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Fig. 1: We illustrate: (a) video-to-4D results of SC4D and corresponding control points
visualizations, and (b) examples of our motion transfer applications in the figure.

Abstract. Recent advances in 2D/3D generative models enable the gen-
eration of dynamic 3D objects from a single-view video. Existing ap-
proaches utilize score distillation sampling to form the dynamic scene as
dynamic NeRF or dense 3D Gaussians. However, these methods struggle
to strike a balance among reference view alignment, spatio-temporal con-
sistency, and motion fidelity under single-view conditions due to the im-
plicit nature of NeRF or the intricate dense Gaussian motion prediction.
To address these issues, this paper proposes an efficient, sparse-controlled
video-to-4D framework named SC4D, that decouples motion and appear-
ance to achieve superior video-to-4D generation. Moreover, we introduce
Adaptive Gaussian (AG) initialization and Gaussian Alignment (GA)
loss to mitigate shape degeneration issue, ensuring the fidelity of the
learned motion and shape. Comprehensive experimental results demon-
strate that our method surpasses existing methods in both quality and
efficiency. In addition, facilitated by the disentangled modeling of motion
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and appearance of SC4D, we devise a novel application that seamlessly
transfers the learned motion onto a diverse array of 4D entities according
to textual descriptions.

Keywords: Video-to-4D generation · Dynamic Gaussian splatting · Mo-
tion transfer

1 Introduction

In recent years, with the advancement of generative AI, we have witnessed sig-
nificant progress in 3D generation techniques, which include the generation of
static objects’ shape, texture, and even an entire scene from a text prompt or
a single image. Compared to static 3D assets, dynamic 3D (4D) content offers
greater spatio-temporal flexibility and thus harbors more substantial potential
for applications in AR/VR, filming, animation, simulation, and other domains.
However, generating 4D objects from text descriptions or video references is
rather formidable due to the difficulties of maintaining spatio-temporal consis-
tency and ensuring motion fidelity. Nevertheless, as humans, we are adept at
resolving the above challenging tasks, a capability attributable to our possession
of extensive prior knowledge of the real world.

Very recently, building upon the foundations laid by extant text-to-3D [25,38,
57,60,70] and image-to-3D [26,28,41,52,54] pipelines, several methods [16,36,69]
distill prior knowledge from novel view synthesis models [29,30] to generate the
target 4D object as dynamic NeRF [16] or dynamic 3D Gaussians [36, 69] and
impose constraints to ensure the temporal consistency among frames. Despite
the commendable progress achieved by these methods, they still struggle to
strike a balance among reference view alignment, spatio-temporal consistency,
and motion fidelity. We argue that the representation is critical for video-to-4D
generation. On the one hand, dynamic NeRF [2,10,33,39] cannot sustain tempo-
ral coherence under novel views without additional restrictions due to its implicit
nature and stochasticity inherent in Score Distillation Sampling (SDS) [38]. On
the other hand, it is intricate to predict accurate trajectories and rotations for
dense Gaussians [17,31,62,66] with only single-view conditions.

To tackle the aforementioned problems, inspired by a recent dynamic scene
reconstruction method [14], we decouple the appearance and motion of the dy-
namic 3D object into dense Gaussians (∼50k) and sparse control points (∼512)
and design an efficient two-stage video-to-4D generation framework, named SC4D.
Specifically, in the coarse stage, we initialize a set of sparse control points as
spherical Gaussians and a Multilayer Perceptron (MLP) conditioned on time
and location to predict the motion of these sparse Gaussians. Then, we optimize
the parameters of these Gaussians and the MLP under the guidance of reference
view reconstruction and novel view score distillation. In the fine stage, we utilize
the sparse control Gaussians as implicit control points and perform Linear Bind-
ing Skinning (LBS) [51] to drive the dense Gaussians. In this stage, we jointly
optimize the parameters of control points, dense Gaussians, and deformation
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MLP to obtain the final results. Notably, since only a single-view ground truth
video is provided, we empirically find that there is a proclivity for shape degener-
ation issues in the fine stage, which results in thickening, position displacements,
and texture blur of the dynamic 3D object. To address these challenges, we de-
vise Adaptive Gaussian (AG) initialization that inherits the shape and motion
of the control Gaussians in the coarse stage with a random amount of Gaussians.
Moreover, we present Gaussian Alignment (GA) loss to ensure shape and motion
fidelity in the fine stage.

