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Backyards of Old Houses in Antwerp in the Snow, van Gogh.

the narrow path of a lush oasis in the midst of a vast desert. Palm trees and tropical plants surround a natural spring, creating a haven 
for wildlife. The golden sands of the desert stretch out in every direction, meeting the clear blue sky at the horizon.

Fig. 1: Visualization results of DreamDrone. Given a single scene image and the
textual description, our approach generates novel views corresponding to user-defined
camera trajectory, without fine-tuning on any dataset or reconstructing the 3D point
cloud in advance.

Abstract. We introduce DreamDrone, a novel zero-shot and training-
free pipeline for generating unbounded flythrough scenes from textual
prompts. Different from other methods that focus on warping images
frame by frame, we advocate explicitly warping the intermediate latent
code of the pre-trained text-to-image diffusion model for high-quality
image generation and generalization ability. To further enhance the fi-
delity of the generated images, we also propose a feature-correspondence-
guidance diffusion process and a high-pass filtering strategy to promote
geometric consistency and high-frequency detail consistency, respectively.
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Extensive experiments reveal that DreamDrone significantly surpasses
existing methods, delivering highly authentic scene generation with ex-
ceptional visual quality, without training or fine-tuning on datasets or
reconstructing 3D point clouds in advance.

1 Introduction

Recent advances in vision and graphics have enabled the synthesis of multi-
view consistent 3D scenes along extended camera trajectories [3, 7, 18, 20]. This
emerging task, termed perpetual view generation [20], involves synthesizing views
from a flying camera along an arbitrarily long trajectory, starting from a single
RGBD image.

Previous methodologies predominantly engage in warping images frame by
frame with traditional 3D geometric knowledge when given RGBD images and
subsequent camera extrinsic. However, this operation often leads to blurriness
and distortion in images, which arises from inaccurate interpolation, the mis-
match between discrete pixels and continuous transformations, and inaccurate
depth data. Moreover, such blurriness and distortion tend to amplify with the
accumulation of warp operations.

To further alleviate the errors caused by frame-by-frame warp operations,
two primary paths have been proposed. i) Some methods [3, 18, 20] try to train
a refiner on natural scene datasets. The advantage of this frame-by-frame ap-
proach is that it allows for arbitrary changes in camera trajectory during the
scene generation process, offering users a higher degree of freedom and enabling
infinite generation. However, this training-based method can only be used in
natural scenes and cannot be generalized to arbitrary indoor/outdoor scenes or
scenes of various styles. ii) Another solution is to first reconstruct the 3D scene
model using text prompts, then render 2D RGB images according to the cam-
era trajectory [7, 10, 52]. Although this solution yields more coherent 2D image
sequences, the quality of the rendered images highly depends on the quality of
the 3D scene model. This method cannot guarantee good rendering effects from
every viewpoint. Additionally, since this method requires the reconstruction of
3D point clouds, it cannot achieve "infinite" scene generation in the same way
as the frame-by-frame strategy.

In this paper, we advocate that a more general and flexible perpetual view
generation pipeline should possess the following capabilities:

i) are versatile across diverse scenes, including indoor and outdoor scenes, as
well as scenes depicted in various styles; ii) allow users to interactively control
the camera trajectory during the process of scene generation, while ensuring
the high quality of the generated images and the semantic consistency between
adjacent frames; and iii) enable seamless transitions from one scene to another.

To this end, we introduce DreamDrone, a novel zero-shot, training-free, in-
finite scene generation pipeline from text prompts, which does not require any
optimization or fine-tuning on any dataset. A core principle of our approach is to
warp the latent code of a pre-trained text-to-image diffusion model rather than
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the frames, enriching it with temporal and geometric consistency. To be specific,
given RGBD image I of the current view and camera rotation R and translation
T for the next view (which is interactively defined by users), we first obtain the
latent code xt1 of the diffusion model at timestep t1, warp it to latent code of
the next view x′

t1 based on R and T , and denoise x′
t1 to the image I ′ of the

next view. To ensure geometry consistency across adjacent views, we propose
a novel feature-correspondence-guidance diffusion process when denoising from
x′
t1 to image at the next view I ′. Moreover, we propose a novel high-pass fil-

ter mechanism when warping the latent code xt1 , for preserving high-frequency
details across adjacent views.

