
1

A Semi-relaxed Optimal Transport

In this section, we first discuss the advantages of our formulation. We then
demonstrate how to solve the semi-relaxed optimal transport using an efficient
scaling algorithm. Finally, we analyze the differences between our algorithm
and [7] in detail.

A.1 Analysis of our OT formulation

Without loss of generality, we consider our formulation as the following generic
form:

min
Q

⟨Q,C⟩F + γKL(Q⊤1M , µ) (1)

s.t. Q ∈ {Q ∈ RM×N |Q1N = ν}, (2)

where µ, ν are the prior marginal distribution of Q, and C is the cost matrix.
As analyzed in Appendix G.1, we observe that the imbalanced property of the
dataset is reflected in the model’s prediction P . OT generates pseudo labels
Q based on P and several distribution constraints. Unlike typical OT, which
imposes two equality constraints and enforces a uniform distribution, our relaxed
OT utilizes a relaxed KL constraint on cluster size. In optimizing our relaxed
OT, the optimal Q for < Q,− logP > is assigned based on the largest prediction
in P , capturing its imbalanced property. The KL constraints ensure that the
marginal distribution of Q remains close to the prior uniform distribution, avoiding
degenerate solutions while providing flexibility. Consequently, the optimal Q in
our relaxed OT accounts for both the inherent imbalanced distribution of classes
in P and the prior uniform distribution, generating pseudo labels that reflect the
imbalanced characteristics of P .

A.2 Efficient Solver

While the above formulation suits our problem, its quadratic time complexity is
unaffordable for large-scale problems. To solve this efficiently, motivated by [2],
we first introduce an entropic constraint, −ϵH(Q). Due to

⟨Q,C⟩F − ϵH(Q) = ϵ⟨Q,C/ϵ+ logQ⟩F = ϵ⟨Q, log
Q

e−C/ϵ
⟩F , (3)

The entropic semi-relaxed optimal transport can be reformulated as:

ϵ⟨Q, log
Q

e−C/ϵ
⟩F + γKL(Q⊤1M , µ) (4)

s.t. Q ∈ {Q ∈ RM×N |Q1N = ν}. (5)

This problem can then be approximately solved by an efficient scaling algorithm.
For more details, refer to [1].

2

Fig. 1: Comparison of two optimization algorithms.

A.3 Comparison with [7]

Zhang et al. [7] introduce an imbalanced self-labeling learning framework to
tackle the issue of novel class discovery in long-tailed scenarios. To generate
imbalanced pseudo-labels, they introduce an auxiliary variable w ∈ RN , which is
dynamically inferred during learning and encodes constraints on the cluster-size
distribution. Their formulation is as follows:

min
Q

⟨Q,C⟩F + γKL(w, µ) (6)

s.t. Q ∈ {Q ∈ RM×N |Q1N = ν,Q⊤1M = w}, (7)

Unlike our approach, they adopt a fixed γ. To optimize Equ.(6), they propose a
bi-level optimization strategy, alternately estimating cluster distributions and
generating pseudo labels by solving an optimal transport problem. Specifically,
they start with a fixed w and first minimize Equ.(6) with respect to Q. Since the
KL constraint term remains constant, this task reduces to a standard optimal
transport problem, which can be efficiently solved using the Sinkhorn-Knopp
Algorithm. Then, they optimize Equ.(6) with respect to w using simple gradient
descent.

While their bi-level optimization approximates the objective function, it
consumes significantly more time compared to the direct application of the light-
speed scaling algorithm. Additionally, it introduces extra hyperparameters w
for inner-loop optimization. As shown in Fig. 1, the scaling algorithm is faster
compared to the bi-level optimization strategy proposed by [7], making it feasible
to solve large-scale problems.