Benefiting from the disentangled modeling of appearance and motion within
our method, SC4D effectively mitigates the ambiguity of these two attributes
during optimization. Additionally, since the motion of the dynamic object is
governed by a set of sparse control points rather than dense Gaussians, our ap-
proach simplifies the learning of motion and naturally exhibits enhanced local
rigidity. Comprehensive evaluations reveal that our method surpasses existing
video-to-4D generation methods [16,69] in both quality and efficiency. Moreover,
after obtaining the motions of implicit control points, we introduce a novel appli-
cation that transfers the learned motion onto other entities under the guidance
of text-to-image models [44, 71] and dense Gaussians’ depth. In conclusion, our
contributions can be summarized as follows:

1. We propose SC4D, a sophisticated video-to-4D generation framework based
on sparse points control, which generates dynamic 3D objects with superior
quality and efficiency compared to existing methods.

2. We devise an Adaptive Gaussian (AG) initialization approach and Gaussian
Alignment (GA) loss that effectively mitigate the shape degeneration issue,
ensuring accurate motion and shape learning.

3. We propose a novel application based on the control points’ motion and
design a motion transfer pipeline that maps the learned motion onto distinct
entities, as directed by textual descriptions.

2 Related Works

Optimization-based 3D Generation. Optimization-based 3D generation meth-
ods typically optimize a NeRF [33] or 3D Gaussians [17] utilizing prior knowl-
edge from image-text matching model [42] or diffusion-based generative mod-
els [13, 29, 44, 45]. CLIP-based text-to-3D methods [15, 19, 34, 65] generally em-
ploy CLIP [42] to align each viewpoint of the target 3D scene with the given
text description for optimization. DreamFusion [38] substitutes the guidance
model from CLIP to a 2D diffusion model [45], and introduces Score Distilla-
tion Sampling (SDS) to distill prior knowledge from text-to-image models. As a
concurrent work, SJC [57] shares a similar idea, which distills scores in a Perturb-
and-Average manner. Following the paradigm of SDS, a series of methods aim at
bringing finer texture details [4, 25, 60] or alleviating the Janus problem [46, 70]
utilizing DMTet [47] representation, Variational Score Distillation [60], Point-
E [35] condition, etc. Recently, a succession of methods further enhanced the
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view quality [21, 75] and multi-view consistency [48]. There are also several 3D
Gaussian-based methods [5,53,68] that achieve comparable results. As for image-
to-3D, RealFusion [32] performs textual inversion [11] before 3D generation to
match the intended concept. Make-it-3D [54] improves the view quality and con-
sistency in an inpainting manner. Zero123 [29] utilizes large-scale multi-view data
from Objaverse dataset [7,8] to turn Stable Diffusion (SD) [44] into a novel-view
generator. Based on Zero123, a bunch of methods [28,41,52] achieves high-fidelity
image-to-3D generation. There are also several approaches [20,26,30,58] acquire
notable progress in enhancing multi-view consistency.
4D Representation. Current 4D representations predominantly bifurcate into
two principal categories: dynamic NeRF [33] and dynamic 3D Gaussians [17]. Dy-
namic NeRF-based methods can be further divided into deformable NeRF [37,
39, 56, 63] and time-varying NeRF [2, 9, 10, 12, 23]. Recently, a variety of meth-
ods predicated on dynamic 3D Gaussians [3, 22, 24, 31, 62, 66, 67] have emerged,
leveraging Gaussians’ explicit nature and real-time rendering capabilities. There
are also some methods that ameliorate the dense motion prediction by learning
a set of sparse trajectories [18], control points [14], or basis vectors [6].
4D Generation. Compared to 3D generation, high-quality 4D generation is
even more challenging since the temporal dimension is involved. Existing text-
to-4D methods [1,27,43,50,59,73,74] distill geometry and temporal information
from diffusion-based text-to-image models [44] and text-to-video models [49] with
SDS [38]. In recent developments, several video-to-4D frameworks [16,36,69] have
been introduced. These pipelines endeavor to recover the dynamic 3D objects
from single-view video inputs, facilitated by Zero123 [29]. However, these video-
to-4D methods struggle to strike a balance among reference view alignment,
spatio-temporal consistency, and motion fidelity.

