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Abstract. Although quantization has emerged as a promising approach to re-
ducing computational complexity across various high-level vision tasks, it in-
evitably leads to accuracy loss in image super-resolution (SR) networks. This is
due to the significantly divergent feature distributions across different channels
and input images of the SR networks, which complicates the selection of a fixed
quantization range. Existing works address this distribution mismatch problem
by dynamically adapting quantization ranges to the varying distributions during
test time. However, such a dynamic adaptation incurs additional computational
costs during inference. In contrast, we propose a new quantization-aware train-
ing scheme that effectively Overcomes the Distribution Mismatch problem in SR
networks without the need for dynamic adaptation. Intuitively, this mismatch can
be mitigated by regularizing the distance between the feature and a fixed quanti-
zation range. However, we observe that such regularization can conflict with the
reconstruction loss during training, negatively impacting SR accuracy. Therefore,
we opt to regularize the mismatch only when the gradients of the regularization
are aligned with those of the reconstruction loss. Additionally, we introduce a
layer-wise weight clipping correction scheme to determine a more suitable quan-
tization range for layer-wise weights. Experimental results demonstrate that our
framework effectively reduces the distribution mismatch and achieves state-of-
the-art performance with minimal computational overhead. Codes are available
at https://github.com/Cheeun/ODM.

Keywords: Image super-resolution · Network quantization · Quantization-aware
training

1 Introduction

Image super-resolution (SR) is a core low-level vision task aimed at reconstructing
high-resolution (HR) images from their corresponding low-resolution (LR) counter-
parts. Recent advances in deep learning [7, 11, 31, 36, 37, 43, 45, 54, 55] have led to
astonishing achievements in producing high-fidelity images. However, the remarkable
performance is based on heavy network architectures that incur significant computa-
tional costs, limiting practical viability, such as mobile deployment.

To mitigate the computational complexity of neural networks, quantization has emerged
as a promising avenue. Network quantization has proven effective in reducing compu-
tational costs without significant accuracy loss, particularly in high-level vision tasks,
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Table 1: Quantization methods on SR. For performance, existing methods rely on channel-
wise quantization or input-adaptive module, which incur computational overhead. Our method
achieves high accuracy without utilizing channel-wise quantization or input-adaptive modules.

Method Channel-wise Q Input-adaptive Modules PSNR SSIM

PAMS [33] ✗ ✗ 29.51 0.835
DDTB [57] ✗ ✓ 30.97 0.876
DAQ [18] ✓ ✓ 31.01 0.871

Ours ✗ ✗ 31.50 0.882

such as image classification [8, 20, 58]. However, when it comes to quantizing SR net-
works to lower bit-widths, substantial performance degradation [24] often occurs, pos-
ing a persistent and challenging problem to be addressed.

This degradation can be attributed to the significant variance in the feature (activa-
tion) distributions of SR networks. The feature distribution of a layer exhibits substan-
tial discrepancies across different channels and images, which makes it difficult to de-
termine a single quantization range for a layer. Early approaches to SR quantization [33]
adopt a training scheme to learn the quantization range of each layer. However, despite
careful selection, the quantization ranges do not align with the varied values within the
channel and image dimensions, which we refer to as distribution mismatch in features.

Recent approaches aim to address this issue by incorporating dynamic adaptation
modules that accommodate the varying distributions. For example, the quantization
range is dynamically adjusted by directly leveraging the distribution mean and vari-
ance at test time [18] or by employing input-adaptive dynamic modules [57]. Although
adapting the quantization function to each image during inference might handle variable
distributions, the dynamic modules introduce considerable computational overhead, po-
tentially compromising the computational benefits of quantization.

In this study, we propose a novel quantization-aware training framework that ad-
dresses the distribution mismatch problem with a loss term that regulates the mismatch
in distributions. Although directly minimizing the feature mismatch presents the poten-
tial for quantization-friendliness, whether it preserves reconstruction accuracy is ques-
tionable. We observe that concurrent optimization with the mismatch regularization and
the original reconstruction loss can disrupt the image reconstruction process. Therefore,
we introduce a cooperative mismatch regularization strategy, where the mismatch is
regulated only when it collaborates harmoniously with the reconstruction loss. To de-
termine the cooperative behavior, we assess the cosine similarity of the gradients from
each loss, then we weigh the gradients of mismatch regularization based on this simi-
larity. Consequently, we effectively update the SR network to hold both quantization-
friendliness and reconstruction accuracy.