Our experiments demonstrate that the proposed DreamDrone effectively
leads to high-quality and geometry-consistent scene generation. Quantitative
and qualitative results demonstrate our comparable, even superior performance
compared with other training-based and training-free methods from the aspects
of temporal consistency and image quality. Moreover, the significant advantage
of DreamDrone is its versatility: it is adept not only at generating real-world
scenarios but also shows promising capabilities in creating imaginative scenes.
Additionally, users can interactively control the camera trajectory (Fig. 5) and
shuttle from one scene to another (Fig. 4). Our contributions are summarized as
follows:

– To our best knowledge, we are the first attempt to generate novel views by
explicitly warping the latent code of the pre-trained diffusion model.

– A novel feature-correspondence-guidance diffusion process is proposed to
enforce geometry consistency across adjacent views. Moreover, a high-pass
filtering strategy is introduced to preserve high-frequency details for novel
views.

– Extensive experiments demonstrate that our method generates high-quality
and geometry-consistent novel views for any scene, from realistic to fantas-
tical. More interestingly, our method realizes the scene shuttle, i.e., travels
from one scene to another when the user controls the camera trajectory.

2 Related Works

Perpetual view generation. Perpetual view generation extrapolates unseen con-
tent outside a single image. InfNat [20], InfNat-0 [18], and DiffDreamer [3] use
iterative training for long-trajectory perpetual view extrapolation. InfNat [20]
pioneered the perpetual view generation task with a database for infinite 2D land-
scapes. InfNat-0 [18] adapted this to 3D, introducing a render-refine-repeat phase
for novel views. DiffDreamer [3] improved consistency with image-conditioned
diffusion models. However, these methods lack robustness in complex and urban
environments. In very recent concurrent work, SceneScape [7] and WonderJour-
ney [52] firstly generate 3D point cloud for scene by zoom-out and inpainting
strategy. 2D image sequences are further rendered based on the reconstructed
3D point cloud. However, the accuracy of the 3D model critically impacts per-
formance, particularly with novel camera trajectories.
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Text-to-3D generation. Several text-to-3D generation methods [1,4,15,28,30,54]
apply text-3D pair databases to learning a mapping function. However, su-
pervised strategies remain challenging due to the lack of large-scale aligned
text-3D pairs. CLIP-based [33] 3D generation methods [12, 13, 16, 29, 56] ap-
ply pre-trained CLIP model to create 3D objects by formulating the genera-
tion as an optimization problem in the image domain. Recent text-to-3D meth-
ods like [19, 25, 26, 31, 38, 47, 50] blend text-to-image diffusion models [36] with
neural radiance fields [27] for training-free 3D object generation. Other ap-
proaches [21, 22, 35, 41] focus on novel view synthesis from a single image, of-
ten limited to single objects or small camera motion ranges. Text2room [10]
generates 3D indoor scenes from text prompts, but is confined to room meshes.

Text-to-video generation. Generating videos from textual descriptions [2, 9, 11,
24, 39, 40, 46, 55] poses significant challenges, primarily due to the scarcity of
high-quality, large-scale text-video datasets and the inherent complexity in mod-
eling temporal consistency and coherence. CogVideo [11] addresses this by incor-
porating temporal attention modules into the pre-trained text-to-image model
CogView2 [6]. The video diffusion model [9] employs a space-time factorized
U-Net, utilizing combined image and video data for training. Video LDM [2]
adopts a latent diffusion approach for generating high-resolution videos. How-
ever, these methods typically do not account for the underlying 3D scene ge-
ometry in scene-related video generation, nor do they offer explicit control over
camera movement. Additionally, their reliance on extensive training with large
datasets can be prohibitively costly. While T2V-0 [14] introduced the concept of
zero-shot text-to-video generation, its capability is limited to generating a small
number of novel frames, with diminished quality in longer video sequences.

