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Abstract. Exemplar-guided image translation, synthesizing photo-realistic
images that conform to both structural control and style exemplars, is
attracting attention due to its ability to enhance user control over style
manipulation. Previous methodologies have predominantly depended on
establishing dense correspondences across cross-domain inputs. Despite
these efforts, they incur quadratic memory and computational costs for
establishing dense correspondence, resulting in limited versatility and
performance degradation. In this paper, we propose a novel approach
termed Exemplar-guided Image Translation with Brownian-Bridge Dif-
fusion Models (EBDM). Our method formulates the task as a stochastic
Brownian bridge process, a diffusion process with a fixed initial point
as structure control and translates into the corresponding photo-realistic
image while being conditioned solely on the given exemplar image. To
efficiently guide the diffusion process toward the style of exemplar, we
delineate three pivotal components: the Global Encoder, the Exemplar
Network, and the Exemplar Attention Module to incorporate global and
detailed texture information from exemplar images. Leveraging Bridge
diffusion, the network can translate images from structure control while
exclusively conditioned on the exemplar style, leading to more robust
training and inference processes. We illustrate the superiority of our
method over competing approaches through comprehensive benchmark
evaluations and visual results.

Keywords: Generative model· Image Translation· Diffusion Models ·
Image Synthesis

1 Introduction

The rising interest in applications of image synthesis has led to a notable surge
in demand for image generation capabilities that extend beyond text prompts,
emphasizing control through exemplar images or structured inputs. Exemplar-
guided image translation task aims to generate photo-realistic images condi-
tioned on both a style exemplar image and specific structural controls, such as
segmentation masks, edge maps, or pose keypoints.
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Fig. 1: Motivation.(a) Existing methods with matching-than-generation framework,
(b) Widely used framework based on conditional noise-to-image diffusion model, and
(c) our framework based on Brownian bridge diffusion models.

To synthesize images guided by the style of an exemplar and structure con-
trols, pioneer works [13, 31, 42, 43, 48] have emerged. Formulated as an ill-posed
problem, these methods globally leverage the style of an exemplar. Despite
promising results, these methods overlook local details, which leads to com-
promised generation quality.

To enhance the capture of local styles from exemplar, significant efforts [20,
39, 54–56, 58, 61] have been explored to establish cross-domain correspondences
between input control and exemplar images, thereby imposing local style through
a matching process. Zhang et al . [58] have explored the construction of cross-
domain correspondences using cosine similarity for exemplar-based image trans-
lation and subsequent works [54–56,61] introduced various techniques to reduce
computational complexity and address many-to-one matching problems. More-
over, they predominantly capture style information at a coarse scale, which leads
to performance degradation, because their methods are significantly influenced
by the quality of warped intermediate features derived from sparse correspon-
dences between two domains, often failing to accurately reflect the dynamic
nature of matching. This failure leads to local distortion, blurred details, and
semantic inconsistency. Furthermore, models leveraging Generative Adversarial
Networks (GANs) face the intrinsic limitations of GANs, such as mode collapse,
limited diversity, and the out-of-range problem [15,53].

Recently, diffusion models [8, 34, 40, 41], which generate high-quality images
through iterative denoising processes, have attained significant success in the
field of image synthesis for their several advantages, including broader distri-
bution coverage, more stable training, and enhanced scalability compared to
GANs [2, 8]. As the surge in demand for customized image generation has ad-
vanced, Text-to-image (T2I) synthesis, conditioned on text prompts, has been
extensively explored in works such as [4, 29, 33]. Beyond mere text prompts,
numerous studies have sought solutions to address precise style through model
fine-tuning [10, 35], prompt engineering [5, 49]. Additionally, efforts have been
made to incorporate structure controls (i.e., edge, depth, mask, pose, etc.) [11,
28,47,57,60] as generative guidance.