3 Method

Given a single-view reference video, video-to-4D methods [16, 36, 69] aim to re-
cover a plausible dynamic 3D object that aligns with the video source. Inspired
by [14], we propose an efficient video-to-4D framework based on sparse control
points (shown in Fig. 2), named SC4D, which utilizes separated modeling of ap-
pearance and motion to yield superior outcomes. To ensure the fidelity of learned
shape and motion, we introduce Adaptive Gaussian (AG) initialization based on
control points, and Gaussian Alignment (GA) loss as an additional constraint.
Furthermore, we devise a novel application that enables motion transfer with
text descriptions after acquiring the control point motions.

3.1 Preliminaries

Score Distilltion Sampling. Score Distillation Sampling (SDS) [38] is widely
adopted to distill prior knowledge from image generation models [29,44]. In this
work, we utilize Zero123 [29] as the source of novel view information. Given a
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reference image Ir, a relative camera extrinsic (R,T) between the queried and
input views, the 3D model as θ, Zero123 as ϕ, then the SDS loss is as follows:

▽θLSDS(ϕ, x) = Et,ϵ[ω(t)(ϵ̂ϕ(zt; Ir,R,T, t)− ϵ)
∂x

∂θ
], (1)

where t is the randomly sampled timestep in the diffusion process, x is the
rendered image, and ω(t) is a weighting function depending on the timestep t.
3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [17] represents a scene
as a set of explicit 3D Gaussians. Each Gaussian G has a center position µ, a
rotation quaternion q, a scaling parameter s, opacity σ and sphere harmonic
(SH) coefficients sh. It can be defined as G(x) = e−

1
2 (x−µ)T

∑−1(x−µ), where
∑

is the 3D covariance matrix, calculated by
∑

= RSSTRT (R,S is equivalent to
q, s). The color of a pixel u is rendered using α-blending:

Color(u) =
∑
i

SH(shi, vi)αi

i−1∏
j=1

(1− αj), (2)

where αi = σiG(u), vi is the view direction, and SH is the spherical harmonic
function. To enhance the accuracy of fitting across diverse scenes, densification
and pruning are adopted based on gradient accumulation during optimization.
Sparse-Controlled Gaussian Splatting (SC-GS). SC-GS [14] is an effec-
tive dynamic scene reconstruction method, which decouples the appearance and
motion of a 4D scene as 3D Gaussians and control points. SC-GS utilizes a time-
condition MLP Ψ to predict the translation T t

i and rotation Rt
i for each control

point. Then, 3D Gaussians are driven by control points following LBS [51]. For
each Gaussian Gj , the warped location µt

j and rotation qtj can be computed as
a weighted sum of its KNN control points Mj :

µt
j =

∑
k∈Mj

wjk(R
t
k(µj − pk) + pk + T t

k), (3)

qtj = (
∑
k∈Mj

wjkr
t
k)⊗ qj , (4)

where wjk is a weighting ratio depending on the distance djk between Gaussian
Gj center and its neighboring control point pk, and a learned control radius ok.
pk, rtk denote the position and rotation quaternion for the control point.

3.2 Coarse Stage: Sparse Control Points Initialization

As illustrated in SC-GS [14], sparse control points initialization is critical for
decoupling motion and appearance of the dynamic object/scene. Joint optimiza-
tion of sparse control points and dense Gaussians directly can result in uneven
distribution of control points and may even lead to training collapse. In this
stage, we aim to obtain a good initialization for sparse control points’ locations
and motion that align with the reference video.
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Fig. 2: Overall pipeline of the proposed SC4D. In the coarse stage, SC4D learns a
proper shape and motion initialization with a set of sparse control Gaussians. Then,
in the fine stage, we propose Adaptive Gaussian (AG) initialization, and Gaussian
Alignment (GA) loss to prevent shape and motion degeneration, and jointly optimize
control points, dense Gaussians, and deformation MLP for the final results.

