(N+1)/2, while the majority of them have
infinite TTCs (means collision will never happen at their status). To enhance
efficiency, we pre-label the training set by identifying all agent pairs with a TTC
of less than 30 seconds at all considered future time points. During training, we
focus on these pairs and a randomly selected subset of negative samples, thereby
constructing the set of agent pairs to be considered, termed Q, for each scenario,
keeping the number of agent pairs to be computed at an O(N) level.

Our pair-wise TTC decoder outputs two values for each pair of agents at
each future time point where TTC is estimated, representing whether the TTC
to be predicted is below a predefined threshold and the numerical value of the
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predicted TTC, respectively. The training objective for risk awareness imitation
for each training scenario is defined as:

Lra = Lttc

(
{pt,i,j} , {ttct,i,j} ;

{
ttc∗t,i,j

})
=

1

|Q|
∑

(t,i,j)∈Q

(wi + wj) ·(
λLcls

(
pt,i,j , σ

(
ttcth − ttc∗t,i,j

))
+ p∗t,i,jLreg

(
ttct,i,j , ttc

∗
t,i,j

)) (2)

Here, t, i, j represent the indices for a specific future time point and an agent pair
within the set Q, which denotes an element referring to agents i and j at future
time t. The term pt,i,j is the predicted probability that this agent pair will have
a TTC less than a threshold value ttcth at the future time point t, ttcth is set to
10 seconds. ttct,i,j is the TTC predicted by the decoder. ttc∗t,i,j is the TTC we
calculate from trajectories in the dataset. The ground truth label p∗t,i,j is set to 1
if ttc∗t,i,j < ttcth, and to 0 otherwise. Lcls and Lreg are the focal loss [38] and the
Smooth L1 loss, used to compute classification and regression loss respectively. λ
is the weight of the classification loss. σ is the Sigmoid function, we use soft labels
to enable the model to leverage more information beyond binary classifications.
The term p∗t,i,jLreg means the regression loss is activated only for interacting
agent pairs (p∗t,i,j = 1) and is disabled otherwise (p∗t,i,j = 0). wi, wj are weights
corresponding to the two agents. As aforementioned, we assign higher weights
to agents closer to the ego vehicle.
Self-Consistency Constraint. To enable the model to account for its own be-
haviors, we apply a self-consistency constraint by encouraging the two outputs
of the model to agree with each other. Continuing with the previously mentioned
set of agent pairs Q for each scenario, we now replace the supervisory signal for
TTC estimation from the TTCs calculated from trajectories in the dataset for
risk awareness imitation (

{
ttc∗t,i,j

}
), with

{
ttctrajt,i,j

}
, the TTCs calculated from

trajectories planned and predicted by the model. For the multiple output tra-
jectories, we use the one with the highest confidence. This allows us to compute
the self-consistency constraint following Eq. (2):

Lsc = Lttc

(
{pt,i,j} , {ttct,i,j} ;

{
ttctrajt,i,j

})
(3)

Overall Training Objective. The total loss for each scenario during training
is a weighted sum of the three aforementioned training objectives:

L = λtrajLtraj + λraLra + λscLsc (4)

Here, λtraj , λra, λsc represent the weights assigned to the trajectory imitation
loss, risk awareness imitation loss, and self-consistency constraint, respectively.
Notably, Since the model has poor performance in predicting trajectories during
the early stages of training, λsc is designed to gradually increase according to
a sine law as training progresses: λsc = λ0

sc sin(
step

total_steps · π
2 ), where λ0

sc is the
maximum value of λsc, step is the current training step and total_steps is the
total training steps. In the later stages of training, λsc significantly surpasses
λra to enable the OHEM described below to work and obtain more closed-loop
performance gains.
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3.5 OHEM Induced by Self-Consistency

Fig. 4: Two common situations
for a learning-based planner. In
the left image, the highest confi-
dence trajectory planned for the
ego vehicle (the blue line) is per-
fectly reasonable but distant from
the human record (the orange
line). In the right image, the
planned trajectory is close to the
human record, but a small gap
causes the ego vehicle to sideswipe
a parked car.

