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1 More Implementation Details

Video-to-4D Generation. In the coarse stage, we perform densification and
pruning every 100 iterations in the first 1,000 iterations with a gradient thresh-
old of 0.01 and opacity threshold of 0.01. Then in the remaining 500 iterations of
the coarse stage, we only perform pruning with an interval of 100 iterations. The
sampled timestep in the coarse stage is between [600, 800] in a linear decrease
manner to ensure shape plausibility. In the fine stage, we only perform pruning
every 1,000 iterations instead of densification. And the sampled timestep de-
creases from 800 to 200 for detailed texture. In both stages, the learning rates
for Gaussians’ rotation, opacity, scaling, and color equal 0.005, 0.05, 0.05, and
0.01, respectively. The learning rate for control points’ control radius is set to
0.005. The Gaussians’ position learning rate in the coarse stage decreases lin-
early from 0.01 to 0.0002 and remains 0.0002 in the fine stage. The learning rate
for deformation MLP parameters equals 0.0002 in the coarse stage, and then
gradually decreases to 2e−6 in the fine stage.
Motion Transfer Application. During the first 1,000 training iterations, the
sampled timestep undergoes a linear decrease from 980 to 20. In the following
1,000 iterations, the timestep reduces from 200 to 20. The dense Gaussians’
position learning rate is set to 0.0002, while other trainable Gaussian parameters
are consistent with those used in in the video-to-4D pipeline.
Temporal Error. As described in the main paper, we utilize Temporal Error
as a measurement for temporal consistency and motion fidelity. To do so, we
adopt the RAFT [5] model pretrained on KITTI2015 [4] dataset provided by
MMFlow [1] as the optical flow estimator. Given a video of the generated dy-
namic object projected from the reference view and the corresponding reference
video, we first feed the initial two frames of the reference video into the optical
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flow estimator to obtain the predicted forward optical flow. Subsequently, we
use the predicted optical flow to warp the first frame of the synthesized video.
The warped frame is then compared against the second frame of the synthesized
video by computing the L2 distance between them, which serves as the final
result. We employ this procedure to calculate the corresponding outcomes for
all adjacent frames of the video, and the average of these results is used as the
final Temp Error (Temp).

2 Details of User Study

In the user study questionnaire, we choose 10 videos with large motion from the
Consistent4D [2] dataset, which are: triceratops, guppie, robot, rabbit, patrick,
jack, ironman, elephant, egret, aurorus, respectively. Utilizing the above videos
as references, we train the compared methods to obtain the dynamic objects. We
then project each object from a reference viewpoint and a random viewpoint,
yielding 2×3 = 6 options for each question. We ask each participant to choose one
option from the reference viewpoint and one from the novel viewpoint according
to the reference view alignment, spatio-temporal consistency, and motion fidelity.
The options for each question are randomly shuffled to avoid biases.

3 More Quantitative Comparisons

Following Consistent4D [2], we use the same testset and evaluation script to mea-
sure the performance of the compared methods. The results are shown in Tab. 1.
Different from the evaluation in our main paper, the testset in Consistent4D con-
tains four novel view ground truth renderings, apart from the reference video
frames. The metrics are calculated between projections of the generated dynamic
object and the corresponding rendering under the same viewpoint. We argue that
this evaluation approach is less reasonable since the novel view information of
the compared methods originates from Zero123 [3], and the prior knowledge in
Zero123 might not align with the real data. Moreover, the values in Tab. 1 are
too close, which misaligns with the qualitative results and user study, further
revealing the necessity of the evaluations in our main paper. Additionally, we
observe that the test samples from the consistent4D dataset exhibit relatively
minor movements. In order to better assess and compare the robustness of vari-
ous methods in learning motion, we have supplemented with some examples that
demonstrate larger movements.

Table 1: Quantitative evaluations according to Consistent4D [2].

Method CLIP ↑ LPIPS ↓

Consistent4D [2] 0.91 0.14
4DGen [6] 0.91 0.14
SC4D(Ours) 0.92 0.14
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4 More Ablation Studies

4.1 Motion Transfer Application

The results in Fig. 1 illustrate the key factors of our design of motion transfer
application, where w/o depth cond replaces depth-controlnet guidance with SD
guidance, w/o prog depth utilizes the current depth of new object as condition,
and w/o prog guidance fixes the guidance scale to 7.5 as in the original depth-
controlnet.

