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Abstract. We tackle the novel class discovery in point cloud segmen-
tation, which discovers novel classes based on the semantic knowledge
of seen classes. Existing work proposes an online point-wise clustering
method with a simplified equal class-size constraint on the novel classes
to avoid degenerate solutions. However, the inherent imbalanced distribu-
tion of novel classes in point clouds typically violates the equal class-size
constraint. Moreover, point-wise clustering ignores the rich spatial context
information of objects, which results in less expressive representation
for semantic segmentation. To address the above challenges, we pro-
pose a novel self-labeling strategy that adaptively generates high-quality
pseudo-labels for imbalanced classes during model training. In addition,
we develop a dual-level representation that incorporates regional consis-
tency into the point-level classifier learning, reducing noise in generated
segmentation. Finally, we conduct extensive experiments on two widely
used datasets, SemanticKITTI and SemanticPOSS, and the results show
our method outperforms the state of the art by a large margin.

Keywords: Novel class discovery · Point clouds semantic segmentation ·
Long-tailed learning

1 Introduction

Point cloud segmentation is a core problem in 3D perception [19] and potentially
useful for a wide range of applications, such as autonomous driving and intelligent
robotics [21, 29]. Recently, there has been tremendous progress in semantic
segmentation of point clouds due to the utilization of deep learning techniques [16,
17]. However, current segmentation methods primarily focus on a closed-world
setting where all the semantic classes are known beforehand. As such it has
difficulty in coping with open-world scenarios where both known and novel
classes coexist, which are commonly seen in real-world applications.

For open-world perception, a desirable capability is to automatically acquire
new concepts based on existing knowledge [15]. While there has been much
effort into addressing the problem of novel class discovery for 2D or RGBD
⋆ Both authors contributed equally. Code is available at Github.
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images [10, 14, 25, 41], few works have explored the corresponding task for 3D
point clouds. Only recently, Riz et al. [28] propose an online point-wise clustering
method for discovering novel classes in 3D point cloud segmentation. To avoid
degenerate solutions, their method relies on an equal class-size constraint on the
novel classes. Despite its promising results, such a simplified assumption faces two
key challenges: First, the distribution of novel classes in point clouds is inherently
imbalanced due to the different physical sizes of objects and the density of points.
Imposing the equal-size constraint can be restrictive, causing the splitting of
large classes or the merging of smaller ones. In addition, point-wise clustering
tends to ignore the rich spatial context information of objects, which leads to
less expressive representation for semantic segmentation.

To tackle the above challenges, we propose a dual-level adaptive self-labeling
framework for novel class discovery in point cloud segmentation. The key idea
of our approach is two-fold: 1) We design a novel self-labeling strategy that
adaptively generates high-quality imbalanced pseudo-labels for model training,
which facilitates clustering novel classes of varying sizes; 2) To incorporate
semantic context, we develop a dual-level representation of 3D points by grouping
points into regions and jointly learns the representations of novel classes at both
the point and region levels. Such a dual-level representation imposes additional
constraints on grouping the points likely belonging to the same category. This
helps in mitigating the noise in the generated segmentation.

Specifically, our framework employs an encoder to extract point features for
the input point cloud and average pooling to compute representations of pre-
computed regions. Both types of features are fed into a prototype-based classifier
to generate predictions across both known and novel categories for each point
and region. To learn the feature encoder and class prototypes, we introduce a self-
labeling-based learning procedure that iterates between pseudo-label generation
for the novel classes and the full model training with cross-entropy losses on
points and regions. Here the key step is to generate imbalanced pseudo labels,
which is formulated as a semi-relaxed Optimal Transport (OT) problem with
adaptive regularization on class distribution. Along with the training, we employ
a data-dependent annealing scheme to adjust the regularization strength. Such
a design prevents discovering degenerate solutions and meanwhile enhances the
model flexibility in learning the imbalanced data distributions.

To demonstrate the effectiveness of our approach, we conduct extensive exper-
iments on two widely-used datasets: SemanticKITTI [3] and SemanticPOSS [26].
The experimental results show that our method outperforms the state-of-the-art
approaches by a large margin. Additionally, we conduct comprehensive ablation
studies to evaluate the significance of the different components of our method.
The contributions of our method are summarized as follows:

1. We propose a novel adaptive self-labeling framework for novel class discovery
in point cloud segmentation, better modeling imbalanced novel classes.