Furthermore, we identify the distribution mismatch among the weights of different
layers. We discover that employing a fixed policy to determine the layer-wise weight
quantization range [17,18,33,47] can be suboptimal and that a further precise range can
be obtained by considering both the current distribution of weights and the distinct ten-
dencies of each layer. Therefore, we additionally incorporate layer-specific variations
using a correction parameter for each layer. This strategy allows us to accurately find
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the quantization range for weights while incurring only a minimal overhead (0.01% ad-
ditional storage size and no additional bitOPs)–a significantly smaller impact compared
to methods that use dynamic modules. Overall, the contributions of our work include
the following:

• We introduce the first quantization framework to address the distribution mismatch
problem in SR networks without dynamic modules, as compared in Table 1. Our
framework updates the SR network to be quantization-friendly and accurate simul-
taneously.

• Based on the observations of the distribution mismatch in SR networks, we effec-
tively reduce the mismatch by introducing a cooperative mismatch regularization
term and a weight clipping correction term.

• Compared to existing approaches to SR quantization, ours achieves state-of-the-art
performance with similar or fewer computations.

2 Related Works

2.1 Image Super-Resolution

Convolutional Neural Network (CNN)-based approaches have demonstrated remark-
able advancements in the image super-resolution (SR) task [32, 37], but at the cost of
substantial computational resources. The intensive computations required by SR net-
works have spurred interest in developing lightweight SR architectures [10, 22, 23, 28,
54]. Furthermore, various strategies for lightweight SR networks have been explored,
including neural architecture search [9,30,34,35,46], knowledge distillation [22,23,53],
and pruning [26,42,56]. While these methods predominantly focus on reducing network
depth or the number of channels, our work specifically aims to lower the precision of
floating-point operations through network quantization.

2.2 Network Quantization

By mapping 32-bit floating point values of features and weights in convolutional lay-
ers to lower-bit representations, network quantization provides a dramatic reduction in
computational resources [5,8,14,29,58,59]. Recent works have successfully quantized
various networks to low bit-widths with minimal compromise in accuracy [6, 12, 16,
27, 39, 49, 52]. However, these efforts primarily target high-level vision tasks, whereas
networks for low-level vision tasks remain vulnerable to low-bit quantization.

2.3 Quantized Super-Resolution Networks

In contrast to high-level vision tasks, SR poses different challenges due to its inherent
high sensitivity to quantization [24, 40, 48, 51]. Some works have attempted to recover
accuracy by modifying the network architecture [2,25,51] or by assigning different bits
for each image [17, 19, 47] or network stage [38]. However, the primary challenge in
quantizing SR networks lies in the vastly distinct feature distributions. To address this,
Li et al. [33] adopted a learnable quantization range for different layers. Subsequently,
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recognizing that the distributions vary not only by layer, but also by channel and input,
Hong et al. [18] introduced a channel-wise dynamic quantization function. Addition-
ally, Zhong et al. [57] utilized an input-adaptive dynamic module to tailor quantization
ranges for each specific input image. However, such dynamic adaptations of quantiza-
tion functions during test-time incur non-negligible computational overheads. Instead
of relying on test-time adaptive modules, our approach focuses on mitigating the fea-
ture mismatch before quantization. Our framework reduces the inherent distribution
mismatch in SR networks with minimal overhead, accurately quantizing SR networks
without dynamic modules. More recently, Qin et al. [44] introduced additional transfor-
mation functions in both the forward and backward processes. However, performance
degradation is still evident in ultra-low bit (e.g., 2-bit) scenarios.

3 Proposed Method

In this section, after a brief introduction to network quantization (Section 3.1), we first
analyze the mismatch in the features of SR networks (Section 3.2). Subsequently, we
propose a solution to reduce this feature mismatch during training (Section 3.3). Ad-
ditionally, we examine the mismatch in weights across SR networks (Section 3.4) and
introduce a quantization range selection scheme that addresses the weight mismatch
(Section 3.5). The overall training process is summarized in Algorithm 1.

3.1 Preliminaries

To reduce the heavy computations of convolutional and linear layers in neural networks,
the input features (activations) and weights of each convolution/linear layer are quan-
tized to low-bit values [5,8,15,29]. Given the input feature of the i-th convolution/linear
layer Xi ∈ RB×C×H×W , where B,C,H, and W represent the dimensions of the input
batch, channel, height, and width, respectively, a quantization operator q(·) quantizes
the feature Xi with bit-width b:

q(Xi; l, u) = Int(
clip(Xi, l, u)− l

s
) · s+ l, (1)

where clip(·, l, u) truncates the input into the quantization range of [l, u] and s = u−l
2b−1

.
After truncation, the truncated feature is scaled to [0, 2b − 1], then rounded to integer
values with Int(·), and rescaled to range [l, u].