3 Method

We formulate the task of perpetual view generation as follows: given a starting
image I, we generate the next view image I ′ corresponding to an arbitrary
camera pose {R, T }, where the camera pose can be specified or via user’s control.

3.1 Preliminaries

We implement our method based on the recent state-of-the-art text-to-image
diffusion model (i.e. Stable Diffusion [36]). Stable diffusion is a latent diffusion
model (LDM), which contains an autoencoder D(E(·))) and a U-Net [37] de-
noiser. Diffusion models are founded on two complementary random processes.
The DDPM forward process, in which Gaussian noise is progressively added to
the latent code of a clean image: x0:

xt =
√
αtx0 +

√
1− αtz, (1)

where z ∼ N (0, I) and {αt} are the noise schedule.
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The backward process is aimed at gradually denoising xT , where at each step
a cleaner image is obtained. This process is achieved by a U-Net ϵθ that predicts
the added noise z. Each step of the backward process consists of applying ϵθ to
the current xt, and adding a Gaussian noise perturbation to obtain a cleaner
xt−1.

Classifier-guided DDIM sampling [5] aims to generate images from noise con-
ditioned on the class label. Given the diffusion model ϵθ, the latent code xt at
timestep t, the classifier pθ(y|xt), and the gradient scale s, the sampling process
for obtaining xt−1 is formulated as:

ϵ̂ = ϵθ(xt)−
√
ᾱt−1▽xt

log pϕ(y|xt), (2)

and

xt−1 =
√
ᾱt−1 ·

xt −
√
1− ᾱtϵ̂√
ᾱt

+
√

1− ᾱt−1ϵ̂, (3)

where α is the denoise schedule.
In the self-attention block of the U-Net, features are projected into queries

Q, keys K, and values V. The output of the block o is obtained by:

o = AV, where A = Softmax(QK⊤) (4)

The self-attention operation allows for long-range interactions between image
tokens.

3.2 Overview

Perpetual view generation as the camera moves presents a complex challenge.
This process involves seamlessly filling in unseen regions caused by image warp-
ing, adding details to objects as they come closer, while ensuring the imagery
remains realistic and diverse. Prior works [3, 18, 20] have focused on training a
refiner to enhance details and create new content for areas requiring inpainting
or outpainting. These efforts have shown promising outcomes, yet the effective-
ness of the refiner is generally limited to scenarios that align with the training
dataset.

Since diffusion models can generate high-quality large-variety images from
random latent code, a direct solution arises: can we modify the powerful pre-
trained text-to-image diffusion model as a refiner? Empirically, DDIM inversion
strategy [14, 43] can obtain the intermediate latent code at each timestep and
the image can be reconstructed by those latent codes. To this end, we attempt
to explicitly warp the latent code of the current view and generate the novel
view by the pre-trained text-to-image diffusion model.

Our overall pipeline is illustrated in Fig. 2. Initially, we obtain the latent
code xt1 of the current view’s RGB image I at timestep t1 through the DDIM
inversion process. We then warp the current frame’s latent code xt1 to the next
view x′

t1 using depth information and camera extrinsic parameters. However,
directly denoising from x′

t1 to the image also suffers from blurry, which re-
sults in the non-integer pixel coordinates and the interpolation operation. More
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Fig. 2: Overview of our proposed pipeline. Starting from a real or generated
RGBD (I, D) image at the current view, we apply DDIM inversion to obtain interme-
diate latent code xt1 at timestep t1 using a pre-trained U-Net model. A warping with
the high-pass filter strategy is applied to generate latent code for the next novel view.
A few more DDPM forward steps from timestep t1 to t2 are applied for enlarging the
degree of freedom w.r.t. the warped latent code. In the denoising process, we apply
pre-trained U-Net to generate the novel view from x′

t2 . The cross-view self-attention
module and feature-correspondence guidance are applied to maintain the geometry
correspondence between xt2 and x′

t2 . The right side shows the warped image and our
generated novel view I ′. Our method greatly alleviates blurring, inconsistency, and
distortion. The overall pipeline is zero-shot and training-free.

