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In this supplementary material, we provide more comprehensive ablation
studies, comparisons of visual results with text-to-video methods, and additional
visual results of our method. Finally, we discuss the limitations and social impact
of this approach.

1 Implementation details

We take Stable Diffusion [7] with the pre-trained weights from version 2.13 as the
basic text-to-image diffusion and MiDas [6] with weights dpt_beit_large_5124.
The overall diffusion timesteps is 1000. We warp the latent code at timestep
t1=21 and add more degrees of noise to timestep t2=441. The threshold σ for
high-pass filter is 20 and the hyper-parameter λ for feature-correspondence guid-
ance is 300. We conducted the experiments on Titan-RTX GPU. The generated
speed is roughly 15 seconds per image.

2 Ablation studies

In this section, we first provide additional ablation results for Fig. 1 as referenced
from Fig. 3 in the main text. To enhance the robustness of our ablations, we
include one example for each experimental setup. The comprehensive results of
the ablation study for each component are illustrated in Fig. 1. For quantitative
results, please refer to Tab. 1 in the main text. The simplest method for tasks
involving infinite scene generation is frame-by-frame image warping. However,
this approach is impractical, as is the direct warping of the latent code. Warping
images results in non-integer pixel coordinates, which leads to interpolation-
induced blurring and distortion. Furthermore, these errors accumulate with each
generated frame, causing a significant degradation in quality, with the images
becoming progressively blurred, as shown in warp image and warp latent in
Fig. 1.

⋆ Corresponding author.
3 https://huggingface.co/stabilityai/stable-diffusion-2-1-base
4 https://github.com/isl-org/MiDaS

https://orcid.org/0000-0002-5895-5112
https://orcid.org/0000-0002-4947-0316
https://orcid.org/0009-0000-4930-1849
https://orcid.org/0000-0003-0057-1404
https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://github.com/isl-org/MiDaS


2 H. Kong et al.

warp image

full model = warp latent + DDPM + guidance + cross-view attn. + high-pass filter

warp latent

warp latent + DDPM

warp latent + DDPM + guidance

warp latent + DDPM + guidance + cross-view attn.

warp latent + DDPM + cross-view attn.

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Sa
mp
le
1

Sa
mp
le
2

Fig. 1: Ablation results for the key components. We perform ablation studies by
disabling the key components of our method. We illustrate every five frames for each
ablation experiment. Please zoom in for better comparisons.
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To address these challenges, we introduce DDPM to increase the degrees
of freedom for the diffusion model, facilitating the generation of high-quality
images (warp latent + DDPM). With the incorporation of DDPM, the CLIP
score improves from 0.125 to 0.308 for a series of 32 images. Nevertheless, the
introduction of DDPM inadvertently affects the semantic consistency between
adjacent frames.

To maintain the integrity of image content, and inspired by previous meth-
ods [2, 8], we integrate cross-view attention modules into our framework. As
demonstrated in warp latent + DDPM + cross attn. in Fig. 1, the consis-
tency of geometries across views is significantly improved compared to warp
latent + DDPM. To ensure high-quality image generation while also maintain-
ing consistency across adjacent views, we propose a feature-correspondence guid-
ance strategy. Comparing warp latent + DDPM + guidance with warp latent
+ DDPM + guidance + cross view attn., it is evident that semantic consis-
tency between adjacent frames is significantly enhanced after incorporating guid-
ance, as indicated by the noticeable improvements in both PSNR and SSIM
scores in Table 1 of the main text. To further improve the cross-view consistency
of high-frequency details, we have employed high-pass filtering. This approach
aids in preserving the high-frequency details of the current frame, thus enhancing
the semantic consistency of high-frequency details between consecutive frames.
For instance, the enhanced cross-view consistency, particularly of the house on
the left side in Fig. 1, illustrates the effectiveness of adding the proposed mod-
ules.

Then, we conduct more detailed ablation studies on each proposed module
in a Q&A manner.