Although diffusion models have demonstrated impressive performance, exemplar-
based image translation remains largely unexplored. First, it is challenging to
find an accurate prompt that conveys every desired aspect of an image. Second,
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it is hard to address exemplar style because fine-tuning offers quality at a high
cost, prompt engineering is more affordable but less detailed, and CLIP represen-
tations are not sufficient to address all details in visual cues. Lastly, achieving
simultaneous conditioning on both style exemplars and structured controls is
challenging, particularly because the diffusion process used in such tasks can be
highly sensitive to hyperparameters, including the guidance scales of structure
control and embeddings.

To solve the above issues, we introduce a sophisticated technique called
EBDMs (Exemplar-based image translation with Brownian bridge Diffusion Mod-
els) that fully leverages diffusion models. Our method leverages a stochastic
Brownian bridge process [19] that directly learns translation between two do-
mains, thus generating images from structure controls without any condition-
ing mechanism. To explore desired style control, we propose a Global Encoder
and Exemplar Network to leverage coarse and fine details from exemplar im-
ages. Moreover, the Exemplar Attention Module effectively consilates the tex-
ture information from the exemplar into the denoising process. Our method
can generate images by conditioning on structure control and style exemplars
with single conditioning simultaneously. We conduct extensive experiments on
various datasets, including mask-to-image, edge-to-image [23], and keypoint-to-
image [22]. The experimental results demonstrate the superiority of our approach
not only performance but also computational efficiency. The contribution of this
work can be summarized as follows:

– We introduce the EBDMs, a novel framework leveraging the stochastic Brow-
nian Bridge diffusion process that translates from structure control to a
photo-realistic image while effectively exploiting style from exemplars.

– The proposed method formulated the problem into a single-conditioned bridge
diffusion process that ensures the training and inference more robust.

– We propose Global Encoder, Exemplar Network, and Exemplar Attention
Module to address both global style and detailed texture of exemplar image.

– Extensive experiments demonstrate that our approach achieves favorable
performance on various exemplar-guided image translation tasks.

2 Related Works

2.1 Controllable Diffusion Models

Diffusion models [2,8,34,40,41] aim to synthesize images from random Gaussian
noise via an iterative denoising process. For customized image generation, recent
methods have explored text-guided image generation (T2I) [4,29,33,34,37] and
demonstrated extraordinary generative capabilities in modeling the intricacies
of complex images. GLIDE [29] aggregated the CLIP texture representations
utilizing classifier-free guidance [9]. DALLE-2 [33] proposed a cascade model
using the CLIP latent. VQ-Diffusion [4] proposed to learn the diffusion process
on the discrete latent space of VQ-VAE [46].
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To address the structure controls (such as mask, edge, pose, etc.), several
works have proposed fine-tuning approach [47] or adaptive models [28, 57, 60]
in addition to text prompts. ControlNet [57] proposed an adaptive network to
provide structure guidance to T2I models followed by Uni-ControlNet [60] which
expands to a unified framework to accept diverse control signals at once. Con-
currently, T2I-Adapter [28] introduces a more simple and lightweight adapter.
Such methods enable to provide the structural guidance to existing T2I diffusion
models thus providing more precise spatial control.

On the other hand, to accurately reflect the style of an exemplar, numerous
studies have been conducted such as model fine-tuning [3,10,16,35,52], prompt
engineering [5, 21, 49]. DreamBooth [35] proposed to fine-tune the T2I models
with exemplar image and LoRA [10] proposed a more effective tuning method.
IP-Adapter [52] proposed decoupled cross-attention to effectively inject exemplar
image features into the denoising network. Moreover, Guo et al . [5] proposed the
image-specific prompt learning method to learn domain-specific prompt vectors.
While other methods [6,26,27,36] enable zero-shot editing of an exemplar image
based on a target caption. Despite these method capabilities, it is challenging
to find the prompt that accurately generates the image a user envisions, mainly
because effectively reflects all desired aspects of an image through text, especially
those that are difficult or impossible to describe precisely.

2.2 Exemplar-guided Image Translation

The exemplar-guided image translation task involves generating an image based
on an input exemplar and structure controls such as an edge, pose, or mask. A
major challenge lies in effectively guiding the context within exemplars relative
to the input controls. The SPADE [31] framework proposed spatially-adaptive
normalization to generate an image from the semantic mask followed by class-
adaptive [43] and instance-adaptive [42]. While these approaches have shown
promising in global-style translation, they overlooked local details compromising
generation quality.