noise is added from x′
t1 at timestep t1 to x′

t2 at timestep t2 by DDPM for-
ward operation, for generating high-quality images. The side effect of DDPM
is the geometry inconsistency between adjacent views. To this end, we propose
a feature-correspondence-guidance denoising strategy to enforce geometry con-
sistency. Moreover, a high-pass filtering strategy is proposed to maintain the
consistency of high-frequency details between adjacent views. Please refer to
Fig. 3 for the motivation of our proposed modules. Our overall pipeline requires
only a pre-trained text-to-image diffusion model and a depth estimation model,
eliminating the need for any additional training or fine-tuning.

3.3 Warping latent codes

Algorithm 1 Warping latent code with high-pass filter
Require: xt ▷ latent code at timestep t of current view c
1: F (xt)← FFT (xt) ▷ Apply Fast Fourier Transform
2: Split F (xt) into Flow and Fhigh using threshold σ
3: xlow

t ← IFFT (Flow) ▷ Inverse FFT on low-frequency component
4: xlow−warped

t ← warp(xlow
t ) ▷ warp the low-frequency content

5: Fwarped ← FFT (xlow−warped
t ) ▷ FFT on warped content

6: F ′ ← Fwarped + Fhigh ▷ Combine low-frequency of warped content with
high-frequency of original content

7: x′
t ← IFFT (F ′) ▷ Inverse FFT to get latent code for next view c′

return x′
t ▷ warped latent code at timestep t for next view c′
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The results in the right side of Fig. 2 reveal that directly warping images
based on camera intrinsics K, extrinsics {R, T }, and depth information leads
to regions of distortion in the images. Additionally, the use of inpainting [23,
36, 53] and outpainting [17, 49, 51] models to fill these gaps does not achieve
satisfactory outcomes. In pursuit of photo-realistic images, we opt to edit the
latent code corresponding to timestep t. PnP [44] and DIFT [42] have shown that
the features of diffusion possess strong semantic information, with semantic parts
being shared across images at each step. The simplest method for warping the
latent code follows the same approach as warping the image. The only difference
between warping the latent code and warping the image is a slight modification
in the camera intrinsics; this entails scaling the camera intrinsics proportionally
based on the different resolutions of the image and latent code.

The overall procedure for warping the latent code is illustrated in Alg. 1.
Initially, a latent code xt is obtained and transformed via Fast Fourier Transform
(FFT) to F (xt). This is divided into low-frequency Flow and high-frequency
Fhigh components, segregated at threshold σ. The key step involves warping the
Inverse FFT (IFFT) processed low-frequency component xlow

t = IFFT(Flow),
warping to the next view xlow−warped

t . Merging FFT(xlow−warped
t ) with Fhigh,

we obtain F ′, from which the final latent code x′
t = IFFT(F ′) is reconstructed.

This approach efficiently preserves high-frequency details, enabling high-fidelity
scene generation aligned with text prompts.

3.4 Feature-correspondence-guidance design

After obtaining the latent code x′
t corresponding to the next frame, we employ

the DDPM (Denoising Diffusion Probabilistic Models) method to increase the
degrees of freedom of the latent code, enabling the generation of richer image
details. However, increasing freedom introduces a challenge: the correlation be-
tween frames. An unconstrained diffusion denoising process can result in poor
semantic correlation between adjacent frames. To address this, we propose a
feature-correspondence guidance strategy with a cross-view self-attention mech-
anism. We introduce these approaches in detail below.