For activation quantization, the quantization range is defined by [la, ua]. To obtain
better quantization ranges in SR networks, the clipping parameters la, ua for each layer
are typically learned through quantization-aware training [33, 57]. Since the rounding
function is not differentiable, a straight-through estimator (STE) [3] is used to train the
clipping parameters in an end-to-end manner. Following [57], we initialize la and ua

as the (100-j)-th and j-th percentile values of the feature, averaged among the training
data, where j is set to 99 in our experiments to avoid outliers that corrupt the quan-
tization range. For weights, as their distributions tend to be symmetric and the mean
approximates zero, we utilize a symmetric quantization function. Thus, for the weight
W of each convolution/linear layer, the quantization range is defined by [−uw, uw].
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(a) Channel-wise features (b) Image-wise features
Channel-wise Image-wise

Image classification

Figure 1: Distribution mismatch in SR networks. Compared to a classification network (e.g.,
ResNet-18), an SR network (e.g., EDSR) exhibits significant mismatches within the feature dis-
tributions across channel and image dimensions. The large distribution mismatch complicates the
selection of an appropriate quantization range. Channels and images from the 2nd layer are ran-
domly selected for visualization. Additional results are available in the supplementary material.

3.2 Distribution Mismatch in SR Networks

The unfriendliness to quantization in SR networks arises from diverse feature (acti-
vation) distributions, as reported in previous studies [18, 33, 57], primarily due to the
absence of batch normalization layers in SR networks. As illustrated in Figure 1, where
there are notable discrepancies between the channel and image distributions, quanti-
zation grids are unnecessarily allocated to regions with minimal feature density. Early
SR quantization methods tackled this issue by employing learnable quantization range
parameters [33] for each feature. However, even though the quantization-aware train-
ing process strives to find the optimal range for each feature, it fails to account for the
channel-wise and input-wise variance in distributions. This mismatch results in a large
quantization error that can impair SR performance. To deal with these distribution mis-
matches, existing methods adopt different quantization ranges for each channel [18] or
input image [18, 57]. Nevertheless, the test-time adaptation modules used to determine
these ranges introduce unwanted computational overhead during inference. Thus, our
straightforward solution is to pre-adjust the distributions to be quantization-friendly,
thereby eliminating the need for additional adaptations at inference. The following sec-
tions will introduce a new quantization-aware training scheme designed to resolve the
distribution mismatch problem.

3.3 Cooperative Mismatch Regularization

Instead of trying to identify a quantization range capable of accommodating diverse
feature distributions, our approach aims to regularize the distribution mismatch before-
hand. Obtaining an appropriate quantization range for a feature with high image- and
channel-wise variance is difficult, as a certain number of channels or images will invari-
ably be distant from the selected quantization range. In this work, we refer to the total
distance of each feature from the selected quantization grid as the mismatch,

M(Xi) = ||Xi − q(Xi; la, ua)||2, (2)



6 C. Hong and K.M. Lee

0 10

cos( L1, L2) < 0

L1 = 2

L2 = ( 10)2

gradient conflict

(a) Gradient conflict [13]

0 20 40 60
Iterations (×103)

0.5

0.0

0.5

Co
sin

e 
sim

ila
rit

y

body.0.body.0.weight
body.0.body.3.weight

(b) Cosine similarity of two gradients

0 20 40 60
Iterations (×103)

0.0

0.5

1.0

Gr
ad

ie
nt

 c
on

fli
ct

 ra
tio

Params not in gradient conflict
Params in gradient conflict

(c) Gradient conflict ratio

Figure 2: Conflict between mismatch regularization and reconstruction loss. Mismatch reg-
ularization updates a number of parameters in the contradictory direction to the reconstruction
loss, which we refer to as gradient conflict. (b) When the two losses are jointly used, gradient con-
flict consistently occurs during training, outputting a negative cosine similarity value. (c) We plot
the ratio of conflicted gradients during training. Nearly half of the parameters undergo gradient
conflict, which indicates that merely combining mismatch regularization with the reconstruction
loss can impair SR accuracy. Visualizations are done on EDSR.

where || · ||2 calculates the Frobenius norm. Further analyses of the definition of mis-
match are provided in the supplementary material. We can reduce the overall mismatch
by directly regularizing the mismatch of each feature to be quantized. The mismatch
regularization loss is obtained by summing the mismatch over all quantized features:

LM =

#layers∑
i

M(Xi). (3)

The mismatch regularization loss can be used in line with the original reconstruction
loss typically used in the general quantization-aware training pipeline for SR networks:

LR = L1(Q(ILR), IHR), (4)

where L1 loss indicates the l1 distance between the reconstructed image using the quan-
tized network Q and the ground-truth HR image IHR. Then, the optimization of the
parameter θt is formulated as:

θt+1 = θt − βt · (∇θLR(θ
t) +∇θLM (θt)), (5)

where ∇θLR(θ
t) denotes the gradient from the original reconstruction loss and ∇θLM (θt)

is the gradient from mismatch regularization loss, and βt refers to the learning rate. Up-
dating the network to minimize the mismatch regularization loss will reduce the overall
error from feature quantization.

