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A MotionVerse

In this section, we offer additional details about the construction of Motion-
Verse benchmark.

A.1 Dataset Preprocess

Based on the characteristics of each dataset, we employ different preprocessing
methods. To avoid overlap between the training and test sets of different datasets,
we excluded sequences from the training set of each benchmark that intersect
with any test set motion sequences. Below, we provide detailed explanations of
the processing methods for each dataset. After aligning each dataset to SMPL-X
joints and processing them into TOMATO format using the same set of scripts,
they are decomposed into 10 body parts. Therefore, our main focus will be on
how each dataset is aligned to SMPL-X 3D joints and which body parts are
included in each dataset.

HumanML3D. The HumanML3D dataset is annotated from two sources: AMASS
data and HumanAct12. The former provides native SMPL-X annotations, while
the latter offers 22 keypoint annotations based on the SMPL format. Addition-
ally, the MotionX dataset provides facial motion data corresponding to each
action sequence in HumanML3D. Therefore, there are two overall annotation
formats. For data from AMASS, it includes all 10 body parts and does not re-
quire keypoint mapping. We use SMPL-X model to convert the SMPL-X beta
parameters and theta parameters into 3D coordinates. For data from Human-
Act12, it includes 7 body parts (excluding face, left hand, and right hand).
KIT-ML. We located the AMASS data corresponding to KIT-ML and utilized
this portion of the AMASS data to generate the motion sequences for KIT-ML.
Since there is no additional face motion data available, it comprises a total of 9
body parts.

Motion-X. Motion-X provides key points based on the SMPL-X format and
facial expressions based on FLAME. Here, we don’t need to perform additional
key point conversion, and it includes all 10 body parts.

BABEL. BABEL is also annotated based on AMASS. Since there is no face
motion available, we only consider its 9 body parts.

UESTC. For the UESTC dataset, we follow the processing method used in
ACTOR. We use the SMPL parameters estimated from VIBE as the raw data.
We use default betas parameters to obtain the 3D coordinates of each joint. Since



we do not consider global orientation and global translation during evaluation,
and due to the significant noise in the estimation from VIBE, we do not consider
four body parts: left hand, right hand, face expression, and global configuration.
HumanAct12. For the HumanAct12 dataset, we employ the pre-processing
method used in HumanML3D. Here, HumanAct12 does not include three body
parts: left hand, right hand, and facial expression.

NTU-RGB-D 120. For the NTU-RGBD 120 dataset, it comes with native
3D keypoint annotations, but due to their poor accuracy, we only consider the
inherent motion captured by these keypoints. Regarding the spine, we use an
interpolation method to map the keypoint data from NTU-RGBD 120 to the
SMPLX format for the spine. Finally, we only consider four body parts: spine,
left hand, right hand, and head.

AMASS. AMASS provides annotations based on the SMPL-X format. We use
the provided beta and theta parameters to obtain the corresponding 3D key-
points. Here, we do not consider the body part of facial expression.

3DPW. 3DPW provides SMPL parameters, allowing us to obtain the 3D key-
point positions in the SMPL format. Since the motion prediction task involved
in 3DPW does not consider global translation, we only consider six body parts:
spine, left arm, right arm, left leg, right leg, and head.

Human3.6M. Similar to 3DPW, we obtain keypoint sequences using SMPL
parameters, which are ultimately converted into six body parts: spine, left arm,
right arm, left leg, right leg, and head.

TED-Gesture++. TED-Gesture++ only provides keypoints for the upper
body, so we consider only the spine, left arm, right arm, and head as the five
body parts. For the spine, we utilize interpolation to obtain a keypoint set that
conforms to SMPL-X.

TED-Expressive. The keypoint annotations of TED-Expressive+- are almost
identical to SMPL-X. We directly selected the corresponding keypoints and re-
moved the redundant parts. It includes all body parts except for facial expres-
sions.

Speech2Gesture-3D. Similar to TED-Expressive, we directly selected the cor-
responding keypoints and removed the redundant parts. It includes all body
parts except for facial expressions.

BEAT. The keypoint set of BEAT completely covers the keypoints of SMPL-X
and provides facial expression, so we consider all body parts and discard the
keypoints that do not exist in SMPL-X.

AIST++. AIST++ provides annotations based on SMPL parameters, corre-
sponding to 7 body parts excluding face expression, left hand, and right hand.
MPI-INF-3DHP. Similar to 3DPW, we obtain keypoint sequences using SMPL
parameters, which are ultimately converted into six body parts: spine, left arm,
right arm, left leg, right leg, and head.