As shown in Fig. 2, since no ground truth 3D data is available, we initialize M
control points (denoted as control Gaussians in this stage) as 3D Gaussians with
randomly sampled positions inside a sphere. In order to obtain control Gaussians
that are more evenly distributed, we constrain them as spheres with the same
scaling parameter (s). We denote the control Gaussians as Ci : (pi, ri, s, σi, shi),
and the reference image sequence as {Ifr , f = 1, 2, · · · , F}, where F stands for
the number of frames of the reference video. Then, for a randomly sampled
timestep t = f−1

F , we predict the control Gaussians’ movement using MLP Ψ.
To be noted, since the control Gaussians are spherical, we only need to compute
their new position as follows:

pti = pi + T t
i , (5)

where pi is the position of Ci in the canonical space. After obtaining the deformed
object at timestep t, we project it from the reference view to get Ît following
Equ. (2), and compute the reconstruction loss as:

Lref =
∥∥∥Ît − Ifr

∥∥∥2
2
. (6)

To better leverage the information from the reference images, we additionally
introduce a mask loss term:

Lmask =
∥∥αt −Mf

r

∥∥2
2
, (7)

where Mr is the foreground mask of the reference image, and αt is the accu-
mulated opacity obtained during rendering. As for novel view optimization, we
sample B viewpoints randomly within the pitch angle range of −ver to ver de-
grees and the yaw angle range of -180 to 180 degrees, and compute the average
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Fig. 3: Illustration of Adaptive Gaussian (AG) initialization. s is the scaling parameter
of control Gaussians in the coarse stage. Ori init represents randomly initializing all
the dense Gaussians within a sphere in the canonical space.

SDS loss following Equ. (1). The overall objective in this stage is a weighted
combination of the above three losses:

Ltotal = λrefLref + λmaskLmask + λSDSLSDS . (8)

In this stage, we perform densification and pruning following 3DGS [17] in
the first n iterations. Then we sample M (same amount as initialization) control
Gaussians utilizing Farthest Point Sampling (FPS) [40] and continue training
without densification in the remaining procedure.

3.3 Fine Stage: Dense Gaussians Optimization

After the coarse stage, we get a reasonable estimation for the dynamic 3D ob-
ject’s motion and shape. Then in the fine stage, we aim to optimize the texture
details to match the source video and to further refine the motion and shape for
better fidelity. To be noted, the explicit control Gaussians in the coarse stage
have transitioned to implicit control points in this stage, denoted as Ci : (pi, oi),
where oi is the control radius of each control point, initialized with the scaling
parameter s of control Gaussians in the coarse stage.
Adaptive Gaussian Initialization. In this stage, dense Gaussians are driven
by neighboring sparse control points, as illustrated in Equ. (3), (4). We empiri-
cally find that the dense Gaussian initialization significantly impacts the quality
of the final result. One straightforward initialization approach is to initialize
the dense Gaussians uniformly within a sphere in the canonical space as in the
coarse stage. However, we observe that this initialization fails to generate promis-
ing results. The target object is prone to increased thickness, and issues such as
diminished texture and positional drift may arise (as shown in Fig. 7).

Instead, we propose Adaptive Gaussian (AG) initialization based on the
learned control Gaussians. As shown in Fig. 3, we have learned M control Gaus-
sians in the coarse stage with the same scaling parameter s. Then, for each
control Gaussian, we consider it as a sphere with a radius of s, and randomly
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initialize K Gaussians within it following DreamGaussian [53]. In total, we get
N = M × K Gaussians as initialization. As shown in Fig. 3, our designed ini-
tialization approach successfully inherits the shape and motion modeled in the
coarse stage. The dense Gaussians are distributed near the surface of the object,
which facilitates the subsequent optimization. In comparison, if directly opti-
mizing all the dense Gaussians uniformly within a sphere in the canonical space,
the deformed shape misaligns with that in the coarse stage.
Gaussian Alignment Loss. Even with a good dense Gaussian initialization,
the shape and motion of the dynamic 3D object are still prone to degeneration
in the later phases of training. The main reason is that: when employing Score
Distillation Sampling (SDS) [38] to distill prior knowledge of novel views from
Zero123 [29], a larger noise timestep biases SDS towards ensuring the plausibility
of the overall shape. Conversely, with a smaller timestep, SDS tends to focus
more on optimizing textures, while its capability to preserve shape diminishes.