Traditional Online Hard Example Mining
(OHEM) [52] accelerates convergence by sort-
ing sample losses to identify hard samples.
For current decision models based on imita-
tion learning, the loss value indicates the dis-
crepancy between the model’s output trajec-
tories and those in the dataset. Given the
multi-modal nature of human traffic partici-
pants’ behaviors, a model with certain perfor-
mance might generate high-confidence trajec-
tories that significantly differ from the ground
truth but are still plausible for some samples.
Training on these samples could negatively im-
pact the model, and directly applying OHEM
might exacerbate this issue. On the other hand,
a model may exhibit poor closed-loop perfor-
mance on some samples with low loss values,
indicating that despite the output trajectories
being spatially close to the ground truth, mi-
nor discrepancies could lead to severe outcomes
such as collisions. Current methods might mis-
takenly classify these samples as easy due to their low loss values. The above
phenomenon is illustrated in Fig. 4.

We address this challenge by identifying hard samples through an examina-
tion of the model’s self-consistency. For each training sample, our first step is to
check the prediction loss of the context agents who have future TTCs with the
ego vehicle within 10 seconds in the human records. If the prediction loss of any
of these agents is higher than the average of the training batch, this sample is
categorized as a hard sample and is kept for training. Otherwise, we proceed to
the next step. In the second step, we categorize the samples into the following
four types, with corresponding treatments:

– Both Lplan and Lsc are low (lower than the average of the training batch).
These samples are considered easy for the model. To prevent the model
from forgetting these samples and to maintain a large enough batch size,
we include the loss from these samples in the backward propagation with a
certain probability.

– High Lplan but low Lsc: These samples may be the aforementioned wrong
hard samples. To prevent model collapse, we include the loss from these
samples in the backward propagation with a certain probability.

– Low Lplan but high Lsc: Some of these samples may be challenging for the
TTC decoder: despite the model producing trajectories similar to those of
human drivers, it fails to adequately explain its own actions. Some other of
these may be the aforementioned wrong easy samples: despite the planned
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trajectories close to those of human drivers, the results are quite different.
We retain these samples for training.

– Both Lplan and Lsc are high: These samples are hard and are kept.

The treatments outlined above, especially the treatment of the second type of
samples, are only meaningful when the model has achieved sufficient performance
levels. Therefore, we only apply OHEM in the later stages of training. Moreover,
before deciding to discard the loss from any sample, we perform an additional
check on the TTC calculated from the model’s highest confidence planned and
predicted trajectories, between the ego vehicle and other agents. If the ego vehicle
has any TTC less than one second, we do not discard the loss from this sample.

4 Experiments

Benchmarks. We use the nuPlan [4] dataset to evaluate our method. It pro-
vides 1,200 hours of diverse real-world driving data and a closed-loop simulator.
Evaluations are conducted in three different settings: (1) In open-loop evalua-
tion, the model is scored by comparing its predicted trajectory against human
driver records, using open-loop metrics including average/final displacement er-
ror, average/final heading error, and miss rate. (2) In closed-loop evaluation
with non-reactive agents, the planned trajectory controls the ego vehicle in the
simulator using an LQR controller, with replayed non-reactive agents, and per-
formance is measured by closed-loop metrics including those related to safety,
efficiency, comfort, etc. (3) In closed-loop evaluation with reactive agents, other
vehicles react to the ego vehicle using an IDM [53] policy and closed-loop metrics
are used to measure performance. More details about experiment settings are
illustrated in [4]. We benchmarked our model on three validation sets, namely
Val14 from [14], Test14-random and Test14-hard from [10]. Test14-hard consists
of specially selected hard scenarios.

4.1 Comparison with SOTA

Tab. 1 compares the performance of RaSc with others. Our pure learning-based
model demonstrates strengths especially in open-loop and non-reactive closed-
loop evaluations when compared to other learning-based approaches. In reactive
closed-loop evaluations, our method shows a slight underperformance, which can
be attributed to its reliance on predicting the behavior of context agents. The
IDM-driven agents exhibit significantly different behavior patterns from those
observed in the dataset.

To further enhance the model’s reliability, we can also incorporate a post-
processing module into our method, combining paradigms (a) and (c) in Fig. 1.
This module conducts two checks on the planned trajectories: (1) the TTCs
between the ego vehicle and other agents, calculated from the model’s planned
trajectories and the highest confidence predicted trajectories. Planned trajecto-
ries resulting in any TTC less than one second are flagged as dangerous; (2) the
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Table 1: Comparison with state-of-the-arts. RaSc* refers to our model with post-
processing, as described in Sec. 4.1. OL means open-loop evaluation, NR-CL means
nonreactive closed-loop evaluation and R-CL means reactive closed-loop evaluation.
All metrics range from 0 to 100, with higher scores indicating better performance. The
runtime includes feature extraction and model inference.

