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Fig. 1: We present Large Motion Model (LMM), the first generalist multi-modal mo-
tion generation model, that can perform multiple motion generation tasks simultane-
ously and achieve competitive performance across nine widely used benchmarks.

Abstract. Human motion generation, a cornerstone technique in an-
imation and video production, has widespread applications in various
tasks like text-to-motion and music-to-dance. Previous works focus on
developing specialist models tailored for each task without scalability.
In this work, we present Large Motion Model (LMM), a motion-
centric, multi-modal framework that unifies mainstream motion genera-
tion tasks into a generalist model. A unified motion model is appealing
since it can leverage a wide range of motion data to achieve broad gener-
alization beyond a single task. However, it is also challenging due to the
heterogeneous nature of substantially different motion data and tasks.
LMM tackles these challenges from three principled aspects: 1) Data:
We consolidate datasets with different modalities, formats and tasks
into a comprehensive yet unified motion generation dataset, Motion-
Verse, comprising 10 tasks, 16 datasets, a total of 320k sequences, and
100 million frames. 2) Architecture: We design an articulated attention
mechanism ArtAttention that incorporates body part-aware model-
ing into Diffusion Transformer backbone. 3) Pre-Training: We propose
a novel pre-training strategy for LMM, which employs variable frame
rates and masking forms, to better exploit knowledge from diverse train-
ing data. Extensive experiments demonstrate that our generalist LMM
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achieves competitive performance across various standard motion genera-
tion tasks over state-of-the-art specialist models. Notably, LMM exhibits
strong generalization capabilities and emerging properties across many
unseen tasks. Additionally, our ablation studies reveal valuable insights
about training and scaling up large motion models for future research.

Keywords: Motion Generation · Unified Model · Multi-Modality

1 Introduction

Humans perform a variety of motions in response to environmental changes, per-
sonal thoughts, and emotions to achieve their goals. These intricate motions often
serve as the most information-rich element within videos and animations that
feature characters, making motion generation a critical component of Generative
AI, significantly influencing visual experiences and content quality. Automated
human motion generation, aimed at producing continuous, natural, and logi-
cal human movements based on specific commands and control conditions, has
attracted considerable attention in the computer vision field.

These specific sub-tasks are characterized by their defined inputs and out-
puts, with clear objectives. For instance, action-to-motion generates movements
based on the category of the motion [34, 102]; text-to-motion takes textual de-
scriptions and produces corresponding movements [32,155]; music-to-dance cre-
ates dance moves in tune with the style and beat of the music input [29, 121].
Dividing tasks allows for a more focused approach to each sub-task: constructing
dedicated datasets and devising methods tailored to the task at hand. However,
these approaches, when designed for a singular sub-task or modality, face chal-
lenges due to limited data quantity and a narrow data domain, which in turn can
lead to models with restricted capabilities and poor generalization performance.
In contrast, the objective of this work is to build a unified yet versatile founda-
tion model for human motion generation, leveraging resources from a wide range
of applications and achieving strong performance across the board.

Leveraging multi-modal and multi-task motion generation datasets presents
significant challenges. First, disparate datasets feature varying motion formats
and evaluation metrics, such as keypoint-based or rotation-based formats, and
metrics assessing realism or diversity. Consequently, employing a single model to
tackle multiple tasks and perform evaluations across different datasets is exceed-
ingly difficult. Furthermore, transferring motion knowledge across tasks within
these datasets is challenging, complicating the model’s ability to integrate useful
knowledge from various data sources to enhance its capabilities. For instance,
differences in frame rates and the number of keypoints (sometimes even missing
parts of the body) make it hard to unify the learned knowledge. Although some
studies attempt to address multiple tasks simultaneously [79,166], they often uti-
lize only two or three datasets with the same motion format, which limits their
ability to achieve enhanced controllability and generalizability. In summary, in-
tegrated motion generation models for multi-modal and multi-task applications
encounter the following problems: 1) Non-uniformity of motion data formats;
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2) Different evaluation metrics due to varying task objectives; 3) Difficulty in
transferring action knowledge across multiple tasks.