Cross-view self-attention. To maintain consistency between the generated result
and the original image, inspired by recent image and video editing works [8,
44, 45, 48], we modify the process of the self-attention module of U-Net when
denoising the latent code x′

t. Specifically, we denoise the views for the current
and next view together. The key and value of the self-attention modules from the
next view are replaced by that of the current view. To be specific, for obtaining
the original view, the self-attention module is defined the same as Eq. (4). The
modified cross-view self-attention for generating a novel view is defined as:

o′ = A′V, where A′ = Softmax(Q′K⊤), (5)

where Q′, A′, and o′ are query, attention matrix, and output features for the
novel views. K and V are injected keys and values obtained from the self-
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attention module for generating the original view. Please note that the K and
V are also warped before injection.

Feature-correspondence guidance. Maintaining geometry consistency between
adjacent views using the cross-view self-attention mechanism presents challenges,
especially in preserving high-frequency details as the camera moves forward. The
recent DIFT [42] highlights the potential of using intermediate features of dif-
fusion models for accurate point-to-point image matching [32]. Additionally, the
concept of vanilla classifier guidance [5] steers the diffusion sampling process
using pre-trained classifier gradients towards specific class labels. Building on
these ideas, we integrate feature correspondence guidance into the DDIM sam-
pling process to enhance consistency between adjacent views, addressing the
challenge of detail preservation in dynamic scenes.

Specifically, we obtain the features of the current and next view at each
timestep t of the DDIM process and calculate the cosine distance between the
warped original features and features from the next novel views:

Lt
sim =

1− cos [warp(ft), f
′
t ]

2
, (6)

where ft and f ′
t are intermediate features extracted from pre-trained U-Net ϵθ

at timestep t and warp is the warping functions. The lower Lt
sim, the higher the

similarity.
We further introduce the similarity score Lt

sim to the DDIM sampling process,
for generating novel views with geometry consistency. The predicted noise ϵ̂ is
formulated as:

ϵ̂ = ϵθ(xt)− λ
√
ᾱt−1▽xt

Lt
sim, (7)

where λ is the constant hyper-parameter and latent code xt−1 is calculated by
Eq. (3)

4 Experiments

4.1 Implementation details

We take Stable Diffusion [36] with the pre-trained weights from version 2.13 as
the basic text-to-image diffusion and MiDas [34] with weights dpt_beit_large_5124.
The overall diffusion timesteps is 1000. We warp the latent code at timestep
t1=21 and add more degrees of noise to timestep t2=441. The threshold σ for
the high-pass filter is 20 and the hyper-parameter λ for feature-correspondence
guidance is 300. Due to the page limit, please refer to the supplementary material
(supp.) for details.

3 https://huggingface.co/stabilityai/stable-diffusion-2-1-base
4 https://github.com/isl-org/MiDaS

https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://github.com/isl-org/MiDaS
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4.2 Baselines

We compare against 1) two supervised methods for perpetual view generation:
InfNat [20] and InfNat-0 [18]. 2) one text-conditioned 3D point cloud-based
scene generation: SceneScape [7]. 3) two supervised methods for text-to-video
generation: CogVideo [11] and VideoFusion [24]. 4) one method for zero-shot
text-to-video generation: T2V-0 [14].

4.3 Evaluation metrics

We evaluate our zero-shot perpetual scene generation into two aspects: 1) the
quality of generated images and text-image alignment, and 2) the temporal con-
sistency of generated image sequences.

Image quality and text-image alignment. We evaluate CLIP score [33], which in-
dicates text-scene alignment for quantitative comparisons. A high average CLIP
score indicates not only that the generated images are more aligned with the cor-
responding prompts but also that they consistently maintain high quality [14].
CogVideo [11], VideoFusion [24], SceneScape [7], and T2V-0 [14] are all en-
gaged in text-conditioned generation tasks. We generated 50 scene-related text
prompts using GPT-45 and then created videos using each of the three methods.
For the InfNat [20] and InfNat-0 [18] methods, we used Stable Diffusion to gen-
erate the initial frame, followed by subsequent frame generation based on this
initial frame. We calculated the distance between each generated frame and the
text embedding, known as the CLIP score. Considering that the InfNat [20] and
InfNat-0 [18] methods trained on natural scene datasets, we further provided 10
very general prompts such as ‘an image of the landscape’ and ‘an image of the
mountain’ for these methods, and then selected the highest CLIP score as the
CLIP score for the current frame.
Table 1: Ablations of image quality and temporal coherence of generated
image sequences with various lengths. Please refer to Fig. 3 for quality compar-
isons.