Planners Val14 Test14-random Test14-hard Time (ms)Type Method OL NR-CL R-CL OL NR-CL R-CL OL NR-CL R-CL

Human Log-Replay 100 94 80 100 94 76 100 86 69 -

Rule-based IDM [53] 38 76 77 34 70 72 20 56 62 30

Learning-based

PlanCNN [46] 64 73 72 63 70 68 52 49 52 71
UrbanDriver [50] 82 53 50 82 63 61 77 52 49 106
GC-PGP [22] 83 59 55 77 56 51 74 43 40 113
PDM-Open [14] 86 50 54 84 53 57 79 34 36 28
PlanTF [10] 89 85 77 87 86 81 83 73 62 140
RaSc (Ours) 90 86 75 91 86 76 86 75 63 75

w/ post-processing

GameFormer [29] - - - 79 81 79 75 67 69 395
PDM-Closed [14] 42 93 92 46 90 92 26 65 75 127
PDM-Hybrid [14] 84 93 92 82 90 92 74 65 75 139
RaSc* (Ours) 87 91 86 88 91 82 82 77 65 92

presence of off-road situations. Should these occur, the trajectories are flagged
as dangerous. In instances where high-confidence trajectories are deemed dan-
gerous, we consider other candidate trajectories. If all candidate trajectories are
evaluated as dangerous, we resort to initiating a hard brake. Comparison of our
model with post-processing between others is in the latter part of Tab. 1.

To improve the speed of training and inference, we implemented a two-
dimensional TTC calculation method capable of efficient batch processing on
GPUs. We also use a lightweight structural design. These ensure that our ap-
proach has a significant efficiency advantage over other methods with comparable
performance.

4.2 Ablation Study

Effect of Each Design. We evaluate the contribution of each design in our
model. As our approach is specifically aimed at enhancing the model’s closed-
loop performance, we report our results in the non-reactive closed-loop evalu-
ation. Additionally, we report on two critical safety-related metrics: no ego at
fault collisions, indicating whether the ego vehicle has not been at fault in any
possible collisions, and time to collision within bound (0.95s), reflecting whether
the ego vehicle maintains a sufficient TTC from other agents. The results, as
illustrated in Tab. 2, demonstrate that all our design components contribute to
performance gains in our model.
Comparison of TTC Decoder Designs. In Sec. 3.3 we introduce two struc-
tures for predicting future TTCs that meet our design criteria. Their perfor-



12 Y. Fan et al.

Table 2: Ablation for designs of our method. RA means applying the risk awareness
imitation, SC means applying the self-consistency constraint, OHEM means applying
the OHEM we propose. Coll means the metric "no ego at fault collisions", TTC means
the metric "time to collision within bound" (not same as in the rest of the paper).

RA SC OHEM Val14 Test14-random Test14-hard
NR-CL Coll TTC NR-CL Coll TTC NR-CL Coll TTC

79 87 82 78 88 81 66 82 77
✓ 83 93 88 82 94 89 72 85 80
✓ ✓ 85 95 89 85 95 91 73 88 81
✓ ✓ ✓ 86 97 92 86 95 92 75 90 85

Table 3: Comparison between different pair-wise TTC decoder designs on the Val14
set. P means precision, R means recall, RMSE means root mean square error.

TTC decoder Driving Score Risk Awareness Self-Consistency
OL NR-CL R-CL P↑ R↑ RMSE↓ P↑ R↑ RMSE↓

(a) Add up 89 82 72 0.61 0.55 0.79 0.69 0.75 0.53
(b) Cross attention 90 86 75 0.65 0.71 0.52 0.72 0.89 0.14

Table 4: Comparison between different time point choices for TTC estimation on the
Val14 set. P means precision, R means recall, RMSE means root mean square error.