To allow refining texture without degrading motion and shape, we propose
the Gaussian Alignment (GA) loss as an additional constraint. At the beginning
of this stage, we preserve the control Gaussians’ parameters and the deformation
MLP to query the initial positions (denoted as pt) of those control points at
random timestep t. Then, we compute the Gaussian Alignment loss as:

LGA =
∥∥pt − pt

∥∥2
2
, (9)

where pt denotes the position of the current control point at timestep t. Although
the proposed GA loss is quite simple, it can effectively mitigate the shape degen-
eration issue encountered during the latter training procedure. The Chamfer loss
is another commonly used metric for constraining the distances between point
clouds. However, compared to GA loss, we observe that the Chamfer loss can
sometimes result in the current control points aggregating towards certain target
points, thereby compromising the uniform distribution of the control points (See
Sec. 4.4 of Supp. for the comparison of GA loss and the Chamfer loss).

In this stage, the overall training objective is formulated as follows:

Ltotal = λrefLref + λmaskLmask + λSDSLSDS + λGALGA. (10)

3.4 Motion Transfer Application

Utilizing our video-to-4D framework, we can successfully extract the resultant
dynamic 3D object as well as its motion represented by a set of moving control
points. Leveraging this capability, we devise an application tailored for motion
transfer predicated on the trajectories of these sparse control points. This ap-
plication aims to synthesize dynamic objects of distinct entities that exhibit
identical motion patterns, all instantiated through text descriptions.

As shown in Fig. 4, we employ the same initialization method as outlined
in Sec. 3.3. During training, we fix the parameters of the learned control points

Supp.: supplementary file.
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Fig. 4: Illustration of the pipeline for our motion transfer application.

as well as those of the deformation MLP, enabling us to preserve the motion
of the target dynamic object and acquire its appearance from any viewpoint at
any given time. To prevent the degeneration of motion and shape due to the dis-
placement of dense Gaussians away from the control points during optimization,
we elect to use a depth-condition ControlNet [71] as supervision, and query the
depth from the dynamic object resultant from the video-to-4D pipeline. Since no
ground truth reference is involved, we only utilize SDS [38] loss for optimization.
We find that a small guidance scale can lead to plausible shape changes without
degenerating the learned motion. Therefore, we first utilize a reduced guidance
scale during the initial phase of the training regimen to capture the shape of the
new entity that is congruent with the textual input, and its blurring appearance.
Then, we save the intermediate dense Gaussians and employ the updated depth
information as new conditions. In the remaining training period, we increase
the guidance scale and decrease the noise scale of SDS to refine the texture,
culminating in the final outcome. Please refer to Sec. 4.1 for more details.

4 Experiments

4.1 Experimental Settings

Implementation Details. We employ an MLP with a similar structure uti-
lized in SC-GS [14] to predict the motion of control points. The MLP receives
the positional embeddings [33] of time and control points’ positions as input,
with frequencies of 6 and 10. In the coarse stage, we initialize M = 512 control
Gaussians uniformly within a sphere with the same scaling parameter. We per-
form densification and pruning following 3DGS [17] for the first 1,000 iterations
with an interval of 100. Then we perform Farthest Point Sampling (FPS) [40]
to sample M control Gaussians and train for another 500 iterations without
densification. In the fine stage, we optimize all the parameters of control points,
MLP, and dense Gaussians together. During training, we sample 4 random cam-
era poses and the fixed pose of time t at a fixed radius of 2, with the azimuth
in [-180, 180] degrees and elevation in [-ver, ver] degrees, where ver = 30. We
set the loss weight of λref , λmask, λSDS , λGA to 5000.0, 500.0, 1.0, 10000.0 by de-
fault. As for our motion transfer application, during the initial 1,000 iterations,
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it is optimized with a guidance scale of 7.5 using the dynamic object’s depth
obtained from the video-to-4D pipeline as a condition. Subsequently, the depth
from the intermediate result is utilized as the new condition, and we continue to
optimize the remaining 1,000 iterations with a guidance scale of 30.0. We will
release the source code later. Please refer to Sec. 1 of Supp. for more details.
Dataset. For fair comparisons, we utilize the dataset from Consistent4D [16]
for evaluations. The dataset consists of 12 synthetic and 12 in-the-wild videos,
all captured with a stationary camera oriented perpendicularly to the dynamic
objects. Each video has 32 frames and spans around 2 seconds.
Evaluation Metrics. We have summarized the criteria for evaluating the qual-
ity of video-to-4D generation into three main aspects: alignment with the refer-
ence video, spatio-temporal consistency, and motion fidelity. Following NeRF [33],
we utilize PSNR and SSIM [61] as measurements of the reference view align-
ment. We also add LPIPS [72] as a view quality metric, which is akin to Consis-
tent4D [16]. As for multi-view (spatial) consistency, we adopt the commonly used
CLIP [42] score to measure the visual similarity of two different renderings. To
evaluate the temporal consistency and motion fidelity of the generated dynamic
object, we follow [64] to utilize RAFT [55] to compute the optical flows of the
reference image sequence, and warp the reference-view projections to calculate
the temporal error (Temp), which can effectively reflect the temporal consistency
under the reference view and motion accuracy (check Sec.1 of Supp. for details
of the temporal error metric). We also include human evaluation, which is more
representative in generation tasks. To do so, we randomly choose 10 videos to
train the compared methods and render the dynamic objects from the reference
view and a random novel view. Then, we invite 20 participants to select their
preferred reference and novel view videos based on the reference view alignment,
spatio-temporal consistency, and motion fidelity. Overall, we get 10 × 20 = 200
votes for reference view and novel view, respectively. Then, we calculate the
percentage of votes as a measurement for user preference, as shown in Fig. 6.