To deal with these challenges, we first amass multiple cross-modal motion
datasets, encompassing 16 datasets with a total of 320k sequences and 100 mil-
lion frames. These datasets span seven standard tasks: text-to-motion, action-
to-motion, motion prediction, speech-to-gesture, music-to-dance, motion imita-
tion, and motion in-betweening. Additionally, based on the standard tasks and
multi-modal control signals, we introduce three new tasks: conditional motion
prediction, conditional motion in-betweening, and multi-condition motion gen-
eration. Together, these datasets and tasks form our cross-modal motion bench-
mark, MotionVerse. To align the diverse formats of motion data, we employ
a two-step approach: 1) We use the TOMATO representation [91] as a unified
intermediary format, and then divide the entire representation into 10 parts.
All kinds of motion representations are aligned to this format, with annotations
indicating which body parts are present in each sequence; 2) We train a series
of representation translators to convert the unified motion representation into
the specific representations of each dataset during the testing phase. With Mo-
tionVerse, we can smoothly use training data from various tasks and modalities,
and conduct tests across different datasets.

Building on MotionVerse, we introduce the multi-modal Large Motion Model
(LMM), which is built on a transformer-based diffusion model. Addressing the
motion format inconsistency, we developed a body part-aware motion genera-
tion model. This model divides the human body into 10 segments and employs
a specialized attention mechanism ArtAttention, featuring multi-conditioning,
spatial-temporal independence, and mask injection, allowing for distinct control
over different body parts. Furthermore, body part-aware modeling decomposes
motion data from various datasets into relatively independent segments, thereby
enabling the model to more effectively leverage knowledge learned across differ-
ent datasets. Lastly, we adopt learning strategies from large language models
(LLM), proposing a training method for LMM that combines unsupervised and
supervised learning. In unsupervised learning, we enhance model robustness to
frame rates through random frame rate augmentation and improve control over
the continuity of body part movements by applying random masks to sequences
and body parts in various ways. This training approach significantly leverages
large amounts of multi-modal data to bolster LMM’s capabilities. In supervised
learning, we refine the capabilities of models to enhance their performance on
specific tasks. Experimental results show that LMM achieves state-of-the-art
results across various tasks, demonstrating its exceptional generalization per-
formance, as shown in Fig. 1. Furthermore, LMM has the ability to process
multi-modal inputs simultaneously, enabling it to accomplish unseen tasks.

In summary, our core contributions are as follows:

1. We present MotionVerse, a mega-scale, multi-modal, multi-task motion
generation dataset that features a unified motion representation across a wide
range of tasks and motion formats.
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2. We introduce a Large Motion Model (LMM) that incorporates an ad-
vanced attention mechanism ArtAttention, allowing for precise and robust con-
trol, achieving finer results.

3. We devise a pre-training strategy for the LMM, including random frame
rates and various masking techniques to fully leverage extensive motion datasets
and enhance the model’s capabilities. Additionally, through ablation studies on
our training approach, we explored certain characteristics inherent in LMM’s
training process, laying a foundation for future research on the LMM.

2 Related Work

2.1 Motion Synthesis

Subtasks of motion generation are differentiated based on the types of control
signals they utilize. Some tasks require the algorithm to synthesize motion se-
quences based on the given uncompleted motion sequences. For example, in the
motion prediction task [1,2,8,9,14,20,30,35,48,94,123,124,133,142], the control
condition is the first several poses, and the generated motion must logically fol-
low the preceding sequence to ensure the extended sequence appears natural and
reasonable. There are also works focusing on recovering the whole body motion
with the given sparse upper-body tracking signals [12,21].

