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This supplementary material provides details that are not included in the
main paper due to space limitations. We provide the explanation of deduction
details at Sec. 1 and advantages over DDPMs Sec. 2. Then the implementa-
tion details of EBDM will be presented at Sec. 3. Finally, we will present more
qualitative experiment results.

1 Brownian Bridge Diffusion Models

In this section, we provide more details of Brownian Bridge Diffusion Mod-
els (BBDM) [2]. The BBDM aims to connect two image domains via discrete
Brownian bridges. Assuming that the start point and end point of the diffusion
process, (x0,xT ) = (x,y) ∼ qdata(x,y), BBDM learns to approximately sam-
ple from qdata(x|y) by reversing the diffusion bridge with boundary distribution
qdata(x,y), given a training set of paired samples drawn from qdata(x,y).

1.1 Forward Process

Given initial state x0 and destination state y, the forward diffusion process of
the Brownian Bridge can be defined as:

p (xt | x0,xT ) = N (xt; (1−mt)x0 +mty, δtI)

where mt =
t

T
, δt = 2s(mt −m2

t )
(10)

where T is the total steps of the diffusion process, s is the variance factor, and δt
is the variance that is designed to preserve the maximum at t = 2/T as identity,
i.e. δmax = 1

2 . The variance factor s scales the maximum variance to control
diffusion diversity, and we set s = 1 as the default. The intermediate state xt in
its discrete form can be determined by calculating:

xt = (1−mt)x0 +mty +
√
δtϵt where ϵt ∼ N (0, I) (11)
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We can express x0 with xt and Eq. (11):

x0 =
1

1−mt

(
xt −mty −

√
δtϵt

)
(12)

Thus, the transition probability q (xt | xt−1,y) can be derived by substitut-
ing the expression of Eq. (11) and Eq. (12):

q (xt | xt−1,y) = N (xt; µ̂t(xt−1,y) , δ̂tI) (13)

where, µ̂t(xt−1,y) =
1−mt

1−mt−1
xt−1 +

(
mt −

1−mt

1−mt−1
mt−1

)
y

δ̂t = δt|t−1 = δt − δt−1
(1−mt)

2

(1−mt−1)
2

(14)

1.2 Reverse Process

The reverse process of BBDM is to predict xt−1 given xt:

pθ (xt−1 | xt,y) = N
(
xt−1; µθ (xt, t) , δ̃tI

)
(15)

where µθ (xt, t) represents the predicted mean, and δ̃t denotes the variance of
the noise at each step.

1.3 Training Objectives

The training procedure involves optimizing the Evidence Lower Bound (ELBO)
for the Brownian Bridge diffusion process, which is expressed as:

ELBO =− Eq

(
DKL (q (xT | x0,y) ∥p (xT | y)) ∵ xT = y

+

T∑
t=2

DKL (q (xt−1 | xt,x0,y) ∥pθ (xt−1 | xt,y))

− log pθ (x0 | x1,y)
) (16)

By combining Eq. (13) and Eq. (14), the formula q (xt−1 | xt,x0,y) in the
second term can be derived from Bayes’ theorem and the Markov chain property:

q (xt−1 | xt,x0,y) =
q (xt | xt−1,y) q (xt−1 | x0,y)

q (xt | x0,y)

= N
(
xt−1; µ̃t (xt,x0,y) , δ̃tI

) (17)

The mean value term µ̃t (xt,x0,y) can be reformulated as µ̃t (x0,y) by
utilizing reparameterization method [1]:
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µ̃t (xt,y) = cxtxt + cyty + cϵt

(
mt (y − x0) +

√
δtϵ

)
where, cxt =

δt−1

δt

1−mt

1−mt−1
+

δ̂t
δt

(1−mt−1)

cyt = mt−1 −mt
1−mt

1−mt−1

δt−1

δt

cϵt = (1−mt−1)
δ̂t
δt

(18)

And the variance term is:

δ̃t =
δ̂t · δt−1

δt
(19)

As the neural network ϵθ predict the noise, thus, the reverse process Eq. (15)
can be reformulated as:

µθ (xt,y, t) = cxtxt + cyty + cϵtϵθ (xt, t) (20)

Therefore, the training objective ELBO in Eq. (16) can be simplified as:

Ex0,y,ϵ

[
cϵt

∥∥∥mt (y − x0) +
√
δtϵ− ϵθ (xt, t)

∥∥∥2] (21)

The weighting function cxt, cyt, cϵt in Eq. (18) is used in Eq. (7) and (8).

2 Advantages over DDPMs.

The primary motivation for choosing BBDMs is to 1) reduce the number of
conditions and 2) utilize an end-to-end training framework.
1) Reducing the number of conditions. The primary motivation for choos-
ing the Brownian Bridge is to simplify the conditioning mechanism. By reducing
the number of conditions, thereby minimizing the parameters, training times,
and the risk of overfitting, while enhancing robustness. Increasing the number
of conditions c = {c1, · · · , cn} significantly impacts both training and perfor-
mance. The conditional distribution (Eq. 22), and reverse process (Eq. 23) can
be described as:

P (x|c) = P (x)

P (c1, . . . , cn)

N∏
i=1

P (ci | x) ∝
N∏
i=1

P (x | ci)
P (x)

(22)

pθ (xt−1|xt, c) := N (xt−1;µθ(xt, c, t), Σθ(xt, c, t)) (23)

As the number of conditions n grows, the loss function becomes more com-
plex affecting the modeling the µθ and Σθ. This complexity can be quantified by
the KL divergence between the true conditional distribution and the model dis-
tribution, indicating a more complex distribution that the model must learn to
approximate accurately, leading to convergence difficulties, gradient instability,
and the need for stronger regularization techniques. Simplifying the conditioning
mechanism mitigates these issues by:
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– Reducing parameters: Lower dimensionality in the conditional space de-
creases the number of parameters, leading the optimization landscape less
complex.