To address the local details, significant efforts have been focused on build-
ing dense correspondence. Zhang et al . [58] proposed building dense correspon-
dence between input semantic and exemplar image. Although their method has
shown promising results, their method is limited by many-to-one matching issues
and the quadratic computational and memory complexities of dense matching
operations, restricting it to capturing only coarse-scale warped features. To al-
leviate these issues, recent works introduced effective correspondence learning
such as GRU-assisted Patch-Match [61], unbalanced optimal transport [54], bi-
level feature alignment strategy [55], multi-scale dynamic sparse attention [20],
Cross-domain Feature Fusion Transformer [25] and Masked Adaptive Trans-
former [14]. Although they have demonstrated promising results, their matching-
based framework still suffers from inherent problems such as sparse matching.

Meanwhile, recent progress [11, 39, 50, 51] has leveraged diffusion models to
bridge the gap between style exemplars and structural controls. Seo et al . [39]
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proposed a two-staged framework, which is a matching module followed by a dif-
fusion module. Although they have successfully applied diffusion models, they
still heavily rely on a matching-based framework that does not fully utilize the
diffusion models. Paint-by-example [50] proposed self-supervised training for im-
age disentanglement and reorganization, while Composer [11] conceptualized an
image as a composition of several representations, suggesting a decompose-then-
recompose approach and ImageBrush [51] learns visual instructions. Although
they have demonstrated promising results, they offer limited control, typically
constrained to structure-preserving appearance changes or uncontrolled image-
to-image translation.

3 Preliminaries

3.1 Diffusion Models

The general idea of Denoising Diffusion Probabilistic Model (DDPM) [8] is to
generate images from Gaussian noise via T steps of an iterative denoising pro-
cess. It consists of two processes: the forward process and the reverse process.
Given the original data x0 ∼ qdata (x0), the forward diffusion process maps x0

into noisy latent variables {xt}Tt=0 can be obtained as: xt =
√
αtx0 +

√
1− αtϵ

where ϵ is the Gaussian noise and {αt}Tt=0 is pre-defined schedule. On the other
hand, the corresponding reverse process aims to predict the original data x0

starting from the pure Gaussian noise xT ∼ N (0, I) through iterative denoising
processes with pre-defined time steps. It is formulated as another Markov chain
as pθ (xt−1 | xt) := N

(
xt−1;µθ (xt, t) , σ

2
t I
)

with learned mean and fixed vari-
ance. The denoising network ϵθ is trained to predict the noise by minimizing a
weighted mean squared error loss, defined as:

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ (xt, t)∥22]. (1)

Similarly, the conditional diffusion models [36, 38] directly inject the condition
y into the training objective (eq. 1), such as L(θ) = Et,x0,ϵ ∥ϵ− ϵθ (xt,y, t)∥22.

3.2 Brownian Bridge Diffusion Models

A Brownian Bridge Diffusion Model (BBDM) [19] is an image-to-image transla-
tion framework based on a stochastic Brownian Bridge process. Unlike DDPM
that conclude at Gaussian noise xT ∼ N (0, I), BBDM assumes that both end-
points of the diffusion process as fixed data points from an arbitrary joint distri-
bution, i.e. (xT ,x0) ∼ qdata(X ,Y). The BBDM directly learns image-to-image
translation q(x0|xT ) with boundary distribution qdata(x0,xT ) independent of
any conditional process, that enhances the fidelity and diversity of the generated
samples. The forward process of the Brownian Bridge forms a bridge between
two fixed endpoints at t = 0 and T :

q (xt | x0,y) = N (xt; (1−mt)x0 +mty, δtI) , where y = xT (2)
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Fig. 2: Framework overview. The proposed EBDM framework is a based on (a)
Brownian Bridge Diffusion Model and composed of (b) Exemplar Network and a (c)
Global Encoder. Global Encoder encodes global style information and Exemplar Net-
work extracts texture information from exemplar image. Extracted texture and global
information is then used to guide the diffusion process via Exemplar Attention Module
and cross-attention, respectively.

where mt = t/T and variance term δt = 2(mt −m2
t ).