Action-to-motion [13, 34, 51, 59, 85, 102, 136, 161] is an inverse task derived
from the motion recognition task. While the latter identifies the action category
from a motion sequence, the former involves generating a corresponding action
sequence from an input action category. In the music-to-dance task [22, 43, 61,
62,65,66,99,109,121,122,129,144,147,167], the control signal is music, and the
motion sequence (dance) should be in accordance with the style and rhythm
of the music. Bailando [121] addresses crucial spatial constraints and temporal
coherence in dance generation by utilizing a codebook to store standardized
dancing units, confining spatial constraints. It achieves temporal fluidity through
a GPT designed to detect music beats. Another task based on audio is speech-
to-gesture [4,23,57,84,141,149,150,163], where the input is the speaker’s audio
and the output is the corresponding gestures of the speaker, taking into account
the speech’s pauses, emotional fluctuations, etc. GestureDiffuCLIP [4] utilizes
CLIP to extract style information from the input and then employs a diffusion
model to generate gestures. Text-to-motion is one of the most attracting topic
in conditional motion generation [3, 5–7, 15, 18, 24, 25, 28, 29, 31, 33, 36, 38, 40,
42, 47, 49, 50, 52, 55, 56, 67, 74, 76, 77, 79, 80, 82, 90, 91, 103, 104, 106, 110–114, 116,
118, 127, 128, 130, 132, 134, 137, 139, 140, 145, 146, 148, 151–157,159, 160, 164–166],
where motions are generated based on textual descriptions. This requires the
model to comprehend the meaning of the text and produce a corresponding
sequence of motions. Previous works attempted to apply advanced generative
model [128, 155, 159] to improve performance. While some other works focused
on enhancing controllability [6, 110, 157]. Physical reality [113, 151] and out-of-
domain performance [41,82,127] are also vital topics in this field.
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In addition, some works focus on human-scene interaction generation [44,73,
86, 138], human-object interaction generation [19, 37, 60, 63, 64, 78, 101, 105, 119,
126,135,158] and human-human interaction generation [11,16,26,71,87,120,125,
162]. These tasks greatly expanded the scope of motion generation applications.

However, action generation targeting a single task often struggles with lim-
ited data volume and a singular data domain, leading to models with restricted
capabilities and poor generalization. Our paper integrates various motion gener-
ation tasks, designing the Large Motion Model (LMM) to utilize multi-modality
data from different tasks for model training. This enables the model to learn
from various domains, enhancing its generalization capabilities.

2.2 Diffusion Model for Multiple Tasks

As diffusion models have made remarkable strides in image generation tasks, re-
searchers have extended their application to a broader array of fields, including
video generation [54,131,143], image editing [10, 17, 39, 53, 98], and motion gen-
eration [18,128,155,157,165], etc. Moreover, given the limited functionality and
control over generation provided by single-modal conditions, multi-modal inputs
have been introduced into diffusion models to enhance their versatility and con-
trol capabilities. In the realm of image generation, UNIMO-G [70] takes both
images and text as inputs, utilizing the subjects in pictures and textual prompts
to generate realistic images that match complex semantics. For video generation,
MM-Diffusion [115] incorporates audio and video in a multi-modal manner, en-
abling the harmonious adaptation of audio and visuals to produce realistic videos
with sound. In image editing tasks, the integration of multi-modal inputs with
diffusion models has made image editing more flexible and convenient. Control-
color [72] combines text, strokes, exemplars, and other conditions to achieve
interactive, multi-modal controlled image coloring. InstructAny2pix [68] uses
similar conditions for multi-modal control over inpainting. Likewise, in the field
of motion generation, works like MotionDiffuse [155] and MDM [128] have tack-
led text-to-motion and action-to-motion. MCM [79], UDE [166] has addressed
text-to-motion and music-to-dance. MoFusion [92] attempted to learn a bet-
ter motion prior. In summary, across different domains, multi-modal diffusion
models enrich the content and enable more precise control of generation tasks.
Previous dual-modal motion generation methods often utilize similar annota-
tion formats, such as SMPL [88], facilitating easy data alignment. However, the
multi-modal datasets we collected cover a broader domain span, and the formats
for motion annotation are extremely diverse. Thus we propose a comprehensive
benchmark, MotionVerse, to unify the motion representation, ultimately leading
to the development of LMM.

3 MotionVerse: Unified Motion Generation Datasets

3.1 Motivation

Large models have been extensively studied in fields such as language, image,
and video. These models, by absorbing common knowledge from vast amounts of
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data and leveraging a unified task format, demonstrate outstanding performance
across multiple tasks. However, on the path towards large motion models, a
significant challenge lies ahead: the inconsistent motion formats across datasets.
Specifically, there are three types of inconsistencies:

1. Inconsistent pose representations: For instance, the UESTC [46] bench-
mark adopts a 6D rotation representation based on SMPL [89], while the
Human3.6M [45] motion prediction benchmark uses keypoint coordinates.

2. Inconsistent number of keypoints: For example, TED-Gesture++ [150]
only includes upper body keypoints, while NTU-RGBD 120 [83, 117] lacks
fine-grained keypoints for the hands.