2. We develop a dual-level representation for learning novel classes in point
cloud data, which incorporates semantic context via augmenting the point
prediction with regional consistency.
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3. Our method achieves significant performance improvement on the Semantic-
POSS and SemanticKITTI datasets across nearly all the experiment settings.

2 Related Work

Point cloud semantic segmentation. Point cloud semantic segmentation has
attracted much attention in recent years [7, 22,38,42]. While previous methods
have made significant progress, their primary focus is on closed-world scenarios
that heavily rely on annotations for each class and cannot address open-world
challenges. In contrast, we aim to develop a model to discover novel classes in
3D open-world scenarios. In the context of point cloud representation learning,
incorporating spatial context is pivotal for enhancing representation learning.
Several works [24,39] introduce a hierarchical representation learning strategy
that leverages regions as intermediaries to connect points and semantic clusters.
Unlike them, we develop a dual-level learning strategy that concurrently learns
to map points and regions to semantic classes. Thanks to the learning of region-
level representation, our method is less sensitive to the local noises in point
clouds. Moreover, we cluster regions into semantic classes by an imbalance-aware
self-labeling algorithm instead of simple K-Means.

Novel class discovery. The majority of research on Novel Class Discovery (NCD)
has focused on learning novel visual concepts in the 2D image domain via de-
signing a variety of unsupervised losses on novel class data or regularization
strategies [10,13,15,34,37,40]. Among them, EUMS [41] addresses novel class
discovery in semantic segmentation, employing a saliency model for clustering
novel classes, along with entropy ranking and dynamic reassignment for clean
pseudo labels. More relevantly, Zhang et al. [36] consider the NCD task in long-
tailed classification scenarios, and develop a bi-level optimization strategy for
model learning. It adopts a fixed regularization to prevent degeneracy, imposing
strong restrictions on learned representations, and a complex dual-loop itera-
tive optimization procedure. In contrast, we propose an adaptive regularization
strategy, which is critical for the success of our self-labeling algorithm. Moreover,
our formulation leads to a convex pseudo-label generation problem, efficiently
solvable by a fast scaling algorithm [6, 8] (see Appendix A for detailed com-
parisons). Perhaps most closely related to our work is [28], which explored the
NCD problem for the task of point cloud semantic segmentation. Assuming a
uniform distribution of novel classes, they develop an optimal-transport-based
self-labeling algorithm to cluster novel classes. However, the method neglects
intrinsic class imbalance and spatial context in point cloud data, often leading to
sub-optimal clustering results.

Optimal transport for pseudo labeling. Unlike naive pseudo labeling [20], Opti-
mal Transport (OT) [27,33]-based methods allow us to incorporate prior class
distribution into pseudo-labels generation. Therefore, it has been used as a
pseudo-labels generation strategy for a wide range of machine learning tasks,
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including semi-supervised learning [18,30,31], clustering [1, 4, 35], and domain
adaptation [5, 11, 23]. However, most of these works assume the prior class distri-
bution is either known or simply the uniform distribution, which is restrictive
for NCD. By contrast, we consider a more practical scenario, where the novel
class distribution is unknown and imbalanced, and design a semi-relaxed OT
formulation with a novel adaptive regularization.

3 Method

In this section, we first introduce the problem setup of novel class discovery for
point cloud segmentation and an overview of our method in Sec.3.1. We then
describe our network architecture, including dual-level representation of point
clouds in Sec.3.2. Subsequently, we present in detail our adaptive self-labeling
framework for model learning that discovers the novel classes in Sec.3.3. Finally,
we introduce our strategy to estimating the number of novel classes in Sec.3.4.

3.1 Problem Setup and Overview

For the task of point cloud segmentation, the novel class discovery problem
aims to learn to classify 3D points of a scene into known and novel semantic
classes from a dataset consisting of annotated points from the known classes and
unlabeled points from novel ones.