Q1: Does DDIM inversion limit the reconstruction fidelity?

Enc DDIM
Inversion

𝒙𝒕𝟏
𝑰

DDIM
SamplingDec

𝑰′ Original
Image Reconstructed Image with different timestep t1.

𝑡1 = 1 𝑡1 = 999𝑡1 = 799𝑡1 = 599𝑡1 = 399𝑡1 = 199

DDIM inversion and reconstruction.

Fig. 2: DDIM inversion and image reconstruction. We illustrate the pipeline for
evaluating the reconstruction performance using DDIM inversion. The left side is the
pipeline and the right side is the reconstructed results at different timesteps t1. We
visualize two different result samples.

Before warping latent, the most important thing is to ensure we can recon-
struct the original image without any editing of the intermediate latent code. To
this end, we establish a simple experiment. We obtain the intermediate latent
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code xt1 at different timestep t1, denoising the noise, and decode the recon-
structed image. In Fig. 2, the left side is the pipeline of this experiment and
the right side is the reconstructed images at different timestep t1. We take two
sample images as examples. From the results, we can figure out that the images
can be reconstructed at different timestep t1.

Based on the former discussion, regarding the top branch in Fig. 2 in the main
text, the image at the current view can be reconstructed. The reconstruction of
the top branch is the foundation of the feature-correspondence guidance and
cross-view attention.

Q2: Why do the image sequences become blurrier when generating more images,
no matter whether warping the image or warping the latent code?

The 1st and 2nd rows in Fig. 3 in the main text show that the images become
blurrier when generating more images. Besides, the reconstruction results in
Fig. 2 show that DDIM inversion can reconstruct original images if there is no
editing for the intermediate latent code, i.e., warping. It is straightforward that
when we fly through, in other words, zoom in, the images, the images will become
much blurrier. This is because the warping operation leads to non-integer pixel
coordinates. Previous SOTA methods [1, 3, 4] train a refiner to add the details
and inpainting or outpainting the missing region when the camera is moving. In
this paper, we serve the pre-trained text-to-image diffusion model as a ‘refiner’
due to its powerful generation capacity.

Q3: Why DDPM forward is needed?

Enc DDIM
Inversion

!!!
"

DDIM
SamplingDec

"′

Warping

!′!!

DDPM
Forward

!′!"

$2 = 100

Fig. 3: Ablation studies for DDPM forward without high-pass filtering. To
evaluate the necessity of DDPM forward operation, we conduct ablation experiments
based on the simple pipeline. The corresponding ablation results are shown in Fig. 4

Now we analyze the necessity of the DDPM forward process. As illustrated
in Fig. 2 in the main text, we further apply DDPM forward after warping the
latent code. Comparing the 5th and 6th rows in Fig. 1, we can figure out that the
image quality improves a lot after DDPM is applied. The details are enhanced
and there is no distortion. The side effect of DDPM forward is that the correlation
between adjacent views degrades because more degrees of freedom are introduced
by DDPM.
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Fig. 4: The visualization results for evaluating DDPM forward without high-
pass filtering. We illustrate the results based on the pipeline shown in Fig. 3. We fix
the warping timestep t1 and generate image sequences with different DDPM forward
timesteps t2. To facilitate the comparisons, we further illustrate the generation results
using our overall pipeline at last. We visualize every five frames per sample.

To evaluate how DDPM affects the generation results, we fix the warping
timestep t1 and illustrate the generated image sequences with DDPM at various
timesteps t2. The pipeline of this ablation experiment is shown in Fig. 3. The
results are shown in Fig. 4. A smaller t2 means less degree of freedom for the
diffusion model, which can result in blurring and distortion. As shown in the
first two rows in Fig. 4, the generated images become blurrier when generating
more images. A proper t2 makes the geometry between adjacent views more
consistent. In the 3rd and 4rd rows in Fig. 4, the geometry layout in the image
sequences becomes consistent. For instance, the geometry of the house on the
left side of the image looks roughly consistent. Moreover, the image quality is
satisfied. As t2 becomes larger, more random noise are added to the warped
latent code. Though the image quality is promising, the consistency degrades a
lot. As shown in the 5th and 6th rows, the consistency across adjacent views is
much worse than 3th and 4th rows.