A.2 Motion Translator

During evaluation, there are three types of estimation. The first type is based
on H3D vectors, primarily used in the Text2Motion datasets. For this type,
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we train an MLP to convert our frame representations into the corresponding
representations required for evaluation. The second type is based on keypoint
sequences, without considering global translation and global orientation, such as
in the UESTC evaluation. Here, we also directly train an MLP for mapping. The
third type considers global translation and global orientation, and is based on
keypoint sequence evaluation. In this case, we first convert our representations
into the keypoint sequence format and then train an MLP for mapping.

B Large Motion Model

To facilitate a deeper understanding of the LMM approach, this chapter provides
additional technical details.

B.1 Diffusion Model

This paper utilizes the Denoising Diffusion Probabilistic Model (DDPM) [8], a
probability generative model based on the Markov chain. Its essence lies in two
intertwined processes: the forward diffusion process and the reverse diffusion
process.

The forward diffusion process systematically injects noise into the original
distribution, progressively disrupting the data’s initial distribution. Starting
from the original distribution zg ~ ¢(x¢), noise is added over T steps to generate
Z1, T2,..., 7. This process employs an efficient, tractable noise addition method,
with Gaussian perturbation being a classic approach. The specific formula is:

4 [ xim1) = N (x5 v/T= Bixi1, AT M

where /3 controls the amount of noise added. In the context of motion generation
tasks, x can be considered a series of poses. To streamline the forward process,
the noise-added result at any step can be approximately calculated from xg:
Xt = \/O_TtXO —+ 1-— O_étE, where oy = 1— ﬂt and ap = Hile[t.

The reverse diffusion process is the inverse operation of adding noise, aiming
to restore the original distribution from a noisy distribution. Given the difficulty
and critical nature of this process, we employ deep learning models to learn
the denoising process, defined as: g(x¢—1 | ©;) = M(x,m, c). During the model
training phase, the supervisory objective is to minimize the difference between
the predicted distribution o and the ground truth x.

B.2 ArtAttention

Following a similar approach to FineMoGen, we incorporate the temporal as-
pect to account for the influence of motion sequences and other condition sig-
nals across different time intervals. Specifically, we introduce the notion of time



explicitly into this process. Formally, we present the following approximation for
refining temporal features:

Y, ~ pi(we) Z G, G (k) (2)

where xj, represents the time position of kth element in the motion sequence.
G/ ;(z) indicates the time-varied signal we derive from the feature vector G; i.j
and Gj; (ack) denotes the relative significance of this template for the kth posi-
tion. Gz,j is the j-th global template in the i-th attention head. We construct
G} ,(zy) as
G () = — O 3)
T Ty e S

In this setup, the jth global template of the ith group is considered as a set of
signals propagating outward from the temporal center G . As for Gi ;(v), we
consider its Taylor expansion at G! i d

k n)

Z (x—Gi )" (4)

We use linear projections to process the original G; ; and acquire all coefficients

G! 0 GEZ), n € [0, k]. We perceive a global template as an anchor with its initial

state defined as G( , velocity as G( , acceleration as G ig ) and so on. Therefore
we name this method a kinetic modelhng on the latent feature space.

Moreover, to integrate influences from all signals, we adopt the square of the
time difference as a metric to assess the significance of each global template.
We employ a Softmax operation to standardize their weights. An immediate
benefit of this modeling strategy is its flexibility in appending a new stage sub-
sequent to the current one. This can be achieved by adjusting a bias term in G! 44
accordingly, facilitating our method to execute zero-shot temporal combination.

B.3 Stylization Block

The primary function of the stylization block is to inject the information of the
timestamp ¢ into the features, thereby informing the model about the current
step in the reverse process. This enhancement aids in improving the model’s
denoising capability. The stylization block injects information about frame rate,
dataset name, and current timestep into the feature representation. Drawing
inspiration from FineMoGen, we convert the timestamp ¢ into a vector e¢. In
each stylization block, ey undergoes two linear transformations to generate two
features ey, € R¥*P and e, € R7*P. Every pose feature @ inputted into this
module is optimized as §' = 6 - ey, + ey, where () denotes Hadamard product.
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C Experiments

C.1 Implementation Details

Batch Formation Overall, we determine the sampling probability of motion
sequences in each dataset based on the quality of the dataset and the diversity
of the actions.