Formally, we consider a training set of 3D scenes, where each scene comprises
two parts: 1) an annotated part of the scene {(xs

n, y
s
n)}Nn=1, which belongs to

the known classes Cs and consists of original point clouds along with the cor-
responding labels for each point; 2) an unknown part of the scene {(xu

m)}Mm=1,
which belongs to the novel classes Cu and does not contain any label information.
These two sets Cs and Cu are mutually exclusive, i.e., Cs ∩ Cu = ∅. Our goal is
to learn a point cloud segmentation network that can accurately segment new
scenes in a test set, each of which includes both known and novel classes.

To tackle the challenge of discovering novel classes in point clouds, we introduce
a dual-level adaptive self-labeling framework to learn a segmentation network for
both known and novel classes. The key idea of our method includes two aspects:
1) utilizing the spatial smooth prior of point clouds to generate regions and
developing a dual-level representation that incorporates regional consistency into
the point-level classifier learning; 2) generating imbalance pseudo-labels with a
novel adaptive regularization. An overview of our framework is depicted in Fig.1.

3.2 Model Architecture

We adopt a generic segmentation model architecture consisting of a feature
encoder for the input point cloud and a classifier head to generate the point-wise
class label prediction. Note that to capture both known and novel classes, our
feature encoder is shared by all the classes Cs ∪ Cu and the output space of our
classifier head also includes known and novel classes. Below we first introduce
our feature representation and encoder, followed by the classifier head.
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Fig. 1: Our method starts with two views of the same point cloud (x and x̂) and clusters
the points into corresponding regions. Then, we extract individual point features via
a forward pass and calculate regional representations by averaging the point features
within each region. Next, we make predictions p by the classifier h, and generate pseudo
labels y for unlabeled points and regions using our novel adaptive self-labeling algorithm
(generating pseudo-labels does not involve gradients). Lastly, we exchange the pseudo
labels between the two views and update the model accordingly.

Dual-level Representation. Instead of treating each point independently, we
exploit the spatial smoothness prior to 3D objects in our representation learning.
To this end, we adopt a dual-level representation of point clouds that describes
the input scene at different granularity. Specifically, given an input point cloud X,
we first use a backbone network fθ to compute a point-wise feature Zp = {zpi },
where zpi ∈ RD×1. In this work, we employ MinkowskiUNet [7] for the backbone.
In addition, we cluster points into regions based on their coordinates and then
compute regional features by average pooling of point features. Concretely, during
training, we first utilize DBSCAN [9] to generate Ki regions, R = {rk}Ki

k=1, for
unlabeled point in sample i, and calculate the regional features as follows,

{rk}Ki

k=1 ← DBSCAN({xu
i }Mi=1), zrk = AvgPool{zpi |z

p
i = fθ(x

u
i ), x

u
i ∈ rk}, (1)

where zrk is the feature of region rk. Such a dual-level representation allows us to
enforce regional consistency in representation learning.

Prototype-based Classifier. We adopt a prototype-based classifier design for
generating the point-wise predictions. Specifically, we introduce a set of prototypes
for known and novel classes, denoted as h = [hs, hu] ∈ RD×(|Cs|+|Cu|), and D
denotes the dimension of the last-layer feature. For each point or region, we
compute the cosine similarity between its feature and the prototypes, followed by
Softmax to predict the class probabilities. Here we use the same set of prototypes
for the points and regions, which enforces a consistency constraint within each
region and results in a more compact representation for each class.
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Algorithm 1: Semi-relaxed Optimal Transport Algorithm
Function Self-Labeling(− logP, γ, ϵ)

K = exp(logP/ϵ), f ← γ
γ+ϵ

µ, ν ← 1
M
1M , 1

|Cu|1|Cu| //Marginal distribution
b0 ← 1|Cu| //Initialize b
while ∥bt+1 − bt∥ < 1e− 4 do

a← µ
Kbt

bt+1 ← ( ν
K⊤a

)f

end
Q←Mdiag(a)Kdiag(b)
return Q

end

3.3 Adaptive Self-labeling Framework

To handle class-imbalanced data, we propose an adaptive self-labeling framework
that dynamically generates imbalanced pseudo-labels. To this end, we adopt the
following loss function for the known and novel classes,

L = Ls + αLp
u + βLr

u, (2)

where Ls is the cross-entropy loss for known classes, Lp
u is point-level loss and

Lr
u is region-level loss for novel classes. α and β are weight parameters. For the

novel classes, we first generate pseudo-labels for points and regions by solving
a semi-relaxed Optimal Transport problem and then adopt the cross-entropy
loss with the generated labels. The pseudo-code of our algorithm is shown in
Appendix B and below we will focus on our novel pseudo-label generation process.