The reverse process of BBDM aims to predict xt−1 given xt:

pθ(xt−1 | xt,y) = N (xt−1;µθ (xt, t) , δ̃tI), (3)

where δ̃t is the variance of Gaussian noise at step t and µθ (xt, t) is the predicted
mean value of the noise, which is network to be learned. The training objective
of BBDM is optimizing the Evidence Lower Bound (ELBO), simplified as:

Ex0,y,ϵ [cϵt∥mt(y − x0) +
√
δtϵ− ϵθ(xt, t)∥2]. (4)

where cϵt is the coefficient term of estimated noise ϵθ in mean value term, µ̃t.

4 Methodology

In this section, we delineate our framework based upon discrete-time stochastic
Brownian Bridge diffusion process [19] for Exemplar-guided image translation
( Fig. 2). Given a control IX sampled from domain X alongside an exemplar
image IY from domain Y, the primary objective is to generate a target image
IX→Y that retains the structure of IX embodying the style of IY . The key to
our method is the infusion of style information from IY to guide the diffusion
trajectory of the target image. To facilitate this, our method integrates three
components: a denoising network equipped with an Exemplar Attention Mod-
ule, a Global Encoder, and Exemplar Network. The Global Encoder extracts
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global style information of IY and the Exemplar Network captures the appear-
ance features of IY . The Exemplar Attention Module selectively incorporates
appearance information into the denoising process.

In the following sections, we present a detailed explanation of the framework
(Sec. 4.1), training strategy (Sec. 4.2), and sampling strategy (Sec. 4.3).

4.1 Exemplar-guided Brownian Bridge Diffusion Models

Denoising Network. Employing the Brownian Bridge diffusion process, our
denoising U-Net directly learns the translation from the input controls IX to
images IX→Y that preserves the structures of controls. For efficient training and
inference, we employ the Stable Diffusion [34] framework. Specifically, given an
image I, the encoder E maps it into a latent space z = E (I), subsequently recon-
structed by the decoder Î = D (z). The denoising U-Net ϵθ learns to establish
the bridge from fixed initial point xT = zX to the target, x0 = zX→Y .

Unlike existing noise-to-image diffusion frameworks [28,57] embed the struc-
tural information through intricate frameworks, our approach translates from
structural control to images without explicit conditional operation. Consequently,
our framework is able to solely focus on exemplar information that fosters en-
hanced stable training and inference performance.
Global Encoder. The Global Encoder, utilizing DINOv2 [30], captures the
global style information from the exemplar image IY . Specifically, exemplar
image IY is processed through the Global Encoder, subsequently, [CLS] token is
extracted and passed through a linear layer to encapsulate global style attributes:

τθ(IY) = Linear (DINO(IY)[CLS]) ∈ Rc, (5)

where c denotes the dimension of [CLS] token. The global features are utilized
as global style information through a cross-attention mechanism, ensuring that
the synthesized output accurately reflects the exemplar’s global style.

In the context of text-to-image synthesis [8, 34], prior works have exten-
sively leveraged the CLIP image encoder to convey high-level semantic prompts
via cross-attention. This approach, however, primarily focuses on the seman-
tic alignment of prompts and images, thereby overlooking the representation of
detailed textures. Furthermore, our method does not need textual prompt align-
ment. Motivated by recent studies [17, 45] that have demonstrated the superior
proficiency of DINO [1,30] over CLIP [32] in encapsulating a broader capability of
semantic features in images, attributed to its self-supervised learning strategy,
our method incorporates the use of a pre-trained DINOv2 encoder to enhance the
semantic fidelity of generated images.
Exemplar Network. Notwithstanding the capability of Global Encoder in
capturing overarching style information, it is limited to the retention of fine-
grained details because it encodes exemplar in low resolution (2242). In contrast,
the exemplar-guided image translation tasks require higher fidelity to detail. To
this end, we introduce Exemplar Network, referred to ψθ, of which the objective
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is to capture the detailed texture information from the exemplar image, thereby
compensating for the global information.