1. Text-to-Motion (40%): In the task of text-to-motion, there is a wide
variety of motion types, mostly consisting of high-quality motion capture
data from AMASS, which is beneficial for the model. Therefore, the sampling
proportion is set relatively high at 40%. Within this category, HumanML3D
provides high-quality and semantically rich motions, accounting for 15%;
Motion-X, although lower in quality, offers high diversity in motions, also at
15%; KIT-ML and BABEL each contribute 5%.

2. Unconditional Motion Generation (25%): We primarily focus on the
AMASS dataset, where the motion quality is generally high, aiding the model
in learning motion priors. Hence, we set a relatively high proportion for this
dataset.

3. Action-to-Motion (10%): We uniformly sample sequences from the Hu-
manAct12, UESTC, and NTU-RGBD 120 datasets.

4. Speech-to-Gesture (10%): As BEAT is selected as the test set, we assign
it half of the weight. The remaining portion is evenly distributed among
TED-Gesture+-, TED-Expressive, and Speech2Gesture-3D.

5. Music-to-Dance (5%): For Music2dance, there is only one AIST-++ dataset,
which accounts for all the weight.

6. Motion Imitation (10%): During training, we exclude the 3DPW dataset
and only consider MPI-INF-3DHP and H36M, with both datasets equally
sharing the weight.

Model |#Latent Dim|#Layers|#Experts|#Params
LMM-Tiny 64 4 16 90M
LMM-Small 64 8 16 160M
LMM-Base 128 12 16 410M
LMM-Large 128 20 32 760M

Table 1: Model card.

Model Card. Tab. 1 shows the hyperparameter of each variant.

Mask strategy. Considering that larger models have stronger capabilities to fit
motions, to enhance the control ability of conditions, we use mask probabilities of
0.1, 0.2, 0.3, and 0.4 for LMM-Tiny, LMM-Small, LMM-Base, and LMM-Large,
respectively.



C.2 More Quantitative Results

Table 2: Quantitative results on the KIT-ML test set.

R Precision?

Methods Top 1 s Top 3 FID| MM Dist|  Diversityt MM1
Real motions 0.424F-005 ( 649F-006 () 779F.006 () 931 F.004 5 785 F.012 1 g+.097 -

Guo et al. [5] 0.370=-005 " 569F-007 " 693E-007 5 770F-109 "3 491 £-008" 1 91 - 119 4 4g5F.065
T2M-GPT [15] 0.416F:006 g27%.006 745%.006  514F.029 3 g7£.023 1 g21%.108 4 570+.039
MDM [12] , - 0.396£:004 4971021 g 197£.022 10 g47+-109 3 go7E.214
MotionDiffuse [19] 0.417%:004 ¢ g21£.004 739%.004 4 g544.062 5 g5g4.005 17 39%.143 750%.013
ReMoDiffuse [20]  0.427F-014 64157004  765F.055  1558.006 5 g14+.012 14 go+.105 1 939+.028
FineMoGen [21]  0.432%-006 . 649%:005 ( 775£.006  178F.007 5 ggg+.014 g g5+.115 1 gy7+.093
MoMask [4] 0.433%:007 g g561:005 o 781%:005 ( 504F-011 5 779+.022 . 1.131%-043
LMM-Tiny 0.419F-018 g go7E 014 748F 019 ¢ g17E.0I5 5 9pqE.022° 1 g5F-087 1 go7E-110
LMM-Small 0.421F:015 ¢ 34%:021 o 755017  § 477+.017 5 g57+.021 15 ggF.101 4 go5+.114
LMM-Base 0.428F.015 648F-017 (. 769%.017  239F.015 5 g10%.018 1 o5£.097 4 gogu+.130
LMM-Large 0.430F-015  .653%:017  779%.014  137%.023 5 7974+.018 13 54+.108 | ggg5+.127

Text-to-Motion. We observed that compared to its performance on HumanML3D,
LMM-Large performs slightly worse on KIT-ML, which could be related to the
proportion of the two datasets in batch formation. However, overall, KIT-ML
also achieves accuracy comparable to the state-of-the-art, especially achieving a
new state-of-the-art in terms of FID.

Table 3: Quantitative results for Action-conditioned Motion Generation. As
for UESTC dataset, we report FID on the test split. MM: MultiModality.