Imbalanced Pseudo Label Generation. The pseudo-labels generation for balanced
classes can be formulated as an optimal transport problem as follows [1,36]:

min
Q

1

M
⟨Q,− logPu⟩F , s.t. Q1|Cu| = 1M ,Q⊤1M =

M

|Cu|
1|Cu|, (3)

where Q ∈ RM×|Cu| are the pseudo labels of unlabeled data, <,>F is Frobenius
inner product and Pu are the output probabilities of the model. For imbalanced
point cloud data, we relax the second constraint on the class sizes in Eq. (3),
which leads to a parameterized semi-relaxed optimal transport problem as below:

min
Q
Fu(Q, γ) =

1

M
⟨Q,− logPu⟩F + γKL(

1

M
Q⊤1M ,

1

|Cu|
1|Cu|)

s.t. Q ∈ {Q ∈ RM×|Cu||Q1|Cu| = 1M}, (4)

where γ is a weight coefficient for balancing the constraint on cluster size distri-
bution in the second term. We further add an entropy term −ϵH( 1

MQ) to Eq. (4)
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and for any given γ, this entropic semi-relaxed OT problem can be efficiently
solved by fast scaling algorithms [6, 8]. Algorithm 1 outlines the optimization
process, and further details are provided in Appendix A.

In this work, we propose a novel adaptive regularization strategy that adjusts
the weight γ according to the progress of model learning, significantly improving
pseudo-label quality. Details of our strategy will be illustrated subsequently.

Adaptive Regularization Strategy. The objective Eq. (4) aims to strike a balance
between the distribution represented by model prediction Pu and the uniform
prior distribution. A large γ tends to prevent the model from learning a degenerate
solution, e.g. assigning all the samples into a single novel class, but it also restricts
the model’s capacity to learn the imbalanced data. One of our key insights is
that the imbalanced NCD learning requires an adaptive strategy for setting the
value of γ during the training. Intuitively, in the early training stage where the
model performance is relatively poor, a larger constraint on Q⊤1M is needed to
prevent degenerate solutions. As the training progresses, the model gradually
learns meaningful clusters for novel classes, and the constraint should be relaxed
to increase the flexibility of pseudo-label generation.

To achieve that, we develop an annealing-like strategy for adjusting γ, inspired
by the ReduceLROnPlateau method that reduces the learning rate when the
loss does not decrease. Here we employ the KL term in Eq. (4) as a guide
for decreasing γ, as the value of the KL term reflects the relationship between
the distribution of pseudo labels and the uniform distribution. Specifically, our
formulation for the adaptive regularization factor is as follows:

γt+1 = λγt, if KL(
1

M
Q⊤1M ,

1

|Cu|
1|Cu|) ≤ ρ consecutively for T iter. (5)

where ρ, λ, T and γ0 are hyperparameters. Compared to typical step decay and
cosine decay strategies, our adaptive strategy is aware of the model learning
process and allows for more flexible control of γ based on the characteristics of
the input itself.

Hyperparameter Search. To search the values of our hyperparameters, we design
an indicator score that can be computed on the training dataset. Specifically, our
indicator regularizes the total loss in Eq. (2) with a KL term that measures the
distance between the distribution of novel classes and the uniform distribution.
Formally, the indicator is defined as follows:

I = L+ γKL(
1

M
Q⊤1M ,

1

|Cu|
1|Cu|), (6)

where γ is obtained by Eq. (5). Empirically, this indicator score provides a
balanced evaluation of the model’s performance in the known and novel classes.

3.4 Estimate the number of novel classes

To deal with realistic scenarios, where the number of novel classes (Cu) is
unknown, we extend the classic estimation method [32] in NCD to point clouds
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semantic segmentation for estimating Cu. Specifically, we extract representation
from a known-class pre-trained model for training data, define a range of possible
total class counts ( |Cs| < |Call| < max classes), and apply Kmeans to cluster the
labeled and unlabeled point clouds across different |Call|. Then, we evaluate the
clustering performance of known classes under different |Call|, and select |Call|
with the highest clustering performance as the estimated |Call|.