Methods
PSNR ↑ SSIM ↑ CLIP ↑

8 frames 16 frames 32 frames 8 frames 16 frames 32 frames 8 frames 16 frames 32 frames
warp image 26.90 22.46 21.62 0.25 0.23 0.24 0.138 0.112 0.106
warp latent 28.35 28.57 28.75 0.27 0.28 0.24 0.135 0.122 0.125

warp latent+DDPM 24.67 23.04 22.59 0.12 0.10 0.06 0.302 0.297 0.308
warp latent+DDPM+guidance 28.27 28.21 28.10 0.34 0.30 0.26 0.317 0.316 0.313
warp latent+DDPM+guidance

+cross-view attn. 28.89 28.83 28.75 0.32 0.31 0.27 0.318 0.315 0.315

warp latent+DDPM+guidance
+cross-view attn.+high pass filter 29.91 29.86 29.79 0.39 0.38 0.35 0.320 0.318 0.319

Temporal consistency of generated image sequences. We demonstrate our ad-
vancements in temporal consistency against other SOTA methods by calculat-
ing average PSNR and SSIM scores across adjacent frames for generated videos
with different lengths. The higher scores demonstrate the superiority in terms
of cross-view consistency.
5 https://openai.com/gpt-4

https://openai.com/gpt-4


10 H. Kong et al.

4.4 Ablation studies

We perform ablation studies on our three proposed modules: 1) warping la-
tent with high-pass filter, 2) cross-view self-attention module, and 3) feature-
correspondence guidance. The quantitative ablation results are shown in Tab. 1
and we visualize the ablation samples in Fig. 3.

warp image

full model = warp latent + DDPM + guidance + cross-view attn. + high-pass filter

warp latent

warp latent + DDPM

warp latent + DDPM + guidance

warp latent + DDPM + guidance + cross-view attn.

Fig. 3: Ablation results for the key components. We perform ablation studies by
disabling the key components of our method. We illustrate every five frames for each
ablation experiment. Please zoom in for better comparisons.

The simplest method for infinite scene generation tasks is frame-by-frame
image warping, but this approach is unfeasible, as is directly warping the la-
tent code. Warping images leads to non-integer pixel coordinates, resulting in
interpolation-induced blurring and distortion. Moreover, these errors accumulate
with each frame generated, leading to a collapse in quality. The first two rows of
Table 1 show that directly warping images or warping latent codes (i.e., removing
DDPM) results in very low CLIP scores, indicating poor quality of the gener-
ated images. The generated images becoming progressively blurred can also be
observed in the first two rows of Fig. 3. We introduce DDPM to increase the de-
grees of freedom of the diffusion model, thereby generating high-quality images.
However, the introduction of DDPM has the side effect of worsening the seman-
tic consistency between adjacent frames (3rd row in Tab. 1 and Fig. 3).With the
help of DDPM, the CLIP score increases from 0.125 to 0.308 when generating 32
images. Please refer to the supp. for the generated results with different scales
of the DDPM forward process.

To ensure the quality of image generation while also maintaining consistency
with adjacent views, we propose a feature-correspondence guidance strategy.
Comparing the third and fourth rows of Fig. 3, it is evident that the semantic
consistency between adjacent frames is significantly enhanced after adding guid-
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ance, with noticeable improvements in both PSNR and SSIM scores in Tab. 1. To
further enhance cross-view consistency, we adopted cross-view attention modules
and high-pass filtering. From the visualized results at the 5th and 6th rows in
Fig. 3, it is clear that the semantic consistency of adjacent camera perspectives
is further strengthened after incorporating the cross-view attention module. The
operation of the high-pass filter further preserves the high-frequency details of
the current frame, thereby further enhancing the semantic consistency of high-
frequency details between adjacent frames. For instance, comparing the left side
house at the 4th, 5th, and 6th rows in Fig. 3, the cross-view consistency is en-
hanced after adding the proposed modules.