B Pseudo Code of our method

We provide a detailed description of our method in Alg.1 for clarity and have
released our code in https://github.com/RikkiXu/NCD_PC.

https://github.com/RikkiXu/NCD_PC

3

Algorithm 1: Dual-level Imbalanced-aware Self-labeling and Learning
Algorithm

Input: Trainset D, softmax function σ, encoder fθ, classifier
h = [hs, hu] ∈ RD×(|Cs|+|Cu|), µ = 1, uniform distribution ν,
hyperparameters γp, γr, λ, ρ, T, α, β, ϵ

for e ∈ 1, 2, .., Epoch do
for s ∈ 1, 2, ..., Step do
{(xs

i , y
s
i)}Ni=0, {xu

j }Mj=0 ← Sample(D)
//Cluster point into different regions by DBSCAN
{rk}Kk=0 ← DBSCAN({xu

j }Mj=0)
//Forward the model
ps = (hs ◦ fθ(xs)/τ)
zp = fθ(x

u), zr = {AvgPool(zp)|rk is same}
pup = (hu ◦ zp/τ), pur = (hu ◦ zr/τ)
//CE loss for known classes
Ls = − 1

N

∑N
i=1 y

s
i log p

s
i

//Point level self-labeling
Qu

p = − logPu
p , γp

t , ϵ
Lu

p = 1
M
⟨Qu

p ,− logPu
r ⟩F

//Region level self-labeling
Qu

r = − logPu
r , γr

t , ϵ
Lr

u = 1
K
⟨Qu

r ,− logPu
r ⟩F

//Update γp
t+1 and γr

t+1

if KL(1
M
Qu

p
⊤1M , ν) ≤ ρ consistently for T iterations then

γp
i+1 = λγp

i

end
if KL(1

K
Qu

r
⊤1M , ν) ≤ ρ consistently for T iterations then

γr
i+1 = λγr

i

end
//Total loss
minimize Ls + αLp

u + βLr
u w.r.t θ

end
end

C Dataset Splits

We follow [6] and partition SemanticKITTI and SemanticPOSS into four splits,
detailed in Tab. 1 and 2. It’s important to note that [6] balance the distribution
of novel classes across splits to prevent the most frequent novel class from
biasing other classes and to leverage semantic relationships between known and
novel classes. The left and middle plots in Fig. 2 illustrate the distributions of
SemanticKITTI and SemanticPOSS across these splits. However, this deliberate
selection of novel classes may not adequately address point cloud data imbalance.

To assess the generalization of our algorithm, we conduct experiments on
a more challenging benchmark. Here, we select half of the classes from Seman-

4

Table 1: The detail of novel classes in each split.

Split SemanticKITTI SemanticPOSS

0 building,road,sidewalk,terrain,vegetation building,car,ground,plants
1 car,fence,other-ground,parking,trunk bike,fence,person
2 motorcycle,other-vehicle,pole,traffic-sign,truck pole,traffic-sign,trunk
3 bicycle,bicyclist,motorcyclist,person cone-stone,rider,trashcan

Table 2: The detail of novel classes on the challenging setting of SemanticPOSS dataset.

Split SemanticPOSS

0 building,car,ground,plants,bike,fence,person
1 pole,traffic-sign,trunk,cone-stone,rider,trashcan

ticPOSS as novel classes, as depicted on the right side of Fig. 2. Results and
analysis are presented in Section 4.2.

Fig. 2: Distribution plot of the SemanticPOSS dataset. Each class has been assigned
the color of the split which has to be considered novel.

D Analysis on Detailed Results

To validate our method’s ability to handle imbalanced data distributions, we
compute the mIoU for head classes, medium classes, and tail classes within each
split. The results for both datasets are presented in Tab. 3 and Tab. 4. Specifically,
for SemanticPOSS, in the first split, there are a total of 4 novel classes. We choose
the two classes with the highest count as head classes, and the remaining two
are designated as medium and tail classes. In the other splits, which all have 3
novel classes, we sort them by size and assign them as head, medium, and tail
classes accordingly. For SemanticKITTI, we designated the largest class and the
smallest class within each split as head and tail classes, respectively, with the
rest categorized as medium classes.

5

Table 3: Detailed results for Semantic-
POSS

Method Head Medium Tail

NOPS 37.5 21.9 4.4
Ours 45.0 30.8 11.2

Table 4: Detailed results for Se-
manticKITTI

Method Head Medium Tail

NOPS 26.1 28.3 7.4
Ours 33.8 32.2 8.5

As shown in Tab. 3, in SemanticPOSS, our approach achieve improvements of
7.5%, 8.9%, and 6.8% for head, medium, and tail classes, respectively, compared
to NOPS. Similarly, in SemanticKITTI, our method yielded improvements of
7.7%, 3.9%, and 1.1% for head, medium, and tail classes, respectively. These
results demonstrate that our method effectively addresses imbalanced data sce-
narios by improving performance across all class categories. It’s worth noting
that NOPS utilizes additional techniques such as multi-head and overclustering
during training to enhance its performance, whereas our method achieves these
improvements without employing such techniques, highlighting its efficiency and
effectiveness.