4 Experiments

4.1 Experimental setup

Dataset. We perform evaluation on the widely-used SemanticKITTI [2, 3, 12]
and SemanticPOSS [26] datasets. The SemanticKITTI dataset consists of 19
semantic classes, while the SemanticPOSS dataset contains 13 semantic classes.
Both datasets have intrinsic class imbalances. For a fair comparison with existing
works [28], we divide the dataset into 4 splits and select one split as novel classes,
while treating the remaining splits as the known classes. Additionally, to assess
the effectiveness of our method under more challenging conditions, we further
split the SemanticPOSS dataset into two parts, selecting one part as novel classes.
The dataset details are provided in Appendix C.

Evaluation Metric. Following the official guidelines in SemanticKITTI and Se-
manticPOSS, we conduct evaluations on sequences 08 and 03, respectively. These
sequences contain both known and novel classes. For the known classes, we report
the IoU for each class. Regarding the novel classes, we employ the Hungarian
algorithm to initially match cluster labels with their corresponding ground truth
labels. Subsequently, we present the IoU values for each of these novel classes.
Additionally, we calculate the mean of columns across all known and novel classes.

Implementation Details. We follow [28] to adopt the MinkowskiUNet-34C [7] net-
work as our backbone. For the parameters in DBSCAN, we set the min_samples
to a reasonable value of 2, and select an epsilon value of 0.5, ensuring that 95%
of the point clouds are included in the region branch learning process. A detailed
analysis of DBSCAN is included in Appendix J. For the input point clouds, we
set the voxel size as 0.05 and utilize the scale and rotation augmentation to
generate two views. The scale range is from 0.95 to 1.05, and the rotation range
is from -π/20 to π/20 for three axes. We train 10 epochs and set batch size as
4 for all experiments. The optimizer is Adamw, and the initial learning rate is
1e-3, which decreases to 1e-5 by a cosine schedule. For the hyperparameters, we
set α = β = 1 and fix λ at 0.5. We choose T = 10 and ρ = 0.005 based on the
indicator mentioned in Sec. 3.3 and analyze them in the ablation study. Both
the point- and region-level self-labeling algorithms employ the same parameters.
All experiments are conducted on a single NVIDIA A100.
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Table 1: The novel class discovery results on SemanticPOSS dataset. ‘Number’ denotes
the number of points. ‘Full’ denotes the results obtained by supervised learning. The
gray values are the novel classes in each split.
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0
EUMS 25.7 4.0 0.6 16.4 29.4 36.8 43.8 28.5 13.1 26.8 18.2 3.3 16.9 17.4 21.5 20.3
NOPS 35.5 30.4 1.2 13.5 24.1 69.1 44.7 42.1 19.2 47.7 24.4 8.2 21.8 35.7 26.6 29.4
Ours 46.3 51.5 6.0 35.7 48.5 83.0 67.9 53.1 35.5 59.3 31.0 2.8 15.5 48.4 38.0 41.2

1
EUMS 15.2 68.0 28.0 24.0 11.9 75.1 36.0 74.5 26.9 48.6 26.0 5.6 23.1 21.0 40.0 35.6
NOPS 29.4 71.4 28.7 12.2 3.9 78.2 56.8 74.2 18.3 38.9 23.3 13.7 23.5 30.0 38.2 36.4
Ours 31.5 83.2 48.7 25.4 23.9 77.3 53.1 77.1 32.5 57.3 35.0 9.3 18.0 36.2 46.4 44.0

2
EUMS 40.1 69.5 27.7 13.5 34.9 76.0 54.7 75.6 5.3 39.2 7.8 8.5 11.9 8.3 44.0 35.7
NOPS 37.2 71.8 29.7 14.6 28.4 77.5 52.1 73.0 11.5 47.1 0.5 10.2 14.8 9.0 44.2 36.0
Ours 45.3 82.8 49.8 28.4 46.3 76.7 66.2 77.2 10.9 58.4 18.6 7.3 8.2 12.6 53.8 44.3