This ablation demonstrates that the DDPM forward module with a proper
timestep t2 improves the image quality. But the consistency is still not satisfied.
That’s the reason why we further propose the feature-correspondence guidance
strategy.

Moreover, since the high-pass filter preserves details from the previous view,
is it possible to remove DDPM forward and only use the high-pass filter? To this
end, we further conduct an ablation experiment. The pipeline for this ablation
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Fig. 5: Ablation studies for high-pass filtering without DDPM forward. To
analyze if the DDPM can be replaced by the high-pass filter, we conduct a simple
ablation based on this pipeline. The corresponding ablation results are shown in Fig. 6.

is shown in Fig. 5. In this pipeline, we remove DDPM forward operation and
add the high-pass filter when warping the latent code. The experimental results
are shown in Fig. 6. We show two results for each σ. No matter how large the
threshold σ is, the high-pass filter cannot help to preserve the details from previ-
ous view. The reason is that the high-pass filter can only preserve high-frequency
details from the previous view, rather than the low-frequency content. Combined
with the results shown in Fig. 7, the low-frequency information dominants the
content when combining frequencies from different images. As discussed before,
the content would become much blurrier when warping the latent code, which
motivates us to propose the feature-correspondence guidance strategy.

Q4: Will the combination of low and high frequencies from different images
break up the correlation of the frequency of the original image and introduce
more errors?

To evaluate the feasibility of the frequency combination, we conduct a toy
experiment, which is shown in Fig. 7. In this experiment, we first obtain the
frequency from two different images and combine the frequencies given different
threshold σ. As shown on the right side in Fig. 7, the content of Elon Musk
does not change much with different σ, which demonstrates the feasibility of
frequency combination. An extremely small σ, for instance, σ = 10, introduces
excessive details from van Gogh’s portrait.

In this toy experiment, the content of the two images is extremely different.
However, regarding the perpetual view generation task, the content of the adja-
cent view would not be so different. Now we analyze how different σ affects the
generation results. We apply all the proposed modules in this experiment and
change the σ value. The comparison results are shown in Fig. 8. As shown in
Fig. 8, a small σ neglects more low-frequency content from the previous view,
which results in an inconsistency between images. A large σ introduces less high-
frequency details from the previous view. Though looks consistent, the generated
images look not as realistic as σ = 20.
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Fig. 6: The visualization results for high-pass filter without DDPM forward.
To evaluate if we can preserve high quality from the previous view using the high-pass
filter, we remove the DDPM forward module and visualize the image sequences with
different threshold σ. To facilitate the comparisons, we further illustrate the generation
results using our overall pipeline at last. We visualize every five frames per sample.

The illustration of low and high frequency
combination from different images.

Reconstructed images from the combined frequency
by IFFT operation with various thresholds 𝜎.

𝜎 = 255 𝜎 = 216 𝜎 = 176 𝜎 = 136 𝜎 = 130 𝜎 = 90 𝜎 = 50 𝜎 = 30 𝜎 = 10

Image Frequency Frequency with
threshold 𝜎

Low Frequency

High Frequency

IFFT

Fig. 7: Toy experiments of low and high-frequency combination from differ-
ent images. Our toy experiments are illustrated on the left side. We combine the low
frequency of Elon Musk and the high frequency of Vincent van Gogh’s self-portrait
with various threshold σ. The higher σ, the more low-frequency of Elon Musk is used.
The results with various σ are illustrated on the right side. Please zoom in for compar-
isons.
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Fig. 8: Ablation studies on high-pass filter. We apply all the proposed modules
with various thresholds σ of the high-pass filter.