The Exemplar Network adopts a siamese configuration akin to a denoising U-
Net, streamlined by omitting the redundant layers for enhanced efficiency during
training and inference. It encodes the exemplar zY into a feature maps {F l

1}Nl=0

across N blocks. Additionally, it processes the global information through cross-
attention mechanisms in each block. The exemplar features {F l

1}Nl=0 are then
integrated into the noise prediction branch via Exemplar Attention Module.

Exemplar Attention module. The straightforward approaches to integrate
additional features into the denoising network are concatenation [57, 60] or ad-
dition [28]/ However, in contrast to existing works in that control features are
spatially aligned with the target image, this approach is not suitable for our
task because the exemplar image and target control are not spatially aligned.
Therefore, we propose an Exemplar Attention Module to integrate the exem-
plar features from the Exemplar Network, F l

1 ∈ RC×H×W , into noise prediction
features, F l

2 ∈ RC×H×W for each l block. First, these features are concate-
nated into a spatial-wise: F l

in = concat(F l
1,F

l
2) ∈ RC×H×2W . Following this,

self-attention is applied to compute the spatial attention across the features:

Q = ϕlq(F
l
in), K = ϕlk(F

l
in), V = ϕlv(F

l
in)

F l
att =

QKT

√
V

, F l
EA = W lSoftmax(F l

att)V + F l
in

(6)

where Q,K and V represents query, key and value, respectively, ϕ (·) is layer-
specific 1 × 1 convolution operation, and W l is trainable parameter. Subse-
quently, exemplar-attended feature F l

EA ∈ RC×H×2W is segmented, with por-
tions corresponding to the denoising features are extracted and forwarded to-
ward the output, F l

out = Chunk(F l
EA, 2, dim=0) ∈ RC×H×W . The Exemplar

Attention Module computes the region of interest for each query position, a cru-
cial step in effectively directing the denoising steps towards the target exemplar
style. This approach enables the denoising process to selectively assimilate fea-
tures from the Exemplar Network, enhancing the fidelity of the output to the
desired stylistic attributes.

Training Objectives. The training process is performed by optimizing the
Evidence Lower Bound (ELBO), following BBDM [19], where the marginal dis-
tribution is conditioned on xT . Thus, the training objective ELBO in eq. 4 can
be simplified as:

Ex0,y,IY ,ϵ

[
cϵt

∥∥∥mt (xT − x0) +
√
δtϵ− ϵθ (xt, t, τθ(IY), ψθ(zY , τθ(IY))

∥∥∥2] ,
(7)

where cϵt is the loss weighting function that develops into 1/t, and δt denotes
the preserved variance schedule, δt = 2(mt −m2

t ).
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Algorithm 1 Training
1: repeat
2: (xT ,x0) ∼ qdata(X ,Y) ▷ Sample paired data
3: IY ∼ qdata(Y) ▷ Sample exemplar
4: t ∼ Uniform(1, . . . , T ) ▷ diffusion timesteps
5: tref ← 0 ▷ reference timestep
6: ϵ ∼ N (0, I) ▷ sample Gaussian noise
7: G← τθ(IY) ▷ Forward pass through Global Encoder
8: F ← ψθ(xY , tref ,G) ▷ Forward pass through Exemplar Network
9: xt ← (1−mt)x0 +mty +

√
δtϵ ▷ Forward bridge diffusion process

10: ∇θ

∥∥mt (y − x0) +
√
δtϵ− ϵθ (xt,G,F , t)

∥∥2
▷ Gradient descent step

11: until converged

Algorithm 2 Sampling
1: xT ∼ qdata(X ) ▷ Sample control input
2: IY ∼ qdata(Y) ▷ Sample exemplar input
3: t′s ← {t′S , · · · t′1} ∼ {tT , · · · , t1} ▷ S Inference timesteps
4: G← τθ(IY) ▷ Forward pass through Global Encoder
5: F ← ψθ(xY ,G) ▷ Forward pass through Exemplar Network
6: for s = S, . . . , 1 do
7: ϵ ∼ N (0, I) if s > 1, else ϵ = 0