Methods HumanActiz UBSTC
FID| Accuracy? Diversity—  MM— FID| Accuracy? Diversity—s  MM—

Real motions 0.020F-0T0 .997F-001 4 850F 050 5. 450F 090 | 5. 79F 29 .988F 00T 33.34F-320 14 14F.06
Action2Motion [6] |0.338E-015 (.917%-003 g g79F.066 5 511F.023 B B R B

ACTOR [11] 0.12%1:00 . g55£.008 5 g44.08 5 53£.02 |53 4342.20 ( 911£.008 37 9633 14 52%.09
INR [2] 0.088%:004  g73%.001 ¢ gg1+.048 5 569F.040 | 15 09F-09 .9q1F:001 33 59+.19 14 g+.07
MotionDiffuse [19] | 0.07£:00 0 992%t-18 g 85%.02 5 46502 |9 10F 437 ( 950F-000 39 4o0%.214 14 74%.07
LMM-Tiny 0.105T-00 (. 992F-008 4 g19F 025 5 457F 0185 16E1.78 ( 917L-002 30 goT 228 14291066
LMM-Small 0.094F-00 (. 963F-008 g go7+.028 5 4gg+.022 |14 9g+1.14 ( g9aF.002 39 o954.231 14 49+.067
LMM-Base 0.087%:00 . 9g5%-007 8458030 5 551+.022 |10 36+0.60 ( gq5+-000 35 39+.236 14 g5£.065
LMM-Large 0.065%:00 o 9g92F:008 ¢ g71£.031 5 560%.019 |9 01£0.54 o g52+.000 35 5g+.254 14 g1+.064

Action-to-Motion. On the action-conditioned motion generation task, each
LMM-Large model achieves the best performance in terms of both FID and
Accuracy. Additionally, due to exposure to more data, it exhibits higher diversity
and multimodality. However, because of the nature of the action-to-motion task,
an increase in both aspects does not necessarily indicate better performance.
Speech-to-Gesture. In MotionVerse, we introduce multiple speech-to-gesture
datasets, and overall, LMM-Large performs impressively on the BEAT dataset
as well.

Motion Imitation We evaluate our method on the test set of 3DPW, and
obtain PA-MPJPE scores of 95.7, 91.2, 76.3, and 71.5 for LMM-Tiny, LMM-
Small, LMM-Base, and LMM-Large, respectively. For reference, the PA-MPJPE
scores for HMR, and VIBE are 81.3 and 51.9, respectively. The performance for
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Table 4: Quantitative results on Speech-to-Gesture on the BEAT dataset.

Methods FGDJ] SRGRT?T BeatAlignt
Seq2Seq [17] 261.3 0.173 0.729
Speech2Gesture [3] 256.7  0.092 0.751
MultiContext [16] 176.2  0.195 0.776
Audio2Gesture [9] 223.8 0.097 0.766
CaMN [10] 123.7 0.239 0.783
TalkShow [15] 91.0 - 0.840
GestureDiffuCLIP [1]| 85.17 - -
CoG [11] 45.87 0.308  0.931
LMM-Tiny 92.51 0.142 0.825
LMM-Small 86.94 0.169 0.836
LMM-Base 57.18 0.228 0.879
LMM-Large 47.95 0.277 0.913

video-conditioning is relatively low; we will focus on addressing this issue in
future work.

Table 5: Quantitative results of motion prediction on the Human3.6M test
set for different time steps (ms). We report the MPJPE error in mm.

Human3.6M
Method 80 160 320 400 560 720 880 1000
SiMLDPe [7] | 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4
GCNext [13]]| 9.3 21.5 45.5 56.4 74.7 88.9 100.8 108.7

LMM-Tiny |14.8 28.6 483 59.2 79.3 93.6 1059 112.0
LMM-Small [14.1 27.4 47.2 58.1 78.1 91.5 103.4 110.3
LMM-Base [12.9 25.9 44.9 55.0 74.8 87.6 99.5 107.1
LMM-Large |11.8 23.6 43.7 53.1 73.6 85.0 96.9 104.6

Motion Prediction Similar to the conclusion we found in 3DPW and AMASS
dataset, LMM-Large performs worse than the existing work in short-term pre-
diction and better than these work in long-term prediction.

Table 6: Quantitative results of conditional motion completion on the Hu-
manML3D test set. We report the MPJPE error in mm. We use LMM-Large for all
experiments.