a street in a charming seaside town. The scene includes small, brightly colored houses, seafood restaurants, and a view of the sea and 
boats in the distance.

a tropical beach with crystal-clear turquoise waters and white sandy shores. Include palm trees swaying in the breeze, a hammock
strung between two trees, and a distant view of small islands on the horizon.

an endless, straight, and narrow cave, 8k, hyper realistic.
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Fig. 9: Qualitative comparisons of VideoFusion [5] and our DreamDrone. We
show the visualization results given three prompts and illustrate every five frames for
each sample.
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3 Additional qualitative comparisons

Our task bears similarities to text-to-video generation, with the key difference
being that text-to-video generation cannot be controlled by camera pose, and
the quality significantly diminishes as the number of generated frames increases.
VideoFusion [5], one of the state-of-the-art methods for video generation tasks,
has been visually compared with our method, which is illustrated in Fig. 9. It is
evident that VideoFusion’s generated results become blurry with an increase in
frame count, and the effect of camera movement is less pronounced. In contrast,
our method not only generates high-quality continuous scenes but also ensures
geometric consistency between frames, clearly conveying the camera’s forward
movement. Generating scenes in constrained environments like caves is more
challenging. VideoFusion does not perform well under such prompts, whereas
our method effectively demonstrates the effect of the camera advancing forward.

4 More visualization results

In this section, we provide more visualization results. We generate 120 images
for each prompt and visualize one image from every third frame. Please refer to
Figs. 10 and 11 for details.

5 Limitation

Given a prompt, our method can infinitely extend a scene without any training
or fine-tuning. However, there are some limitations to our approach. Firstly, as
our method is zero-shot and training-free, even with the introduction of feature-
correspondence guidance and cross-frame self-attention modules, the correspon-
dence of high-frequency details between adjacent frames is not yet perfect. Sec-
ondly, our method heavily relies on the accuracy of depth estimation. Although
the stable diffusion model exhibits some robustness, for scenes with special styles,
the entirely incorrect depth information leads to unsatisfactory generation re-
sults. We plan to address these shortcomings in our future work.

6 Social impact

We introduce a new method for creating perpetual scenes from text descriptions,
making it easier for people to generate high-quality images without needing com-
plex training or data. This breakthrough can help in various areas, such as mak-
ing educational content more engaging, aiding in environmental planning, and
giving creative professionals new tools to express their ideas. As this technology
becomes available, it’s important to use it wisely, ensuring it benefits society
and does not contribute to misinformation or unethical use. In essence, Dream-
Drone offers exciting possibilities for innovation while emphasizing the need for
responsible use.
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aerial view of city, lego style, high-resolution.

a scene of a straight and narrow path meandering through a forest in autumn. The trees are ablaze with red, orange, and yellow 
leaves, and the ground is covered with fallen foliage. The path leads towards a distant, cozy cottage.

a peaceful narrow and straight suburban street lined with family homes, manicured lawns at each side of the street.

Fig. 10: Visualization results of our DreamDrone. We generated 120 image se-
quences for each text prompt and visualized one image from every third frame to
demonstrate the model’s capability in producing diverse and stable visual outputs over
time.
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an old cobblestone lane winding through the countryside. The lane passes by traditional stone cottages with thatched roofs and 
well-tended gardens, evoking a sense of nostalgia and timeless beauty.

the vibrant and electric streets of Inazuma City from 'Genshin Impact'. The city combines traditional Japanese 
elements with a touch of fantasy. 

a country lane on a foggy morning. The lane is flanked by old trees and hedges, with the fog adding a mystical quality to the
landscape. The early morning light creates a soft, ethereal atmosphere.

Fig. 11: Visualization results of our DreamDrone. We generated 120 image se-
quences for each text prompt and visualized one image from every third frame to
demonstrate the model’s capability in producing diverse and stable visual outputs over
time.
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