However, then a question arises: does reducing the quantization error of each fea-
ture lead to improved reconstruction accuracy? The answer is, according to our obser-
vation in Figure 2, not necessarily. During the training process, the mismatch regulariza-
tion loss can collide with the original reconstruction loss. That is, for some parameters,
the direction of the gradient from reconstruction loss and that of the mismatch regular-
ization are opposing, referred to as gradient conflict [13]. As in Figure 2b, the cosine
similarity of two gradients oscillates between positive and negative values during train-
ing, indicating that the directions of two gradients do not converge and the gradient
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Figure 3: Layer-wise variation in error from weight quantization. (a) Quantization error (QE)
varies across different layers when a fixed global policy (i.e., max) is used to determine the quan-
tization range, particularly for low bits. For some layers, using max does not effectively serve
as a proper policy for quantization range selection. (b) Outliers often dominate the quantization
range, leading to quantization grids being wasted on low-density areas. (c) At low bits, quantiza-
tion grids fail to cover high-density regions adequately. Therefore, the quantization range should
be adjusted for certain layers.

occasionally conflicts. Furthermore, as shown in Figure 2c, the proportion of parame-
ters undergoing gradient conflict is not minor, implying that the regularization loss can
severely hinder the reconstruction loss.

We aim to avoid the conflict between these two losses, in other words, to minimize
the mismatch as long as it does not hinder the reconstruction loss. Thus, we dismiss
the mismatch regularization term when it is not cooperative with reconstruction loss
and make more use of it when it is cooperative. Specifically, we determine whether the
two losses are cooperative by examining the cosine similarity of the gradients of each
loss and then simply weigh the gradient of mismatch regularization by the gradient
similarity. Our cooperative mismatch regularization can be formulated as follows:

θt+1 = θt−βt ·(λR ·∇θLR(θ
t)+λM ·sim(∇θLR(θ

t),∇θLM (θt))·∇θLM (θt)), (6)

where the underlined term, gradient similarity, is defined as sim(va,vb)=
cos(va,vb)+1

2
and cos(·, ·) ∈ [-1, 1] calculates the cosine similarity between two vectors. λR, λM

are hyper-parameters to balance the two gradients. If the directions of two gradients
are similar (i.e., smaller than 90◦ and closer to 0◦), the gradient similarity is a large
value, then the parameter is updated in the direction where mismatch regularization
is also substantially considered. On the contrary, if the two gradients point in the other
direction (i.e., larger than 90◦ and closer to 180◦), the two losses restrain each other, and
the gradient similarity is close to 0. In this case, we follow the gradient of reconstruction
loss. This allows the network to reduce the quantization error cooperatively with the
reconstruction error. Details on gradient similarity are in the supplementary material.

3.4 Distribution Mismatch in Weights

The weight distributions of SR networks have remained relatively unexplored in pre-
vious literature. This is because the weights in SR networks typically exhibit bell-
shaped distributions, which are considered easier to quantize compared to the long-
tailed, input-wise and channel-wise distinct activation distributions. Consequently, many
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Algorithm 1 Quantization-aware training process of ODM
Input: Pre-trained 32-bit network P .
Output: Quantized network Q.

for t = 1, · · · , # iters do
for i = 1, · · · , # layers do

if t = 1 then
Initialize activation quantization range [la, ua]
Initialize weight quantization range [-uw, uw]

Given quantization range, obtain q(Xi; la, ua) using Eq. (1)
Given Xi and q(Xi; la, ua), obtain mismatch using Eq. (2)
Adjust weight quantization range [-uw, uw] using Eq. (9)
Given quantization range, obtain q(Wi;-uw, uw) using Eq. (1)
Replace Xi,Wi in P with q(Xi), q(Wi)