E Comparison with NOPS variant

We observed that NOPS [6] employs a learning rate of 0.01 with SGD, which
proved excessively low and caused training not to converge. To ensure convergence,
we modified the optimization strategy by switching to the AdamW optimizer with
an initial learning rate of 1e-3, gradually decreasing to 1e-5 following a cosine
schedule. This adjustment successfully led to the convergence of NOPS during
training. The results, as shown in Tab. 5 and Tab. 6, indicate that while the
mIoU for known classes improves, there is a decrease in mIoU for novel classes
as a consequence. Nevertheless, our method continues to outperform NOPS by a
significant margin.

F Analysis of Adaptive Regularization

We visualize the curve depicting changes in the pseudo-label distribution before
and after adding adaptive regularization, as shown in Fig. 3. Initially, the pseudo-
label distribution in Baseline+ISL remains consistently uniform, with each of
the four classes occupying 25%. This indicates that the uniform constraint is too
strong during later stages of training, leading to a pseudo-label distribution that
tends towards uniformity, not reflecting the actual imbalanced point cloud data
and resulting in suboptimal outcomes.After applying adaptive regularization, we
dynamically adjust the uniform constraint based on the KL distance between the
pseudo-label distribution and a uniform distribution. As depicted in the right plot
of Fig. 3, the curves representing changes in the pseudo-label distribution for each
class do not converge towards uniformity. This demonstrates that our adaptive

6

Table 5: NOPS* denotes NOPS with our training setting.

Sp
lit

M
et
ho

d

bi
ke

bu
ild

.

ca
r

co
ne

.
fen

ce
gr
ou

.
pe

rs
.

pl
an

ts

po
le

rid
er

tr
af
.

tr
as
hc

.

tr
un

k
Nov

el

Kno
wn

All

Full 45.0 83.3 52.0 36.5 46.7 77.6 68.2 77.7 36.0 58.9 30.3 4.2 14.4 - - 48.5

0 NOPS 35.5 30.4 1.2 13.5 24.1 69.1 44.7 42.1 19.2 47.7 24.4 8.2 21.8 35.7 26.6 29.4
NOPS* 46.9 16.1 4.2 35.4 47.8 54.9 67.1 37.9 36.1 62.3 28.9 1.8 20.2 28.3 38.1 35.3
Ours 46.5 70.3 7.6 31.1 49.4 82.2 67.1 41.7 37.5 57.5 29.8 8.4 14.1 50.4 37.9 41.8

1 NOPS 29.4 71.4 28.7 12.2 3.9 78.2 56.8 74.2 18.3 38.9 23.3 13.7 23.5 30.0 38.2 36.4
NOPS* 21.5 83.2 49.9 29.7 20.0 77.7 29.6 77.3 37.4 58.0 26.2 3.4 15.5 23.7 45.8 40.7
Ours 31.5 83.2 48.7 25.423.9 77.3 53.1 77.1 32.5 57.3 35.0 9.3 18.0 36.2 46.4 44.0

2 NOPS 37.2 71.8 29.7 14.6 28.4 77.5 52.1 73.0 11.5 47.1 0.5 10.2 14.8 9.0 44.2 36.0
NOPS* 44.5 83.0 51.4 25.2 47.5 77.0 66.0 76.4 23.0 59.9 4.2 8.4 4.4 10.5 53.9 43.9
Ours 45.3 82.8 49.8 28.4 46.3 76.7 66.2 77.2 10.9 58.4 18.6 7.3 8.2 12.6 53.8 44.3

3 NOPS 38.6 70.4 30.9 0.0 29.4 76.5 56.0 71.8 17.0 31.9 26.2 1.0 22.6 10.9 43.9 36.3
NOPS* 44.4 83.1 46.9 0.2 43.0 77.9 65.2 78.0 34.8 45.3 32.4 1.9 14.5 15.8 52.0 43.7
Ours 45.5 82.9 47.7 0.0 45.1 77.8 66.3 77.7 34.3 49.1 35.6 4.0 15.3 17.7 52.8 44.7

Table 6: The novel class discovery results on the SemanticKITTI dataset. ‘Full’ denotes
the results obtained by supervised learning. The gray values are the novel classes in
each split.