Condition First 25 frames Last 25 frames avg-MPJPE

No Yes No 63.8
No Yes Yes 59.1
Yes Yes No 54.7
Yes Yes Yes 51.9

Conditional Motion Completion To facilitate the conditional motion com-
pletion task, we selected motion sequences from the HumanML3D test set with
lengths ranging from 80 to 150 frames. We experimented with various settings
and observed that the difficulty of motion inbetweening is significantly lower
than motion prediction. Furthermore, introducing text conditions proved ad-
vantageous in reducing prediction errors.
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Fig. 1: Visualization Results. Some Qualitative comparations between LMM, Re-
MoDiffuse and T2M-GPT. We also show two music-to-dance sequences.

C.3 More Ablation Study

Table 7: More Ablation Study.

Setting Type HumanML3D 3DPW
Top 1 FID MModality | 80 400 1000
Using ’all’ S 0.493 0.428 2.127 16.5 46.5 83.6
No Pretraining S 0.512 0.144 1.530 179 484 87.6
Single dataset S 0.514 0.145 1.462 18.6 50.1 94.3
Ours S 0.505  0.227 1.761 16.2 459 82.8
Using ’all’ B 0.502  0.187 2.619 14.3 444 742
No Pretraining B 0.515 0.141 2.305 16.8 45.0 76.3
Single dataset B 0.516  0.143 2.218 17.5 48.2 81.7
Ours B 0.511 0.138 2.426 14.1 44.1 73.6
Using ’all’ L 0.519  0.107 2.915 13.3 429 69.0
No Pretraining L 0.521 0.075 2.536 159 43.9 74.2
Single dataset L 0.520 0.086 2.417 16.5 44.7 75.9
Ours L 0.525 0.040 2.683 13.1 42.4 68.0

1) Using ‘all’ label. Using the ‘all’ label has varying effects on different types
of tasks. For conditional generation tasks, since metrics like FID are calculated
using contrastive learning models trained only on this dataset, generating ac-
tions outside the dataset distribution, even if they meet given requirements, can
result in worse numerical indicators. Conversely, for motion prediction tasks, the
impact on numerical indicators is relatively minor. 2) Pretraining & multi-task
learning. For motion prediction, introducing pretraining and multi-task learning
enables the model to acquire better motion priors, resulting in more accurate
predictions. For conditional motion generation, despite a significant increase in
the number of parameters, LMM-Base does not show a noticeable improvement
in accuracy compared to LMM-Small. In addition, the potential of LMM-Large
has not been fully unleashed. However, the effectiveness of larger models is better
realized after incorporating these two techniques.

C.4 More Visualization Result

We provide more comparison in Fig. 1. Our synthesized are more consistent
with given prompts while with higher motion quality. In addition, we provide
four dance sequences with two different types of music. We will supply more
results in the final version, including qualitative comparison on each task and
generated motions under multiple conditions.
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Fig. 2: Visualization results.. Visualization results on Motion Inbetweening and
Motion Prediction, without and with text prompt control.
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Fig. 3: Video Generation with our synthesized motion sequence. After gener-
ating a sequence of motions conditioned on music by our LMM-Large, we map the 3D
keypoints to a 2D plane, serving as guidance for video generation.

Fig. 2 shows examples about motion predicion and motion in-betweening.
The left four images are generated without other conditions and LMM generates
the most probable sequences according to the given clues. The right four images
are generated with specific text prompts. Although some spatial conditions are
not highly consistent with the textual description, our model can still synthesize
reasonable sequences.

C.5 More Application

In Figure 3, we show two videos that are generated based on our synthesized
motion sequences. As a vital application direction, users can leverage our large
motion model to customize their desired motion data by providing personalized
condition signals, such as text commands or accompanying music. With the
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assistance of off-the-shelf motion-guided video generation technology, users can
freely create videos for their favorite characters.

D Limitation and Broader Impact

Limitation. The intermediate representation we propose can only address sce-
narios where entire body parts are missing, but it struggles to effectively handle
cases where individual keypoints within a body part are missing. Our method
of using motion translators introduces additional noise in downstream tasks,
leading to a decrease in motion quality. A more flexible approach to motion rep-
resentation and modeling needs to be explored and researched. Additionally, due
to practical limitations in memory, our model needs to employ zero-shot meth-
ods for long-sequence motion generation, which may pose challenges for users in
practical applications.

Boarder Impact. The ability to generate natural human motion under flexi-
ble condition signals can highly enhance productivity. However, it may also be
misused for malicious activities such as creating deceptive deepfake videos or
generating realistic-looking but false evidence in legal cases.
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