8: xt′s−1
= cxt′sxt′s + cyt′sxT − cϵt′sϵθ

(
xt′s ,G,F , t

′
s

)
+
√
δ̃t′sϵ ▷ Take sampling step

return x0

4.2 Training Strategy

The training process is unfolded in two stages. In the first stage, denoising U-Net,
which utilizes the Global Encoder and cross-attention mechanism, is trained to
integrate the global style cues from the exemplar image. Throughout this phase,
the Exemplar Network is not engaged, and pre-trained parameters of VAE and
Global Encoder are kept frozen. The primary goal of this stage is to learn the
model to translate from the control into high-quality images that simultaneously
preserve the structure of the target control and embody the coarse style of the
exemplar. This is achieved through a reconstruction manner, wherein the target
image is synthesized using its control and the target image itself as the exemplar.

In the second stage, the Exemplar Network and Exemplar Attention Module
are incorporated into previously trained denoising U-Net. It enables focused
training of the Exemplar Network and the Exempler Attention Module within
the denoising U-Net, while the other parameters of the network are kept frozen.
The overall training is conducted following the strategy outlined in [58], which
employs the predefined exemplar and target pairs. This strategy facilitates a
concentrated learning process while emphasizing the detailed integration of the
exemplar style and specific characteristics of the target.
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Method DeepFashion CelebA-HQ (Edge) CelebA-HQ (Mask)
FID↓ SWD↓ LPIPS↑ FID↓ SWD↓ LPIPS↑ FID↓ SWD↓ LPIPS↑

Pix2PixHD [48] 25.20 16.40 N/A 42.70 33.30 N/A 43.69 34.82 N/A
SPADE [31] 36.20 27.80 0.231 31.50 26.90 0.187 39.17 29.78 0.254
SelectionGAN [44] 38.31 28.21 0.223 34.67 27.34 0.191 42.41 30.32 0.277
SMIS [63] 22.23 23.73 0.240 23.71 22.23 0.201 28.21 24.65 0.301
SEAN [62] 16.28 17.52 0.251 18.88 19.94 0.203 17.66 14.13 0.285
CoCosNet [58] 14.40 17.20 0.272 14.30 15.30 0.208 21.83 12.13 0.292
CoCosNetv2 [61] 12.81 16.53 0.283 12.85 14.62 0.218 20.64 11.21 0.303
UNITE [54] 13.08 16.65 0.278 13.15 14.91 0.213 N/A N/A N/A
RABIT [55] 12.58 16.03 0.284 11.67 14.22 0.219 20.44 11.18 0.307
MCL-Net [56] 12.89 16.24 0.286 12.52 14.21 0.216 N/A N/A N/A
MIDMs [39] 10.89 10.10 0.279 15.67 12.34 0.224 N/A N/A N/A
Ours 10.62 12.40 0.255 11.84 12.10 0.227 12.21 11.34 0.215

Table 3: Quantitative Results in image quality. Comparing our methods with state-
of-the-art exemplar-guided image translation methods.

4.3 Sampling Strategy

The inference process is similar to BBDM [19] that employs the deterministic
ODE sampler [40]. Given a inference timesteps {t′s}Ss=1 ∼ [1 : T ], the sampling
process is formulated as:

xt′s−1
= cxt′sxt′s

+ cyt′sxT − cϵt′sϵθ
(
xt′s

, τθ(IY), ψθ(xY , τθ(zY)), t
′
s

)
+
√
δ̃t′sϵ (8)

where cϵxt, cϵyt, cϵt are weighting coefficients for each terms. The whole training
process and sampling process are summarized in Alg. 1 and 2.

5 Experiments

In this section, we present the experimental results of the proposed method. We
conduct three tasks to evaluate our model: Edge-to-photo, mask-to-photo, and
pose-to-photo. We perform extensive ablation studies to analyze the effect of each
essential component of the proposed method. Also, we provide qualitative and
quantitative comparisons with state-of-the-art methods. Implementation details
and detailed architecture are described in supplementary material. Datasets.
We conduct three tasks to evaluate our model: Edge-to-photo, mask-to-photo,
and pose-to-photo. For mask-guided and edge-guided image generation tasks, the
CelebA-HQ [23] dataset is used and we construct the edge maps using the Canny
edge detector following [58, 61]. For the pose-guided image generation task, we
use deepfashion [22] dataset that consists of 52, 712 images with a keypoints
annotation. For all tasks, the split of train and validation pairs is consistent
with CoCosNet [58] policies.