M
et
ho

d

bi
.cl

e
b.
cls

t

bu
ild

.

ca
r

fen
ce

m
t.c

le

m
.cl

st

ot
h-
g.

ot
h-
v.

pa
rk
.

pe
rs
.

po
le

ro
ad

sid
e2
.

te
rr
a.

tr
aff

.
tr
uc

k
tr
un

k
ve
ge
t.

Nov
el

Kno
wn

All

Full 2.9 55.4 89.5 93.5 27.9 27.4 0.0 0.9 19.9 35.8 31.2 60.0 93.5 77.8 62.0 39.8 50.8 53.9 87.0 - - 47.9

NOPS 5.6 47.8 52.7 82.6 13.8 25.6 1.4 1.7 14.5 19.8 25.9 32.1 56.7 8.1 23.8 14.3 49.4 36.2 44.2 37.1 26.5 29.3
NOPS* 7.9 55.9 46.7 89.3 24.7 27.7 0.0 1.1 22.7 25.5 33.8 57.0 43.2 17.9 21.7 39.3 61.5 50.8 23.9 30.7 35.5 34.2
Ours 5.5 51.1 74.6 92.3 29.8 22.8 0.0 0.0 23.3 24.8 27.7 59.7 41.4 22.5 23.6 39.3 43.6 51.1 66.4 45.7 33.7 36.8

NOPS 7.4 51.2 84.5 50.9 7.3 28.9 1.8 0.0 22.2 19.4 30.4 37.6 90.1 72.2 60.8 16.8 57.3 49.3 85.1 25.4 46.2 40.7
NOPS* 2.1 52.3 89.2 52.3 6.5 27.1 0.0 0.0 18.4 17.5 33.1 59.3 90.2 77.2 61.9 39.9 53.1 19.5 86.7 19.2 49.8 41.9
Ours 3.7 57.4 89.2 56.517.3 20.3 0.0 0.0 20.0 30.6 34.8 60.6 93.2 77.6 62.0 38.7 56.9 39.2 86.7 28.7 50.1 44.5

NOPS 6.7 49.2 86.4 90.8 23.7 2.7 0.6 1.9 15.5 29.5 27.9 36.4 90.3 73.4 61.2 17.8 10.3 46.2 84.3 16.5 48.0 39.7
NOPS* 4.1 55.2 89.1 93.4 29.1 0.6 0.0 0.5 2.8 33.9 30.9 32.7 93.1 77.7 60.9 0.1 32.9 52.2 86.4 13.8 50.3 40.8
Ours 3.6 54.2 88.9 93.3 28.4 10.2 0.0 0.9 9.6 33.4 32.2 36.1 92.7 77.4 62.2 10.7 34.2 51.7 86.9 20.1 50.4 42.5

NOPS 2.3 27.8 86.0 89.9 23.1 24.5 2.9 3.1 18.2 30.1 16.3 39.9 90.7 73.5 61.0 17.4 49.8 44.0 83.2 12.4 49.0 41.2
NOPS* 2.3 16.9 89.5 93.9 28.2 27.5 0.0 0.6 25.3 34.2 3.1 60.4 93.2 77.7 61.3 38.9 67.0 54.4 86.6 5.6 55.9 45.3
Ours 2.6 32.5 88.7 93.3 28.1 24 0.1 1.0 23.7 35.6 15.3 59.8 93.2 77.6 61.4 37.8 56.6 52.1 86.7 12.6 54.6 45.8

Fig. 3: The pseudo label distribution before and after adding adaptive regularization

7

Fig. 4: Class distribution for different fixed γ during the training.

regularization, compared to a fixed γ, provides more flexibility in learning a
pseudo-label distribution that better aligns with imbalanced point cloud data.

To illustrate how γ affects the pseudo-label distribution, we present the class
distribution of four classes for different fixed γ values during training. As shown
in Fig. 4, we observe the following: 1. A small γ leads to a degenerate solution. 2.
Increasing γ gradually pushes the distribution towards uniformity. 3. Our adaptive
γ approach maintains flexibility, resulting in an imbalanced class distribution.

G More Analysis of Prototype

G.1 Initialization and updating process

In the beginning, the representation and prototypes are randomly initialized,
which is very noisy. However, there are three key factors that guarantee us to
gradually improve the representation and prototype. The first one is the learning
of seen classes, which improves the representation ability of our model, thus
improving the representation of novel classes implicitly. To prove that known
classes can help the representation of novel classes, we cluster the representation
of novel classes obtained from a known-class supervised pre-trained model and a
randomly initialized model on SemanticPOSS split 0.