Time Point Driving Score Risk Awareness Self-Consistency
OL NR-CL R-CL P↑ R↑ RMSE↓ P↑ R↑ RMSE↓

0.5s 90 84 75 0.70 0.86 0.40 0.75 0.93 0.10
1.0s 90 86 75 0.65 0.71 0.52 0.72 0.89 0.14
1.5s 90 85 73 0.62 0.68 0.61 0.68 0.85 0.29
2.0s 89 82 69 0.59 0.64 0.65 0.66 0.79 0.42
0.5s & 1.0s 90 85 74 0.66 0.78 0.44 0.73 0.92 0.12
1.0s & 1.5s 90 86 73 0.63 0.70 0.55 0.70 0.86 0.24

mance is compared in Tab. 3, focusing on their influence on the model’s final
driving capabilities and their abilities in predicting pair-wise TTCs. The latter
is evaluated through the precision and recall for the classification task and the
root mean square error for the regression task, for predicting the ego vehicle’s
future TTCs with all context agents. The cross-attention-based model, with its
higher capacity, can capture the interrelations between two agents more flexibly,
thereby significantly outperforming the alternative.
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Table 5: Comparison between different OHEM strategies. Coll means the metric "no
ego at fault collisions", TTC means the metric "time to collision within bound" (not
same as in the rest of the paper).

OHEM strategy Val14 Test14-random Test14-hard
NR-CL Coll TTC NR-CL Coll TTC NR-CL Coll TTC

w/o OHEM 85 95 89 85 95 91 73 88 81
Trajectory loss based 83 91 87 84 92 89 70 85 80
Self-consistency based 86 97 92 86 95 92 75 90 85
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Fig. 5: Comparison between different OHEM configurations on the Val14 set. Starting
OHEM at 1.0 training progress or keeping easy samples at 1.0 probability means not
applying OHEM.

Choice of the Time Point for TTC Estimation. The choice of how far into
the future to predict TTCs is an important hyperparameter for our method. In
Tab. 4, we present the impact of this choice on both the model’s final driving
capability and its performance in predicting pair-wise TTCs for the ego vehicle.
Predicting TTCs at more distant future time points is inherently more chal-
lenging, yet an appropriately challenging TTC estimation can better facilitate
improvements in driving capability, particularly in closed-loop evaluations. We
find that predicting TTCs at 1.0 seconds into the future offers the most signifi-
cant benefit to driving capability.
Comparison between OHEM strategies. In Tab. 5, we compare our pro-
posed self-consistency-induced OHEM against the traditional OHEM based on
trajectory imitation loss, with a particular focus on their impact on closed-
loop performance. The experimental results indicate that selecting hard samples
based on trajectory imitation loss leads to performance degradation, and our
method demonstrates a clear advantage.
Tuning OHEM Configuration. As discussed in Sec. 3.5, the effectiveness of
our proposed OHEM strategy is contingent on the model already having attained
a certain level of performance; thus, it is only feasible to apply our OHEM in
the later stages of training. It is also necessary to retain the two types of easy
samples with a certain probability. Fig. 5 illustrates the impact of these two
hyperparameters on the model’s performance in the non-reactive closed-loop
evaluation. For optimal performance, we begin OHEM after 80% of the training
process and retain easy samples with a 0.6 probability.
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Fig. 6: Visualized results. Each row presents four sequential snapshots of one scenario,
progressing from left to right. The current time step, ego vehicle’s speed, and accelera-
tion are documented at the bottom of each image. The bounding box in white indicates
the ego vehicle, the orange line depicts a 15-second human driving trajectory from the
dataset, and the blue line represents the trajectory planned by our model for the next 8
seconds. In the first scenario, the first and fourth images each highlight a context agent
with the model’s prediction of its TTC with the ego vehicle in one second. From top
to bottom, the scenarios illustrate: (1) the ego vehicle accelerates and safely navigates
through a complex pickup/dropoff area; (2) the ego vehicle notices pedestrians crossing
the road and brakes to wait; (3) the ego vehicle waits for pedestrians to cross and then
accelerates to initiate a right turn.

4.3 Visualized Results

In Fig. 6, we showcase some visualized experimental results of our method in
the non-reactive closed-loop simulation.

5 Conclusion

We present RaSc, an efficient model for trajectory planning. By incorporating
Time-To-Collision as a basis for driving decisions into training, we develop an
approach that enables an imitation learning-based model to (1) learn human
drivers’ risk awareness abilities and the motivations behind their actions; (2)
comprehend the consequences of its own actions; (3) identify hard samples during
training. RaSc achieves significant closed-loop performance gains and surpasses
previous state-of-the-arts. By RaSc, we demonstrate a way of combining tradi-
tional safety metrics with scalable learning algorithms, to bridge the prominent
mismatch between open-loop training and closed-loop deployment of planning
models, thus creating more reliable and aware autonomous driving systems.
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