In addition to conducting ablation experiments on the modules we propose,
we continue to explore two more questions:

a panoramic view of a majestic mountain range. The scene should include towering peaks with snow-capped tops, deep valleys, 
and rugged terrain. The light of the setting sun casts a golden glow on the mountainsides.

The vibrant and electric streets of Inazuma City from 'Genshin Impact‘. → An urban street known for its vibrant graffiti and street art.

A serene of realistic → Lego suburban street, with rows of realistic → LEGO colorful houses, 4K.

Fig. 4: Ablation study for scene travel. We visualize two image sequences and
change the prompt when generating novel views. We illustrate every five images and
the prompts are changed when generating 31th image (7th image shown in each row).

Q1: Can DreamDrone shuttle from one scene to another by changing text
prompts? During the frame-by-frame process, we changed the textual prompts,
with the generated results shown in Fig. 4. The visualized results demonstrate
that DreamDrone can smoothly complete the scene travel (from streets in In-
azuma City to urban art street) or the transition of scene styles (from realistic to
Lego style) while ensuring the semantic consistency of adjacent views, according
to the changes in textual prompts.

a panoramic view of a majestic mountain range. The scene should include towering peaks with snow-capped tops, deep valleys, 
and rugged terrain. The light of the setting sun casts a golden glow on the mountainsides.

Hyper-realistic Eiffel Tower, with the intricate iron lattice work.

A scene of a city, Lego style.camera
trajectory

Fig. 5: Ablation study on customized camera trajectory. We generate images
with different camera directions. For the sample of the Eiffel Tower, our camera per-
spective continuously ascends. For the 2nd scene of the Lego city, our camera not only
moves forward but also shifts upwards and to the right.

Q2: Can explicitly warping the latent code control the trajectory of camera
perspective movement? Since our method generates image sequences frame by
frame, we can freely adjust the camera’s flight angle by altering the camera’s
extrinsic parameters. In Fig. 5, we provide sequences of images generated under



12 H. Kong et al.

different camera trajectories. The results show that our method possesses a high
degree of freedom, allowing for the free customization of the camera’s trajectory.
Other state-of-the-art methods cannot achieve this functionality.

4.5 Qualitative comparison
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Fig. 6: Qualitative comparisons of InfNat-0 [18] and ours. We provide four
starting scene images with various styles and categories as start points and ask models
to fly through the images. 50 frames are generated and we illustrate every five frames
for each starting scene image.

In our comparison with InfNat-0 [18] (Fig. 6), focusing on various scenes
including coastlines, rivers, Van Gogh-style landscapes, and city streetscapes,
we identified four main differences: Firstly, InfNat-0 shows proficiency in coast-
line scenes, a reflection of its training data, but our training-free DreamDrone
surpasses it in later frames due to InfNat-0’s cumulative errors over time. Sec-
ondly, in natural scenes with closer objects, InfNat-0’s flawed generation becomes
more apparent, whereas our method maintains consistency. Thirdly, InfNat-0’s
limited approach to gap filling leads to poor performance in stylized scenes, in
contrast to DreamDrone which preserves high-frequency details and frame corre-
spondence. Finally, in urban environments, InfNat-0 struggles significantly, while
DreamDrone achieves realistic and geometry-consistent views, demonstrating its
versatility across varied scenarios.