5.1 Qualitative Evaluation

We present a comparison of qualitative results ( Fig. 3) with existing meth-
ods [20, 54, 58] at three tasks. The results demonstrate that our method effec-
tively transfers the detailed texture from the exemplar to the target, concurrently
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Fig. 3: Qualitative Results. Visual comparisons of the proposed EBDM and state-
of-the-art methods over three types of exemplar-guided image translation tasks.
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Method DeepFashion CelebA-HQ (Edge)
Sem. ↑ Col. ↑ Tex. ↑ Sem. ↑ Col. ↑ Tex. ↑

Pix2PixHD [48] 0.943 N/A N/A 0.914 N/A N/A
SPADE [31] 0.936 0.943 0.904 0.922 0.955 0.927
MUNIT [12] 0.910 0.893 0.861 0.848 0.939 0.884
EGSC-IT [24] 0.942 0.945 0.916 0.915 0.965 0.942
CoCosNet [58] 0.968 0.982 0.958 0.949 0.977 0.958

CoCosNet-v2 [61] 0.969 0.974 0.925 0.948 0.975 0.954
UNITE [54] 0.957 0.973 0.930 0.952 0.966 0.950
DynaST [20] 0.975 0.974 0.937 0.952 0.980 0.969
MIDMs [39] N/A N/A N/A 0.915 0.982 0.962

MATEBIT [14] N/A N/A N/A 0.949 0.986 0.966
Ours 0.932 0.982 0.939 0.920 0.984 0.968

Table 4: Quantitative metrics of semantic (Sem.), color (Col.), and texture (Tex.)
consistency on two datasets compared with state-of-the-art image synthesis methods.

preserving the structure of controls. Notably, in pose-to-photo, our approach
exhibits superiority in capturing detailed patterns and minor objects, such as
a cap, which other methods often overlook due to the limitation of matching
frameworks. These advantages show the capability of our proposed method that
fully leverages the diffusion framework that ensures a more holistic and precise
depiction. On the other hand, in edge-to-photo and mask-to-photo tasks, while
existing methods also achieve photo-realism, they often tend to overfit to the
ground truth (e.g . UNITE [54]), thereby constraining its generality. However,
our method not only accurately transposes the texture of the exemplar but also
adeptly conserves the structure. Moreover, the images synthesized through our
method demonstrably excel in photo-realistic attributes against other methods.

5.2 Quantitative Evaluation

Evaluation Metrics. We report the Fréchet Inception Distance (FID) [7] and
Sliced Wasserstein Distance (SWD) [18] metrics to evaluate the image perceptual
quality by reflecting the distance of feature distributions between real images and
generated samples. And we also measure LPIPS [59] to evaluate the diversity of
translated images. On the other hand, we show the semantic, color, and texture
consistency in Tab. 4, also under the same setting as [58].
Image Quality. Tab. 3 presents a quantitative evaluation against state-of-
the-art matching-based methods [20, 39, 54, 58, 61], showing that our method is
competitive both on image quality and diversity across various tasks. Addition-
ally, in the mask-to-photo task, our method demonstrates superior performance,
whereas matching-based methods struggle due to their reliance on cross-domain
matching—a notably arduous endeavor when masks offer scant correspondence
cues. Conversely, by leveraging diffusion models, our method iteratively trans-
lates images from masks via noise prediction. This enables our approach to excel
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GTOur 
Full Model

Baseline 
+DINO

Baseline 
+CLIPControlExemplar

Fig. 4: Visual Comparison based on the
choice of Exemplar Encoder.

Method SSIM↑ FID↓ Sem.↑
Baseline 0.831 16.31 0.531

Baseline+CLIP 0.632 23.42 0.752
Baseline+DINO 0.754 21.32 0.786

Ours 0.901 11.84 0.920

Table 1: Quantitative Results from the
Ablation Study.