4.2 Comparisons

To evaluate the effectiveness of the proposed video-to-4D framework, we com-
pare our method with the only two open-source methods: Consistent4D [16] and
4DGen [69]. We train the dataset provided by Consistent4D with these meth-
ods and conduct comprehensive evaluations of the outcomes. All the results of
Consistent4D and 4DGen are obtained using their official code and settings.
Qualitative and quantitative comparisons are shown in Fig. 5 and Tab. 5.
Qualitative Comparison. As demonstrated in Fig. 5, we show four instances
(skull, triceratops, elephant, egret) and the results generated by the compared
methods. Consistent4D [16] generates results with artifacts and color distortions
in some cases (triceratops and egret), and there is also a noticeable temporal
discontinuity between frames of the same viewpoint, which is attributable to the
limited capacity of low-resolution NeRF [33] and the diversity of time-varying
NeRF under single view conditions. As for 4DGen [69], the generated dynamic
objects often exhibit minor motion and present discernible discrepancies from the
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Consistent4D 4DGen SC4D (Ours)References

Fig. 5: Qualitative Comparisons. We compare our method with Consistent4D [16] and
4DGen [69]. For each instance, we render two viewpoints at two timesteps. We also
visualize the sparse control points to show their correspondence with dense Gaussians.

reference video (skull and triceratops). Regions with large motion are subject to
blurring or may even experience loss of detail (nose of elephant, claw of egret). In
comparison, the results generated by our method surpass the compared methods
in terms of alignment with the reference video, spatio-temporal consistency, and
motion fidelity. This is also evidenced by the visualized sparse control points,
from which it can be discerned that our method has learned a set of evenly
distributed control points that accurately capture the dynamics and shape of
the subject. Please check Sec. 5 of Supp. for more qualitative comparisons.
Quantitative Comparison. To quantitatively evaluate the performance of the
compared methods, we randomly choose 10 reference videos from the dataset
provided by Consistent4D [16], and optimize the dynamic objects using the com-
pared methods, respectively. After optimization, we render one input view and
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Table 1: Quantitative comparison of different methods. Temp represents the temporal
error introduced in Sec. 4.1.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Temp ↓ Training time ↓

Consistent4D [16] 23.97 0.91 0.09 0.89 0.0089 1.9h
4DGen [69] 21.80 0.90 0.10 0.87 0.0089 3.0h
SC4D (Ours) 29.50 0.95 0.08 0.90 0.0081 1.0h

Reference View

Novel View

SC4D (Ours)

Total

76.5%

Consistent4D 4DGen

13.0% 10.5%

79.0% 14.0% 7.0%

77.75% 13.5% 8.75%

Reference View

Novel View

SC4D (Ours)

Total

76.5%

Consistent4D 4DGen

13.0% 10.5%

79.0% 14.0% 7.0%

77.75% 13.5% 8.75%

Fig. 6: User preference for video-to-4D generation methods.