Calculate mismatch regularization loss (Eq. (3)) and reconstruction loss (Eq. (4))
Update parameters of Q with two losses cooperatively using Eq. (6)

studies [17, 33, 47] simply adopt max quantization for weights, setting the quantization
range with the maximum value of the current weight distribution. However, we notice
that this is suboptimal and may contribute to low performance when SR networks are
quantized to ultra-low bits (e.g., 2-bit). The issue arises because, in some layers, the
outliers are far from the distribution mean, as visualized in Figures 3b and 3c. Thus,
when the maximum value is used to determine the quantization range for such distri-
butions, the quantization range is dominated by outliers, with quantization grids not
allocated to high-density regions (e.g., near 0). This leads to substantial quantization
errors that can accumulate and degrade restoration performance. In the case of 4-bit
quantization (Figure 3b), although grids still cover high-density regions to an extent, a
number of grids are wasted on low-density areas. The problem intensifies with low-bit
(2-bit) quantization (Figure 3c), where quantization errors become significantly larger.
This observation underscores the need for careful selection of the quantization range
for layer-wise weights, particularly in low-bit quantization scenarios.

3.5 Weight Clipping Correction

Also, we notice that the error from weight quantization varies across different layers,
as shown in Figure 3a. For instance, employing the maximum value as the quantization
range can be an effective policy for certain layers, yet this policy proves inadequate for
others (e.g., the layer shown in Figure 3c). Given the unique tendency of each layer,
applying a uniform global policy for selecting the quantization range across all layers
is suboptimal. Existing methods [17, 33, 47] utilize a fixed global policy throughout
training to set the quantization range clipping parameter uw as follows:

ut
w = f(W t), (7)

where the global policy f(·) is the same function for all layers (e.g., max(·)). A simple
solution to accommodate layer-specific variations is to make the clipping parameter uw
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Table 2: Quantitative comparisons on EDSR of scale 4

Model Bit Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR 32 32.10 0.894 28.58 0.781 27.56 0.736 26.04 0.785

EDSR-PAMS 4 31.59 0.885 28.20 0.773 27.32 0.728 25.32 0.762
EDSR-DAQ 4 31.85 0.887 28.38 0.776 27.42 0.732 25.73 0.772
EDSR-DDTB 4 31.85 0.889 28.39 0.777 27.44 0.732 25.69 0.774
EDSR-ODM (Ours) 4 32.00 0.891 28.47 0.779 27.51 0.735 25.80 0.778

EDSR-PAMS 3 27.25 0.780 25.24 0.673 25.38 0.644 22.76 0.641
EDSR-DAQ 3 31.66 0.884 28.19 0.771 27.28 0.728 25.40 0.762
EDSR-DDTB 3 31.52 0.883 28.18 0.771 27.30 0.727 25.33 0.761
EDSR-ODM (Ours) 3 31.85 0.888 28.38 0.776 27.43 0.732 25.59 0.771

EDSR-PAMS 2 29.51 0.835 26.79 0.734 26.45 0.696 23.72 0.688
EDSR-DAQ † 2 31.01 0.871 27.89 0.762 27.09 0.719 24.88 0.740
EDSR-DDTB 2 30.97 0.876 27.87 0.764 27.09 0.719 24.82 0.742
EDSR-ODM (Ours) 2 31.50 0.882 28.14 0.770 27.27 0.726 25.17 0.755

† We note that the reported results of DAQ [18] are obtained using EDSR of 32 residual blocks. For a fair comparison, we
reproduce EDSR-DAQ using EDSR of 16 residual blocks (i.e., EDSR-baseline).

for each layer a learnable parameter [14]:

ut+1
w = ut

w − βt · ∇uw
LR(u

t
w), (8)

where βt denotes the learning rate. This process determines the clipping parameter ut
w

to quantize W t based on the weight of the previous iteration, W t−1. However, since
the weight is also updated at iteration step t (W t−1 � W t), a mismatch occurs between
the current weight and the weight quantization range derived from the previous weight.
To address this, we first obtain the quantization range by applying the global policy to
the current weight, then adjust the range with a learnable parameter that accounts for
layer-specific tendencies. Our clipping parameter is formulated as follows:

ut+1
w = f(W t+1) · (γt

w − βt · ∇γw
LR(γ

t
w)), (9)

where γw is the learnable parameter for each layer representing the layer-wise adjust-
ment. Each γw is initially set to 1. To prevent outliers from dominating the initial quan-
tization range, we set the global policy f(·) as the j-th percentile function. Our clipping
correction scheme introduces only one additional parameter per layer; thus, the overall
computational overhead is minimal. For further details, please refer to Section 4.3.