– Reduced demand for Data Requirement: Less data is needed to cover
the distributions with the same density due to the curse of dimensionality.

– Less training time: The Computational costs are reduced as the complex-
ity of computing the gradients reduces.

– Lower risk of overfitting. A simpler model is less likely to capture noise
and specific characteristics of the training data, due to the variance of the
function ϵθ(c, t) increases, adversely affecting generalization and stable train-
ing.

2) End-to-end training: SD-based method takes modular approaches4 that
are not trained end-to-end, posing a risk of unwanted information influencing the
inference. In contrast, our method benefits from an end-to-end training frame-
work, enhancing integration and performance, particularly in exemplar-guided
image translation tasks.

4 e.g . Stable Diffusion equipped with ControlNet and IP-Adapter.
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model z-shape channels channel
multiplier

attention
resolutions

total
parameters

trainable
parameters

BBDM-f4 64× 64× 3 128 1, 4, 8 32, 16, 8 437.81M 382.49M
Exemplar Net 64× 64× 3 128 1, 4, 8 32, 16, 8 404.82M 382.48M

Global Encoder - - - - 86.58M 0

EBDM-f4 64× 64× 3 128 1, 4, 8 32, 16, 8 929.21M 764.97M

Table 5: Network hyperparameters for EBDM and modules.

3 More Experiment Details

In this section, further implementation specifics of the EBDM are elucidated,
encompassing network hyperparameters (Tab. 5), optimization strategies, as well
as computational efficiency.

3.1 Datasets

We conduct three tasks to evaluate our model: Edge-to-photo, mask-to-photo,
and pose-to-photo. For mask-guided and edge-guided image generation tasks,
the CelebA-HQ [4] dataset is used and we construct the edge maps using the
Canny edge detector following [7,9]. For the pose-guided image generation task,
we use deepfashion [3] dataset that consists of 52, 712 images with a keypoints
annotation. The split of train and validation pairs is consistent with CoCosNet [7]
policies.

3.2 Training

All experiments are conducted utilizing a spatial resolution of 64×64 within the
latent space. During training, we use a batch size of 8 with gradient accumulation
2, each batch containing pairs of an input exemplar and condition following [7].
The model is trained with AdamW optimizer for the learning rate of 1.0e−5 and
learning rate decay with γ = 0.2. The Exponential Moving Average (EMA) was
adopted in the training procedure together with ReduceLROnPlateau learning
rate scheduler. Training is done on Pytorch framework and Nvidia RTX A6000
48GB GPU.

3.3 Autoencoders

We adopt the pretrained VQGAN presented in [5], which reduces images to
64 × 64 resolution in latent space. In edge-to-photo and mask-to-photo tasks
using CelebA-HQ [4], we use VQ-regularized autoencoder with downsampling
factor f = 4 and channel dimension 3. For the pose-to-photo task using Deep-
Fashion [3], we use KL-regularized autoencoder with downsampling factor f = 8
and channel dimension 4. Both the encoder and decoder are frozen during train-
ing for fair comparison.
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Methods FLOPs (1 steps) FLOPs (50 steps) # Parameters

SD-based 11.14 T 86.08 T 1308.7 M

Ours 11.37 T 61.72 T 764.97 M
(+2.0%) (-28.21%) (-41.55%)

Table 6: Comparisions of computational costs. Number of parameters and FLOP
counts with single and 50 steps in inference.

3.4 Computational Efficiency

Our method improves computational cost, as demonstrated in Tab. 6. Our
method achieves a -28.21% reduction of FLOPs indicating faster inference time.
Furthermore, in the inference stage, the SD-based model requires extensive grid
searches across the conditional parameters (e.g . guidance scale, control weight,
IP-adapter scale, etc.) to achieve plausible results, which consumes significant
resources. By reducing the number of conditions, our method improves efficiency
in both computational and practical uses.

3.5 Additional Qualitative Results

Lastly, we present further qualitative results in comparison with other techniques
in Figs. 7 to 9. Additional diverse samples with various control inputs are shown
in Figs. 10 to 12.

4 Limitations

Our approach utilizes the Brownian Bridge diffusion process in latent space [5]
to connect control and image latents effectively. However, the pre-trained VAE
Encoder that focuses on image representation limits its ability to process control
signals accurately, especially when differentiating semantically diverse elements
(such as background and face in mask), focusing more on color distance rather
than semantic discrepancies.

To mitigate this, prior studies [6,8] have introduced additional control guiders.
Yet, integrating these with the Brownian Bridge model, characterized by its re-
liance on two fixed endpoints, complicates the direct integration of such solutions.
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OursUNITECoCosNetControlExemplar

Fig. 7: Mask-to-image Qualitative comparisons on the CelebAHQ-HQ Dataset.
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OursUNITECoCosNetControlExemplar

Fig. 8: Edge-to-image Qualitative comparisons on the CelebA-HQ Dataset.
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OursDynaSTUNITECoCosNetControlExemplar

Fig. 9: Pose-to-image Qualitative comparisons on the DeepFashion Dataset.



10 E. Lee et al.

Exemplar
C
on
tro
l

Fig. 10: Mask-to-image on the CelebAHQ Dataset.
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Fig. 11: Edge-to-image on the CelebA-HQ Dataset.
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Fig. 12: Pose-to-image on the DeepFashion Dataset.
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