3
EUMS 41.2 70.7 28.1 4.3 38.3 76.7 38.3 75.4 25.8 34.3 28.3 0.4 24.4 13.0 44.7 37.4
NOPS 38.6 70.4 30.9 0.0 29.4 76.5 56.0 71.8 17.0 31.9 26.2 1.0 22.6 10.9 43.9 36.3
Ours 45.5 82.9 47.7 0.0 45.1 77.8 66.3 77.7 34.3 49.1 35.6 4.0 15.3 17.7 52.8 44.7

Table 2: Results on splits of SemanticPOSS dataset with more severe imbalance. The
gray values are the novel classes in each split. NOPS is based on its released code.
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1 NOPS 6.1 71.3 35.6 21.2 3.1 42.9 44.5 26.0 24.4 0.7 0.6 0.1 24.8 11.4 37.0 23.2
Ours 26.3 82.0 51.4 18.0 10.4 40.0 67.5 32.5 31.2 0.0 6.3 0.0 11.7 16.5 44.5 29.4

4.2 Results

SemanticPOSS Dataset. As presented in Tab. 1, our approach exhibits signif-
icant improvements in novel classes over the previous method across all four
splits. Specifically, we achieve an increase of 12.7% and 6.2% in split 0 and 1,
respectively. It is worth noting that the fully supervised upper bounds for novel
classes in split 0 and 1 are 72.7% and 53.3%, respectively, and the performance
gaps have been significantly reduced. In the more challenging split 2 and split
3, we observe gains of 3.6% and 4.7%, respectively. The corresponding upper
bounds for these splits are 26.9% and 33.2%, indicating their increased difficulty
compared to splits 0 and 1. On average, we achieve an IoU of 30.2% for novel
classes across all four splits, outperforming NOPS (22.5%) by 7.7%. In addition,
we provide a detailed comparison with NOPS on head, medium, and tail classes
in Appendix D, as well as under a more comparable setting that applies our
training strategy to NOPS in Appendix E.
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To further verify that our method can alleviate the imbalanced problem,
we divided the SemanticPOSS dataset into two splits, creating a more severe
imbalance scenario that poses a greater challenge for clustering novel classes. As
shown in Tab. 2, on novel classes, our method outperforms NOPS significantly on
both splits, with a margin of 7.6% on split 0 and 5.1% on split 1. In particular,
for the novel classes, we observe that our improvement mainly stems from the
medium classes, such as person and bike. It is worth noting that NOPS employs
extra training techniques, such as multihead and overclustering, whereas we use
a simpler pipeline without needing them, further demonstrating our effectiveness.

SemanticKITTI Dataset. The results in Tab. 3 demonstrate our superior perfor-
mance compared to previous methods on different splits. Specifically, we achieve
significant improvements of 8.6%, 3.3%, and 3.6% on splits 0, 1, and 2, re-
spectively, for novel classes. The supervised upper bounds for these splits are
82.0%, 42.4%, and 39.6%, respectively. In split 3, our results are slightly higher
than NOPS by 0.2%, possibly due to the scarce presence of these novel classes in
split 3. On average across all four splits, our approach achieves an IoU of 27.5%,
surpassing NOPS (23.4%) by 4.1% on novel classes.

Visualization Analysis. Additionally, in Fig. 2, we perform visual comparisons
on the results between NOPS and our method, and it is evident that our method
shows significant improvements compared to NOPS. Specifically, as shown in the
first row of Fig. 2, NOPS produces noisy predictions due to uniform constraints,
mixing medium classes (e.g., building) and tail classes (e.g., car). In the second
and third rows of Fig. 2, NOPS often confuses between medium and head classes,
such as building and plants, as well as parking and car. In contrast, our method
achieves better results for both datasets due to adaptive regularization and dual-
level representation learning, generating high-quality imbalanced pseudo labels.
More visual comparisons for additional splits are provided in the Appendix K.