The results indicate that features extracted from a known-class pre-trained
model exhibit better clustering performance compared to features extracted from
a randomly initialized model. The former outperforms the latter by nearly 7% in
mIoU for novel classes, demonstrating that known classes can indeed enhance
the representation of novel classes. The second one is the view-invariant training,
which learns invariant representation for different transformations and promotes
the representation directly. Some studies [5,8] have advanced unsupervised repre-
sentation learning for point clouds by incorporating transformation invariance.
The third one is the utilization of spatial prior, which enforces the point in
the same region to be coherent, which may be validated by Fig.3 and 4, and
unsupervised clustering [5, 9].

Those factors gradually improve the representation and prototype, leading to
an informative prediction P . Then, our adaptive self-labeling algorithm utilizes P
and several marginal distribution constraints to generate pseudo-label Q. Finally,
the Q guides the learning of representation and prototype. In conclusion, the
above three factors and our self-labeling learning process ensure our method

8

(a) After 1 epoch (b) After 2 epochs (c) After 3 epochs (d) After 4 epoch (e) After 5 epochs

(f) After 6 epochs (g) After 7 epoch (h) After 8 epochs (i) After 9 epochs (j) After 10 epoch

Fig. 5: The quality of the representation of unseen classes during training in Semantic-
POSS split 0. Blue dots are plants, green dots are the ground, orange are cars, and red
are buildings

Table 7: Ablation alternate design of region-level prototype on split 0 of SemanticPOSS
dataset. The results are on novel classes.

Prototype Sharing Building Car Ground Plants Avg

× 25.4 9.5 81.6 31.0 36.9
✓ 51.5 6.0 83.0 53.1 48.4

learns meaningful representation and prototypes gradually. Furthermore, we
visualize the representation of novel classes during training in Fig. 5, showing
that as the training time increases, the learned representation gradually becomes
better, validating our analysis.

G.2 Prototype sharing of region-level learning

We conduct experiments without sharing prototypes, and the results are depicted
in Tab. 7. It is noteworthy that utilizing two isolated prototypes results in a
significant drop of nearly 10% in performance in the novel class.

In addition, when prototypes are not shared, we visualize the similarity matrix
between the two prototypes. As shown in Fig. 6, we observe that the similarity
between the two prototypes is low, which validates that having two prototypes
leads to disparities in point-wise and region-wise learning directions. In contrast,
sharing a prototype avoids this issue.

9

Fig. 6: The similarity of two prototypes

Table 8: More ablation experiments on SemanticPOSS

Aug Two views ISL+AR+Region Building Car Ground Plants mIoU

✓ 22.1 2.1 34.4 24.8 20.9
✓ ✓ 46.3 1.9 34.5 18.6 25.3
✓ ✓ 21.6 2.7 76.6 26.1 31.8
✓ ✓ ✓ 51.5 6.0 83.0 53.1 48.4

H More details on augmentation

Using augmentation to create two views is a well-established technique for
learning a transformation-invariant representation, widely employed in novel class
discovery literature [3,4], and more recently applied in point clouds [5,6,9]. In our
comparison, the previous sota method [6] also adopts the same augmentation as
ours to generate two views. Therefore, our comparison ensures a fair assessment.

To show the effect of augmentation, we conduct ablation on the two views
and augmentation.

As Tab. 8, From the results above, we draw the following conclusion: 1)
Compare columns 1 and 2, augmentation on one view has improved by 4.4%
in novel classes compared with no augmentation; 2) Compare columns 2 and 4,
employing two views has improved by 23.1% in novel classes; 3) Compare column
3 and 4, our proposed techniques result in a significant improvement of 17%.

I More ablation study

We conduct additional ablation on split 0 of SemanticKITTI. The results are
shown in Tab. 9: Similar to SemanticPOSS, each component enhances perfor-
mance. Specifically, adaptive regularization and region-level learning individually
contribute to a 6.6% and 5.0% improvement in mIoU for the model.