4 Experiments

The efficacy and adaptability of the proposed quantization framework, ODM, are as-
sessed through its application across several SR networks. The experimental settings
are described (Section 4.1), and quantitative (Section 4.2), qualitative (Section 4.4), and
complexity (Section 4.3) evaluations are conducted on various SR networks. Ablation
studies are conducted to examine each component of the framework (Section 4.5).
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Table 3: Quantitative comparisons on RDN of scale 4

Model Bit Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RDN 32 32.24 0.896 28.67 0.784 27.63 0.738 26.29 0.792

RDN-PAMS 4 30.44 0.862 27.54 0.753 26.87 0.710 24.52 0.726
RDN-DAQ 4 31.91 0.889 28.38 0.775 27.38 0.733 25.81 0.779
RDN-DDTB 4 31.97 0.891 28.49 0.780 27.49 0.735 25.90 0.783
RDN-ODM (Ours) 4 32.06 0.892 28.49 0.780 27.52 0.736 25.88 0.783

RDN-PAMS 3 29.54 0.838 26.82 0.734 26.47 0.696 23.83 0.692
RDN-DAQ 3 31.57 0.883 28.18 0.771 27.27 0.728 25.47 0.765
RDN-DDTB 3 31.49 0.883 28.17 0.772 27.30 0.728 25.35 0.764
RDN-ODM (Ours) 3 31.79 0.887 28.33 0.776 27.42 0.732 25.51 0.770

RDN-PAMS 2 29.73 0.843 26.96 0.739 26.57 0.700 23.87 0.696
RDN-DAQ 2 30.71 0.866 27.61 0.755 26.93 0.715 24.71 0.731
RDN-DDTB 2 30.57 0.867 27.56 0.757 26.91 0.714 24.50 0.728
RDN-ODM (Ours) 2 31.37 0.880 28.08 0.770 27.24 0.727 25.09 0.755

4.1 Implementation Details

Models and Training. The proposed framework is applied directly to existing repre-
sentative SR networks that produce satisfactory SR results, but involve heavy computa-
tions: EDSR (baseline) [37] and RDN [55]. Furthermore, we apply our method to the
Transformer-based SR model, SwinIR-S [36]. Following prior works on SR quantiza-
tion [17, 18, 33, 40, 51, 57], weights and activations of the high-level feature extraction
module are quantized, which is the most computationally demanding. Training and val-
idation are conducted using the DIV2K [1] dataset. ODM trains the network for 60K
iterations with a batch size of 8. The weights are updated with an initial learning rate
of β0=10−4. For cooperative update, we update clipping parameters with 10 · β0 initial
learning rate. The learning rates are halved every 15K iteration. The hyperparameter
for the percentile is set to j = 99, and to balance the gradient of the loss terms, we set
λR=1 and λM=10−5. Specially, we set λM=10−6 for RDN whose overall mismatch is
large. Ablation studies on the hyperparameters are in the supplementary material. All
our experiments are implemented using PyTorch and run on an RTX 2080Ti GPU.

Evaluation. We evaluate our framework on the standard benchmark (Set5 [4], Set14 [32],
BSD100 [41], and Urban100 [21]) by measuring the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM [50]). To assess the computational complexity
of our framework, we measure bitOPs and storage size. BitOPs refers to the number of
operations weighted by the bit-widths of the two operands. Storage size is calculated as
the number of stored parameters weighted by the precision of each parameter value.

4.2 Quantitative Results

To evaluate the effectiveness of our proposed scheme, we compare the results with
existing SR quantization works using their official codes: PAMS [33], DAQ [18], and
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Table 4: Quantitative comparisons on SwinIR of scale 4

Model Bit Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR 32 32.44 0.898 28.77 0.786 27.69 0.741 26.47 0.798

SwinIR-PAMS 4 31.99 0.890 28.50 0.779 27.49 0.735 25.86 0.780
SwinIR-DAQ 4 31.82 0.887 28.34 0.775 27.37 0.730 25.68 0.772
SwinIR-DDTB 4 32.09 0.891 28.55 0.780 27.54 0.735 26.01 0.783
SwinIR-ODM (Ours) 4 32.17 0.892 28.59 0.781 27.56 0.736 26.06 0.785

SwinIR-PAMS 3 31.62 0.884 28.23 0.771 27.31 0.728 25.38 0.762
SwinIR-DAQ 3 31.50 0.882 27.99 0.770 27.12 0.727 25.29 0.761
SwinIR-DDTB 3 31.80 0.887 28.34 0.775 27.40 0.731 25.63 0.771
SwinIR-ODM (Ours) 3 31.94 0.889 28.39 0.777 27.45 0.733 25.72 0.775