4.3 Ablation Study

Component Analysis. To analyze the effectiveness of each component, we con-
duct extensive experiments on split 0 of the SemanticPOSS dataset. Here we
provide ablation on three components, including Imbalanced Self-Labeling (ISL),
Adaptive Regularization (AR), and Region-Level Branch (Region). As shown in
Tab. 4, compared to baseline which employs equal-size constraints, imbalanced
self-labeling improves performance by 4.2%. The confusion matrix in Fig. 3
indicates that except for the highly-accurate class “ground", there is a significant
improvement in the head and medium classes. This phenomenon is clearly de-
picted in Fig. 4, where the predictions of the baseline exhibit noticeable noise.
From the second and third rows of Tab. 4, the adaptive regularization leads
to a significant improvement of 8.2% in split0 and 4.5% in overall splits. As
shown in Fig. 3, adaptive regularization enhances the quality of pseudo-labels
for each class, especially for the head class (plants). We also visualize the class
distribution of pseudo-labels in Appendix F, which shows adaptive regularization
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Table 3: The novel class discovery results on the SemanticKITTI dataset. ‘Full’ denotes
the results obtained by supervised learning. The four groups represent the four splits in
turn, and the gray values are the novel classes in each split.
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Fig. 2: Visualization comparison between Our method and NOPS on the SemanticPOSS
and SemanticKITTI datasets. In the first and second rows, compared to NOPS, our
method achieves much better segmentation for the ‘Building’, significantly reducing
confusion with tail classes (such as ‘Car’) or medium classes (like ‘Plants’). In the third
row, our approach generates better segmentation for ‘Parking’ and ‘Car’.

provides greater flexibility than fixed regularization term. According to the third,
fourth and last rows of Tab. 4, the inclusion of the region-level branch leads to
a 9.1% improvement and an additional 4.2% improvement built upon the AR.
In addition, more experiments and analysis on prototype learning are included
in Appendix G. In Fig. 3, there’s a significant improvement in pseudo-labels for
each category, particularly for the tail class (car) and the head class (plants).
From Fig. 4, it is evident that the region-level branch can correct cases where a
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Table 4: Ablation study on SemanticPOSS, focusing on novel classes. ISL and AR
denote imbalanced self-labeling and regularization. Region denotes region-level learning.
The last two columns represent the average mIoU for split 0 and across all splits.

Split0 Overall
ISL AR Region Building Car Ground Plants Avg Avg

21.6 2.7 76.6 26.1 31.8 20.9
✓ 27.6 3.1 81.2 32.1 36.0 23.9
✓ ✓ 53.1 5.3 81.1 37.4 44.2 28.4
✓ ✓ 41.9 9.3 83.6 45.6 45.1 26.9
✓ ✓ ✓ 51.5 6.0 83.0 53.1 48.4 30.2

Fig. 3: Confusion Matrix, GT on the y-axis, Pseudo Label on the x-axis. (i, j) represents
the % of GT in class j assigned pseudo label i. We categorize ‘plants’ and ‘ground’ as
head classes, ‘building’ as medium, and ‘car’ as tail classes.

Fig. 4: Visualization analysis. The introduction of ISL notably reduces the misclassifi-
cation between ‘Plant’ and ‘Car’. Then, the integration of AR further mitigates the
confusion between ‘Plant’ and ‘Building’. Ultimately, the incorporation of Region com-
ponent (Ours) effectively minimizes the mix-up between ‘Plant’, ‘Car’, and ‘Building’.

Table 5: Analysis of adaptive regularization on SemanticPOSS dataset. GT denotes
we directly assign the ground truth distribution of cluster size.

γ 0.01 0.05 0.1 0.5 1 5 +∞ GT Adaptive

Split0 10.1 33.8 33.3 36.0 32.2 33.8 31.8 32.5 44.2

single object is mistakenly labeled as multiple categories. Due to the utilization of
spatial priors, where closely-located points are highly likely to belong to the same
category, our region-level branch can correct misclassifications by considering
context from neighboring points, preventing splitting a single object into multiple
entities. Those experiments validate the effectiveness of each component in our
method.
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Table 6: Comparison between Ours and NOPS with the estimated number of novel
classes in Split 0 of SemanticPOSS. The estimated Cu is 3, and the ground truth is 4.

Method Building Car Ground Plants Avg

NOPS 25.54 0.00 68.15 34.12 31.95
Ours 64.05 0.00 82.22 67.63 53.47

Estimate the number of novel classes. For computational simplicity, we conduct
experiments on splits 0 of the SemanticPOSS dataset and randomly sample
800,000 points from all scenes to estimate |Cu|. We set max classes to 50, which
is an estimate of the maximum number of new classes that might appear in a
typical scene. The estimated |Cu| is 3, which is close to the ground truth value
(GT is 4). Finally, we conduct experiments with |Cu| as 3. As Tab. 6 illustrated
our method still outperforms NOPS by a large margin.