Reference w/o	AG	Init w/o	depth	cond	 w/o	prog	depth

“The	Black	Widow”

Fullw/o	prog	guidance	

Fig. 1: Motion transfer ablation study.

4.2 Additional Example on GA Loss and AG Init

We attach more examples on GA loss and AG Init, which are shown in Fig. 2.
The qualitative results align with the conclusions of the main paper.

Reference Baseline + GA	Loss +	GA	Loss	+	AG	Init

Fig. 2: Additional ablation study on GA Loss and AG Init.



4 Wu et al.

4.3 Number of Control Points

We conduct experiments to verify the influences on the number of control points
(denoted as M). We experiment on the example of frog here due to its complex
motion. The results are shown in Tab. 2. As we can see, as M grows larger,
the reference view alignment (PSNR, SSIM, LPIPS) and multi-view consistency
(CLIP) of the generated dynamic object improve, which indicates that with more
control points, the details of each view can be better restored. However, the
temporal consistency degrades simultaneously, which reveals the degeneration
of local rigidity when the number of control points is more significant. As a
compromise, we choose M = 512 as our default setting.

Table 2: Ablation study on the number of control points (denoted as M ).

M PSNR ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Temp ↓

128 26.46 0.934 0.084 0.890 0.0175
256 26.75 0.936 0.080 0.890 0.0176
512 27.00 0.936 0.078 0.893 0.0178
1024 27.30 0.938 0.079 0.893 0.0180

4.4 Comparison between GA Loss and the Chamfer Loss

As illustrated in Fig. 3, when utilizing the Chamfer loss to prevent the shape
degeneration issue, the control points tend to cluster around certain points es-
pecially when the loss weight grows larger, resulting in an uneven distribution.
In comparison, our proposed GA loss can prevent shape degeneration without
hurting the overall distribution of control points.

References Chamfer Loss GA Loss (Ours)

1.0 10.0 100.0 1000.0 1.0 10.0 100.0 1000.0

Fig. 3: Qualitative comparison on the effect of the proposed GA loss against the Cham-
fer loss. We attach the loss weight above each instance. The reference control points
are the ones in the coarse stage from two different viewpoints.
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AG Init (Ours) Direct InitReferences

Fig. 4: Comparison between the proposed AG initialization and the Direct initializa-
tion. The latter represents directly utilizing the control Gaussians in the coarse stage
as the initialization of the fine stage.

4.5 Comparison between AG Initialization and Direct Initialization

In the main paper, we compare the proposed AG initialization with Ori init,
which represents initializing dense Gaussians within a sphere in the canonical
space as in the coarse stage. In fact, there is another naive initialization approach
that directly utilizes the control Gaussians as initialization of the fine stage,
which we call Direct init. As shown in Fig. 4, Direct init also leads to shape
degeneration issue, illustrated by the over-thickness of the deforming toy rabbit.

4.6 Necessity of the Coarse Stage

we conduct experiments that directly optimizing the control points and dense
Gaussians from scratch. Fig. 5 shows that, without the proposed techniques, the
generated dynamic object also encounters shape degeneration issue, similar to
Fig. 7 of the main paper. Moreover, optimizing the control points and dense
Gaussians from scratch also leads to motion misalignment of control points and
the reference.

Ours

Joint initialize

References
Time

Ours

Joint initialize

Fig. 5: Initializing control points and GS together comparison.

5 More Qualitative Comparisons

We show more qualitative comparisons in Fig. 6. The results illustrate the effec-
tiveness and robustness of SC4D.
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Consistent4D 4DGen SC4D (Ours)References

Fig. 6: Additional qualitative comparisons. (Best viewed when zoomed in.)

6 More Application Examples

We show more application examples in Fig. 7. These examples demonstrate the
flexibility of the proposed motion transfer application.
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References Video-to-4D Results Motion Transfer Results

“A cheetah”“A lion”

“Black Panther”“Black Widow”

“A wooden Brachiosaurus”“A chanical style dinosaur”

“Vegeta” “Ben Grimm”

“A teal rose” “A lego style rose”

“A delicate handgun” “A wooden pistol burning”

Fig. 7: Additional application examples. (Best viewed when zoomed in.)
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