SwinIR-PAMS 2 29.48 0.834 26.79 0.733 26.46 0.698 23.72 0.688
SwinIR-DAQ 2 29.10 0.824 26.55 0.725 26.30 0.691 23.51 0.678
SwinIR-DDTB 2 31.01 0.873 27.80 0.762 27.04 0.719 24.79 0.739
SwinIR-ODM (Ours) 2 31.44 0.880 28.06 0.769 27.23 0.725 25.14 0.754

DDTB [57]. For a fair comparison, we reproduce other methods using the same training
iterations, 60K iterations. The supplementary materials provide additional experiments
that further demonstrate the applicability of ODM, including results on 300K iterations,
scale 2, and fully quantized settings.

EDSR. As shown in Table 2, ODM outperforms other methods in the 4, 3, and 2-bit
settings, and notably, the improvement is significant for 2-bit, achieving a gain of more
than 0.49 dB for Set5. We notice that 4-bit EDSR-ODM achieves closer accuracy to
32-bit EDSR, with a marginal difference of 0.1 dB for Set5. This indicates that ODM
can effectively bridge the gap between the quantized network and the 32-bit network.

RDN. Similarly, Table 3 compares the results on RDN, whose computational complex-
ity is more burdensome than EDSR. The results show that ODM consistently achieves
superior performance on 4, 3, and 2-bit quantization. The gain over existing methods is
especially large for the 2-bit setting, where it exceeds 0.66 dB for Set5.

SwinIR. Furthermore, we evaluate our framework on the Transformer-based architec-
ture, SwinIR. The linear and convolutional layers of SwinIR are quantized. According
to Table 4, ODM is also proven effective in quantizing SwinIR across all bit settings,
where the improvement is most notable in the 2-bit setting (0.43 dB).

Comparison with QuantSR. We also compare our method with the concurrent work,
QuantSR [44]. As the training code of QuantSR has not been released, we base our
comparison on the reported performance. For a fair comparison with QuantSR’s re-
ported performance, we also train our model for 300K iterations on SRResNet [32] and
SwinIR [36]. In Table 5, the results demonstrate that our method achieves better results
than QuantSR; compared to QuantSR, ours shows a gain of 0.51 dB on 2-bit SRResNet
and a gain of 0.14 dB on 2-bit SwinIR for Set5.
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Table 5: Quantitative comparisons with QuantSR on SRResNet and SwinIR of scale 4. For a
fair comparison, our model (ODM∗) is trained for 300K iterations following QuantSR.

Model Bit Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRResNet 32 32.07 0.893 28.50 0.780 27.52 0.735 25.86 0.779

SRResNet-QuantSR 2 31.30 0.882 28.08 0.769 27.23 0.725 25.13 0.754
SRResNet-ODM∗(Ours) 2 31.81 0.888 28.32 0.774 27.38 0.730 25.54 0.767

SwinIR 32 32.44 0.898 28.77 0.786 27.69 0.741 26.47 0.798

SwinIR-QuantSR 2 31.53 0.885 28.16 0.772 27.28 0.727 25.26 0.761
SwinIR-ODM∗(Ours) 2 31.67 0.885 28.23 0.772 27.33 0.728 25.36 0.762

Table 6: Computational complexity comparison with SR quantization methods

Model Bit Storage size BitOPs PSNR SSIM
EDSR 32 1517.6K 527.1T 32.10 0.894
EDSR-PAMS 2 411.7K 215.1T 29.51 0.835
EDSR-DAQ 2 411.7K 215.6T 31.01 0.871
EDSR-DDTB 2 413.6K 215.1T 30.97 0.876
EDSR-ODM (Ours) 2 411.8K 215.1T 31.50 0.882

(a) EDSR

Model Bit Storage size BitOPs PSNR SSIM
RDN 32 22271.1K 6032.9T 32.24 0.896
RDN-PAMS 2 1715.9K 236.6T 29.73 0.843
RDN-DAQ 2 1715.9K 287.7T 30.71 0.866
RDN-DDTB 2 1761.6K 236.6T 30.57 0.867
RDN-ODM (Ours) 2 1716.1K 236.6T 31.37 0.880