Adaptive Regularization and Hyperparameters Selection. To analyze the impact
of adaptive regularization, we compare it with various fixed regularization factors,
as illustrated in Tab. 5. We notice that employing a very small fixed γ, such as
0.05 as indicated in the table, results in a weak prior constraint, and the model
tends to learn a degenerate solution where all samples are assigned to a single
cluster. When the γ increases to 0.5, the model achieves optimal results, but
the increment decreases when the γ further increases. Compared with adaptive
γ, the optimal results of fixed γ is nearly 8.2% lower, demonstrating that the
adoption of an adaptive γ not only enhances the model’s flexibility but also
prevents any performance degradation. Furthermore, we experiment with the
setup adopting the GT class distribution and substituting the KL constraint in
Eq. (4) with an equality constraint. Surprisingly, the results indicate that the GT
class distribution constraint is not the optimal solution for clustering imbalanced
novel classes. At last, in Fig. 5, we visualize the γ curves for SemanticPOSS in
four splits. Split 0 exhibits the highest rate of change, followed by Split 1, while
Splits 2 and 3 remain constant, indicating that our strategy is adaptive to each
dataset.

To further validate the effectiveness of adjusting γ based on KL divergence,
we also compare it with typical step decay and cosine annealing strategies. For
the step decay, we set the initial γ to 1 and decay it by multiplying it with λ
every epoch. For the cosine annealing approach, we also set the initial γ to 1 and
reduce it to the minimum value (min γ). From the Tab. 7 and Tab. 8, we observe
that the results of simple step decay and cosine annealing are nearly 10% worse
than adaptive γ (which is 44.2). We believe that these two typical strategies lack
flexibility compared to adaptive γ. They might not facilitate the adaptive control
of the γ decay process based on the model learning process.

To choose the hyperparameters ρ and T according to the indicator outlined
in Sec. 3.3, we conduct experiments for various values of ρ and T . The results
are displayed in Tab. 9 and Tab. 10. Additionally, we plot the indicator’s curve
for each experiment in Fig. 6 and 7. The plots reveal that when ρ falls within the
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Table 7: Step decay results

λ 0.1 0.3 0.5 0.7 0.9

Step decay 34.0 34.2 32.9 34.6 33.3

Table 8: Cosine annealing results

min γ 0.1 0.05 0.01 0.005 0.001

Cosine annealing 32.2 32.5 35.8 36.1 32.0

Table 9: The results for different ρ

ρ 0.05 0.01 0.005 0.001

Split0 10.08 45.84 44.21 33.11

Table 10: The results for different T

T 5 10 20 30

Split0 44.46 44.21 44.12 32.48

Fig. 5: γ variation Fig. 6: Selecting ρ Fig. 7: Selecting T

range of 0.01 to 0.005, and T is set between 5 and 20, the indicator value remains
low while achieving a high novel IoU. Those results demonstrate the efficiency of
our hyperparameters selection strategy and the robustness of our method.

Limitations. One limitation is our problem setup which follows [28] and only
addresses scenarios where unlabelled data constitutes novel classes. In contrast,
a more realistic open-world setting necessitates handling situations where both
known classes and novel classes lack labels. Nevertheless, we anticipate that our
method will establish a robust baseline and stimulate further research aimed at
addressing the challenges presented by practical open-world situations.

5 Conclusion

In this paper, we propose a novel dual-level adaptive self-labeling framework for
novel class discovery in point cloud segmentation. Our framework formulates the
pseudo label generation process as a Semi-relaxed Optimal Transport problem and
incorporates a novel data-dependent adaptive regularization factor to gradually
relax the constraint of the uniform prior based on the distribution of pseudo labels,
thereby generating higher-quality imbalanced pseudo labels for model learning.
In addition, we develop a dual-level representation that leverages the spatial
prior to generate region representation, which reduces the noise in generated
segmentation and enhances point-level classifier learning. Furthermore, we propose
a hyperparameters search strategy based on training sets. Extensive experiments
on two widely used datasets, SemanticKITTI and SemanticPOSS, demonstrate
the effectiveness of each component and the superiority of our method.
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