four testing views (azimuth degrees: [72, 144, 216, 288], elevation degree: [0])
for every timestep of the reference video to calculate the metrics mentioned in
Sec. 4.1. As reported in Tab. 1, our method outperforms Consistent4D [16] and
4DGen [69] in reference view alignment (PSNR, SSIM, LPIPS), multi-view con-
sistency (CLIP), temporal consistency and motion fidelity (Temp), revealing the
effectiveness of SC4D. As depicted in Fig. 6, user study also reveals that our
proposed SC4D is more favored in human evaluations, in which the novel view
preference metric also reveals the remarkable spatio-temporal consistency and
motion fidelity of SC4D. Besides, our method exhibits a significant advantage in
terms of training duration. All experiments are conducted on a single Tesla V100
GPU with 32 GB of graphics memory. We also utilize the test set and metrics
in Consistent4D [16] to evaluate the compared methods. The results align with
the conclusion drawn above. We attach them in Sec. 3 of Supp..

4.3 Ablation Studies

As mentioned in Sec. 1, we propose the Adaptive Gaussian (AG) initialization
and Gaussian Alignment (GA) loss to alleviate the shape degeneration issue
in the fine stage. As shown in Fig. 7, without GA loss and AG initialization,
the generated object is prone to suffer from over-thickness and texture blurring
problems. Besides, the control points scatter, which indicates that the learned
shape and motion in the coarse stage also degenerate significantly. When training
with GA loss, the general shape of control points can be preserved, yet there can
be observable instances of increased thickness. Additionally, when a viewpoint
is excessively close to the camera, a corresponding attenuation in texture detail
is also noticeable. Upon utilizing AG initialization, our method has experienced
a pronounced enhancement in its final output. The dynamic objects generated
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Fig. 7: Ablation studies of the proposed GA loss and AG initialization. In the first
row, we show the source frames and control points from the coarse stage as references.

exhibit tangible advancements in both motion fidelity and shape plausibility.
Moreover, the textural details have also undergone considerable refinement.

Table 2: Quantitative evaluations of the proposed GA loss and AG initialization.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ CLIP ↑ Temp ↓

Baseline 29.81 0.95 0.10 0.82 0.0016
+ GA Loss 30.19 0.96 0.09 0.83 0.0016
+ AG Init (Full) 31.35 0.96 0.08 0.89 0.0016

Tab. 2 also illustrates the effectiveness of our proposed techniques. The most
noticeable improvement in metrics is observed in the CLIP score, indicating
a substantial enhancement in the quality of the generated novel views. This
further reveals the effectiveness of the proposed GA loss and AG initialization
in mitigating the challenges associated with shape degeneration. Please refer to
Sec. 4 of Supp. for more ablation studies.

4.4 Application Results

As mentioned in Sec. 3.4, we design an innovative application that is capable of
flexibly generating diverse 4D entities with the same motion, based on control
points learned during our video-to-4D pipeline, in conjunction with a depth-
condition ControlNet [71] that operates upon textual descriptions.

In Fig. 8, we sequentially present: the reference frames, video-to-4D results
generated using SC4D and corresponding control points visualizations, and the
new entities with identical motion synthesized based on text descriptions. From
the figure, it is observable that the newly generated 4D objects possess vivid
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References Video-to-4D Results Motion Transfer Results

“A chef”“Obama”

“A grouper”“A clownfish”

“A burning red flower”“A teal crystal flower”

Fig. 8: Motion transfer application of SC4D. The prompt is attached between lines.

textures and align well with the motion patterns of the reference video. Moreover,
the synthesized dynamic objects exhibit appreciable variations in shape, yet the
motion remains coherent, which further illustrates the robustness and flexibility
of our method. Please refer to Sec. 6 of Supp. for more application examples.

5 Limitations

The main limitations of our method are twofold: First, our approach relies on
models such as Zero123 [29] to provide novel view information, and the capability
of these viewpoint synthesis models is still limited, often underperforming on
many complex objects. Second, similar to existing video-to-4D methods [16, 36,
69], we have not taken into account the 4D generation under moving camera
scenarios, which will be one of the directions for our future research.

6 Conclusion

In this work, we propose a sophisticated video-to-4D pipeline, named SC4D,
which decouples the motion and appearance of dynamic objects as sparse con-
trol points and dense 3D Gaussians. SC4D excels over contemporary approaches
in generating dynamic objects with better reference view alignment, spatio-
temporal consistency, and motion fidelity. Moreover, we craft an innovative ap-
plication utilizing the control points learned by SC4D, which allows seamless
motion transfer onto new entities, as directed by textual descriptions.
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