GTOursControlNet
+IP-AdapterControlExemplar

Fig. 5: Qualitative Comparison to Stable
Diffusion based model.

Method SSIM↑ PSNR↓
SD+ControlNet 0.882 35.30

SD+ControlNet+CLIP 0.894 35.94
Ours 0.901 36.40

Table 2: Quantitative comparison to Sta-
ble diffusion based model.

in scenarios with limited direct correspondences, showcasing its robustness and
adaptability.
Consistency. The semantic and style consistency analysis ( Tab. 4) evidences
that our method either leads or remains competitive in style relevance scores,
encompassing color and texture dimensions. In the pose-to-photo domain, de-
spite achieving scores comparable to other methods [20,58], a visual assessment
( Fig. 3) reveals our method’s distinct proficiency in retaining intricate details
such as patterns or textures. This achievement is attributable to our integrated
framework, which combines the Exemplar Network and Global Encoder within
a Brownian bridge diffusion model construct. As a result, our methodology not
only yields photo-realistic images but also ensures the preservation of texture
and style congruence with the exemplar input, underscoring its effectiveness in
generating visually coherent outputs.

5.3 Comparison to State-of-the-Arts Diffusion Methods

We compare our framework against prevalent state-of-the-art (SOTA) diffusion-
based techniques, as shown in Fig. 5 and Tab. 2. Based on the Stable Diffusion
framework [34], we incorporate the ControlNet [57] and IP-Adapter [52] to fa-
cilitate structured and stylistic control, respectively. While the existing SOTA
method adeptly captures the control structure and generates photo-realistic im-
ages, our method more accurately reflects the style of the exemplar. Notably,
diffusion-based approaches, conditioned on multiple information including those
derived from ControlNet, textual prompts, and image embeddings, tend to be
overly sensitive to hyperparameters such as control and embedding guidance
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scales. Conversely, our model, predicated on a Brownian Bridge diffusion pro-
cess and exclusively conditioned on the exemplar, assures a more effective gen-
eration process. Moreover, the capacity of the existing methods for transferring
the finer details in exemplar is somewhat constrained by their reliance on CLIP
embeddings which often overlook small details. In contrast, our framework, un-
derpinned by the Exemplar Network and Exemplar Attention Module, demon-
strates superior adeptness in transposing textures from the exemplar.

5.4 Ablation Study

To validate the efficacy of our proposed architecture, we conduct ablation studies
focusing on the following configurations: (1) omitting the Global Encoder, (2)
utilizing the baseline model [19] integrated with CLIP, (3) implementing DINOv2,
and (4) employing our complete architecture on the edge-to-photo translation
task. As illustrated in Fig. 4, our findings reveal that the DINOv2-based Global
Encoder surpasses the CLIP in generating images with higher detail fidelity.
While CLIP effectively captures the general characteristics of the reference im-
age, ensuring a level of resemblance, it does not fully encapsulate the intricacies
of the details. Additionally, with our Exemplar Network, inputs with spatial mis-
aligned control and exemplar often result in the generation of "blurry" images
when relying exclusively on features of Global Encoder. In contrast, our com-
plete framework demonstrates superior performance across all assessed dimen-
sions, highlighting its architectural advantage. Quantitative assessments further
underscore the importance of our design choices, as detailed in Tab. 1.

6 Conclusion

In this study, we presented EBDM, a novel stochastic Brownian bridge diffusion-
based approach for exemplar-guided image translation. By leveraging the Brow-
nian Bridge framework, which translates from fixed data points as structural
control to photo-realistic images, our method is exclusively conditioned to the
style information, thereby the framework more robust and stable. Additionally,
we propose the Exemplar Network and Exemplar Attention Module to selectively
incorporate the style information from exemplar images into the denoising pro-
cess. Our method not only stands competitive or surpasses existing methods
across the three distinct tasks. Furthermore, our methods also achieve a sig-
nificant improvement in visual results not only in photorealism but also in the
precise transfer of fine details such as patterns and accessories present in the
exemplar images.
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