T2V-0 [14] introduces unsupervised text-conditioned video generation using
stable diffusion. SceneScape [7] focuses on ‘zoom out’ effects during backward
camera movement. However, as seen in Fig. 7, both methods have limitations.
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SceneScape struggles with outdoor scenes and forward camera movement, lead-
ing to blurred and distorted results after 8 steps due to its reliance on a pre-
trained inpainting model. T2V-0 displays a drop in quality beyond the third
frame in complex environments like Lego-style cities, likely from its latent code
editing approach that compromises frame continuity and geometric consistency.
Conversely, our DreamDrone excels across various scenes. It maintains detail,
continuity, and quality in advancing camera scenarios, evident in even simpler
landscapes like mountains where T2V-0 and SceneScape cannot effectively por-
tray dynamic elements like cloud movement. Our approach ensures the preser-
vation of fine details such as shadows and sunlight, creating a more dynamic and
realistic video experience. Please refer to supp. for more comparisons.

a panoramic view of a majestic mountain range. The scene should include towering peaks with snow-capped tops, deep valleys, 
and rugged terrain. The light of the setting sun casts a golden glow on the mountainsides.

the first view in the city, the street is straight and endless, lego style, 8K.
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Fig. 7: Qualitative comparisons of SceneScape [7], T2V-0 [14], and our
DreamDrone. We visualize 20 continuous frames for each textual prompt. As the
camera flies, our method generates geometry-consistent scene sequences.
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As our task bears similarities to text-to-video generation, we further provide
qualitative comparisons with VideoFusion [24]. Due to the page limit, please
refer to supp. for detailed comparisons.

4.6 Quantitative comparison

Tab. 2 offers a detailed comparison of various SOTA methods for generating
image sequences, including our method, DreamDrone. When compared to other
training-based methods, DreamDrone, despite being training-free, consistently
achieves higher CLIP scores across all frame lengths (0.320, 0.318, 0.319 for 8, 16,
and 32 frames respectively). This is particularly noteworthy as the CLIP scores
for training-based methods generally degrade as the number of generated frames
increases. For instance, VideoFusion’s [24] CLIP scores decrease from 0.281 for
8 frames to 0.272 for 32 frames. This trend suggests a decline in the quality of
generated images with an increase in sequence length for training-based methods.
Table 2: Qualitative comparisons with other SOTA methods. We evaluate the
quality and temporal coherence of the generated image sequences with various lengths.

Methods
PSNR ↑ SSIM ↑ CLIP ↑

8 frames 16 frames 32 frames 8 frames 16 frames 32 frames 8 frames 16 frames 32 frames

training-based

InfNat [20] 28.75 28.67 28.65 0.32 0.30 0.30 0.125 0.123 0.118
InfNat-0 [18] 28.92 28.89 28.87 0.37 0.35 0.34 0.128 0.125 0.122
CogVideo [11] 31.03 30.08 29.32 0.45 0.39 0.31 0.255 0.249 0.241

VideoFusion [24] 29.89 28.36 28.78 0.41 0.37 0.31 0.281 0.283 0.272

training-free

T2V-0 [14] 27.25 26.17 26.03 0.27 0.24 0.23 0.312 0.305 0.287
Scenescape [7] 29.87 29.75 29.66 0.41 0.38 0.34 0.318 0.282 0.279

DreamDrone (Ours) 29.91 29.86 29.79 0.39 0.38 0.35 0.320 0.318 0.319

In contrast, DreamDrone maintains high CLIP scores even as the sequence
length increases, indicating superior image quality. When compared to other
training-free methods, DreamDrone also stands out. For example, while T2V-
0’s [14] CLIP scores decrease from 0.312 for 8 frames to 0.287 for 32 frames,
DreamDrone’s CLIP scores remain relatively stable, further demonstrating its
robustness in maintaining image quality across varying sequence lengths. This
analysis underscores the effectiveness of DreamDrone in generating high-quality,
temporally coherent image sequences without the need for training.

5 Conclusion

In this work, we propose DreamDrone, a novel approach for generating flythrough
scenes from textual prompts without the need for training or fine-tuning. Our
method explicitly warps the intermediate latent code of a pre-trained text-to-
image diffusion model, enhancing the quality of the generated images and the
generalization ability. We propose a feature-correspondence-guidance diffusion
process and a high-pass filtering strategy to ensure geometric and high-frequency
detail consistency. Experimental results indicate that DreamDrone surpasses cur-
rent methods in terms of visual quality and authenticity of the generated scenes.
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