10

Table 9: More ablation experiments on SemanticKITTI split 0

ISL AR Region Building Road Sidewalk Terrain Vegetation Avg

46.7 43.2 17.9 21.7 23.9 30.7
✓ 57.4 32.1 25.2 18.9 37.2 34.1
✓ ✓ 70.8 34.7 23.2 16.8 57.9 40.7
✓ ✓ ✓ 74.6 41.4 22.5 23.6 66.4 45.7

J More details on DBSCAN

J.1 Parameters for the DBSCAN algorithm

DBSCAN is a density-based clustering algorithm: given a set of points in some
space, it groups points close to each other, marking as outliers points that lie
alone in low-density regions. DBSCAN has two key parameters: epsilon and min-
samples. epsilon represents the maximum distance between two samples for one to
be considered as in the neighborhood of the other, while min-samples denote the
minimal number of samples in a region. In our experiments, we set min-samples
to be reasonable minimal 2, indicating that there must be at least two points
in a region. For epsilon, we determine a value of 0.5 based on the proportion
of outliers, ensuring that 95% of the point clouds participate in region branch
learning. In the following part, we conduct experiments with different epsilon
values and analyze the results.

J.2 Visual examples of the resultant regions

We present visualizations of regions under different epsilon values in Fig. 7. As
shown in the visualizations, a smaller epsilon results in more outliers and smaller
generated regions. Conversely, a higher epsilon leads to fewer outliers and larger
generated regions.

J.3 Sensitivity analysis of DBSCAN parameters

As shown in the Tab. 10, we supplement the proportion of outlier points in the
7th column and model training results under different epsilon in the 6th column.
To assess the quality of regions, we assign a category label to each region based
on the category with the highest point count within the region, with outliers
being disregarded, and then calculate the mIoU in the 8th column. The results
indicate that selecting 0.5 based on the outlier ratio yields satisfactory outcomes.
Moreover, fine-tuning epsilon, for instance, setting it to 0.7, leads to improved
performance. It is worth noting that the results first increased and then decreased
with the increase of epsilon. This is because when epsilon is low, as shown in
the visualization, there are more outliers, the generated region is smaller, and
less spatial context information is used. When epsilon is higher, the generated

11

Table 10: Model training results, proportion of outlier points, and region mIoU under
different epsilon. Region mIoU is the mIoU between regions label and ground true. The
region label is composed of each region label, which is the category with the most points
in each region. Region mIoU ignores outliers.

epsilon Building Car Plants Ground mIoU Outlier Region mIoU

0.1 41.5 1.7 45.6 80.7 42.4 45.6% 97.0
0.3 49.2 8.3 49.2 83.8 47.6 7.5% 84.5
0.5 51.5 6.0 53.1 83.0 48.4 2.5% 74.8
0.7 65.5 9.0 61.3 78.2 53.5 1.3% 64.5
1 49.2 8.9 55.3 82.9 49.1 0.5% 44.3

region is larger and the Regions mIoU is lower, resulting in noisy region-level
representation.

Fig. 7: Visualization of regions under different epsilon. For the first five pictures, the
black point clouds are outliers, which means that the point does not belong to any
region. Other random colors represent a region.

K More Visualization

To demonstrate the effectiveness of our method, we created a video to com-
pare NOPS with our prediction results, and our method shows a significant
improvement over NOPS.

References

1. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Scaling algorithms for unbalanced
optimal transport problems. Mathematics of Computation 87(314), 2563–2609 (2018)

12

Fig. 8: One frame from our video, the dataset being SemanticPOSS split 0.

2. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Ad-
vances in neural information processing systems 26 (2013)

3. Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi, M., Ricci, E.: A unified
objective for novel class discovery. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 9284–9292 (2021)

4. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Autonovel: Auto-
matically discovering and learning novel visual categories. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021)

5. Long, F., Yao, T., Qiu, Z., Li, L., Mei, T.: Pointclustering: Unsupervised point
cloud pre-training using transformation invariance in clustering. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
21824–21834 (2023)

6. Riz, L., Saltori, C., Ricci, E., Poiesi, F.: Novel class discovery for 3d point cloud
semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 9393–9402 (2023)

7. Zhang, C., Xu, R., He, X.: Novel class discovery for long-tailed recognition. Transac-
tions on Machine Learning Research (2023)

8. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features
on any point-cloud. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 10252–10263 (2021)

9. Zhang, Z., Yang, B., Wang, B., Li, B.: Growsp: Unsupervised semantic segmentation
of 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 17619–17629 (2023)