(b) RDN

4.3 Complexity Analysis

Along with the accuracy of SR, we also evaluate the computational complexity of our
framework in Table 6. We measure the storage size for the model weights and the bitOPs
required for generating a 1920×1080 image with ×4 SR network. Overall, our frame-
work, ODM, achieves higher restoration accuracy with similar or fewer computational
resources. Specifically, our weight-clipping correction involves an additional storage
size of 0.06K / 0.15K for EDSR / RDN. Since the correction process can be prede-
termined before test time, no extra bitOPs are required. Compared to existing meth-
ods, our method achieves ×31.7 smaller storage size overhead than DDTB and 0.5T
fewer bitOPs than DAQ on EDSR. For RDN, the gap is larger; our method’s overhead
is ×304.7 smaller in storage size than DDTB and 51.1T fewer in bitOPs than DAQ.
Moreover, we note that DAQ adopts a channel-wise dynamic quantization function and
DDTB an asymmetric weight quantization function, which are not favorably supported
by hardware. Despite incurring a minor additional storage size of 0.06K / 0.15K over
PAMS, the accuracy improvement over PAMS is significant (+1.99 dB / +1.64 dB).
The results prove that our method achieves significant accuracy gain with minimal or
no computational overhead.

4.4 Qualitative Results

Figure 4 provides qualitative results and comparisons with the output images of quan-
tized EDSR, RDN, and SwinIR. Our method, ODM, produces visually cleaner output
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GT (img052) EDSR-PAMS EDSR-DAQ EDSR-DDTB EDSR-ODM (Ours)

GT (img060) SwinIR-PAMS SwinIR-DAQ SwinIR-DDTB SwinIR-ODM (Ours)

GT (img024) RDN-PAMS RDN-DAQ RDN-DDTB RDN-ODM (Ours)

Figure 4: Qualitative results on Urban100 with EDSR, SwinIR, and RDN-based models

images compared to existing methods. In contrast, existing methods, especially PAMS,
suffer from blurred lines or artifacts. These qualitative results stress the importance of
alleviating the distribution mismatch problem in SR networks.

4.5 Ablation Study

In Table 7, we verify the importance of each attribute of our framework: cooperative
mismatch regularization and weight clipping correction. According to the results, each
attribute individually improves baseline accuracy. Weight clipping correction improves
the baseline by +1.18 dB for Set5, indicating that considering both the layer-wise trend
and the current weight distribution is important for weight quantization. Also, while
directly integrating mismatch regularization with the reconstruction loss (Model (d))
rather degrades performance by -0.13 dB, our cooperative scheme (Model (e)) improves
the SR accuracy by +0.51 dB. This shows that reducing the mismatch in both activations
and weights is important for accurately quantizing SR networks.

Furthermore, we visualize the feature distributions in Figure 5 to validate the impor-
tance of our cooperative regularization term. After training only with the reconstruction
loss, the outliers remain far from the quantization grid. When mismatch regularization
loss is simply added to the original reconstruction loss, the activation distribution falls
into a narrower range and resembles a multi-modal distribution near the quantization
grids. Although this distribution is quantization-friendly, it significantly deviates from
the original activation of the 32-bit network and removes originally dense values (near
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Table 7: Ablation study on each attribute of our framework. WCC refers to weight clipping
correction and MR refers to mismatch regularization. Cooperative denotes whether the mismatch
regularization is cooperatively used with the reconstruction loss. Non-cooperative MR denotes
that the two losses are simply used together.

Model WCC Cooperative MR Set5 (PSNR / SSIM) Urban100 (PSNR / SSIM)
(a) - - - 29.94 / 0.848 23.99 / 0.703
(b) - ✓ ✓ 30.34 / 0.859 24.27 / 0.715
(c) ✓ - - 31.12 / 0.876 24.91 / 0.746
(d) ✓ - ✓ 30.99 / 0.871 24.79 / 0.735
(e) ✓ ✓ ✓ 31.50 / 0.882 25.17 / 0.755
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Figure 5: Distribution of activations before quantization. Using our cooperative mismatch reg-
ularization results in distributions more robust to low-bit quantization. 8th conv layer of EDSR-
ODM (2-bit) on ‘baby’ (Set5) are visualized.

0). This can lead to an accuracy drop, as demonstrated in Table 7 (d). In contrast, our
cooperative mismatch regularization results in quantization-friendly distribution while
largely preserving the activations in the dense region of the original 32-bit network.

5 Conclusion

SR networks suffer accuracy loss from quantization due to the inherent mismatch in fea-
ture distributions. Instead of employing resource-demanding dynamic modules to han-
dle distinct distributions during test time, we introduce a new quantization-aware train-
ing technique that alleviates this mismatch through distribution optimization. We uti-
lize cooperative mismatch regularization to update the SR network to be quantization-
friendly and accurate. Additionally, to address the mismatch in layer-wise weights, we
propose a weight-clipping correction strategy. These straightforward solutions effec-
tively reduce the distribution mismatch with minimal computational overhead.
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