3. Inconsistent frame rates: KIT-ML [107] operates at 12.5 fps, whereas
Motion-X [75] runs at 30 fps.

Such differences not only demand models capable of handling diverse data for-
mats but also pose significant challenges in acquiring common knowledge.

To address this challenge, we introduce the first unified and comprehensive
motion-centric benchmark MotionVerse, the workflow of which is shown in
Fig. 2. MotionVerse possesses three advantages:

1. Unified Problem Formulation: we describe mainstream tasks within a
unified framework, reducing the need to consider task-specific properties
during model design.

2. Unified Motion Representation: we convert the motion formats of vari-
ous datasets into a unified intermediate representation, enabling the model
to acquire common knowledge from the originally diverse data formats and
to be evaluated on different datasets smoothly.

3. Systematicness and Comprehensiveness: we encompass 10 tasks across
16 datasets, comprising 320K sequences and nearly 100M frames of motion
data, as shown in Tab. 2, which enables us to explore large motion models.

Task Mask Condition
T2M None Text
A2M None Action
M2D None Music
S2G None Speech
MIm None Video

MP m =

{
0 if x > k

1 Otherwise
None

MIn m =

{
0 if k1 < x ≤ k2

1 Otherwise
None

CMP m =

{
0 if x > k

1 Otherwise
Any single modal

CMI m =

{
0 if k1 < x ≤ k2

1 Otherwise
Any single modal

MMG None Multi-modal

Table 1: Task definitions. x and
k∗ are the frame indices, and k∗ rep-
resents the boundary of the mask.

Dataset #Seq #Frames Repr Condition
HumanML3D [32] 14614 2M H3D Text
KIT-ML [107] 2485 245K H3D Text
Motion-X [75] 50863 9M SMPLX Text
BABEL [108] 5123 7M SMPLX Text
UESTC [46] 25600 10M SMPL Action
HumanAct12 [34] 1191 90K Kpt3D Action
NTU-RGB-D 120 [83,117] 139656 10M Kpt3D Action
AMASS [93] 14244 20M SMPLX -
3DPW [96] 81 140K SMPL Video
Human3.6M [45] 210 530K Kpt3D Video
TED-Gesture++ [150] 34491 10M Kpt3D Speech
TED-Expressive [84] 27221 8M Kpt3D Speech
Speech2Gesture-3D [58] 1047 1M Kpt3D Speech
BEAT [81] 1639 18M Kpt3D Speech
AIST++ [66] 1408 1M SMPL Music
MPI-INF-3DHP [97] 16 1M Kpt3D Video
Total 320K 100M - -

Table 2: Dataset information. We collect 16
widely used dataset, process all motion data into
our intermediate format.
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Fig. 2: MotionVerse. We preprocess distinct motion-centric datasets into a unified
format. As for motion sequences, we initially convert them to the TOMATO [91] rep-
resentation and then further divide them into 10 independent body parts, serving as
our unified motion representation. To tackle multi-modal condition signals, we employ
ImageBind [27] to transform them into unified features across modalities.

3.2 Unified Problem Formulation

Motion generation encompasses a variety of sub-tasks with differing objectives.
To standardize the data for these tasks, we first formalize the problem for motion
generation tasks as:

Θ = M(x,m, c), (1)

where x ∈ RF×D represents the motion data, m ∈ {0, 1}F×D defines the model’s
visibility scope, which is used in motion completion tasks, such as motion pre-
diction and motion in-betweening. Here F is the number of frames of the target
motion sequence. D is the dimensionality of each pose state. c is a set of condition
control signals, including text, speech, music, and video.

We have included seven standard tasks: action-to-motion (A2M), text-to-
motion (T2M), music-to-dance (M2D), speech-to-gesture (S2G), motion predic-
tion (MP), motion in-betweening (MIn) and motion imitation (MIm), along with
three multi-modal tasks: conditional motion prediction (CMP), conditional mo-
tion in-betweening (CMI), and multi-condition motion generation (MMG). For
each specific task, we can align their inputs using Eq.(1). Tab. 1 lists the details
of these ten tasks.

3.3 Unified Motion Representation

For data formats with varying inputs and outputs across different tasks, we pre-
process to ensure format consistency. The basic unit of general motion datasets
can be defined as <input-output> pairs. For inputs, we consider multi-modalities
including text, speech, music, and video. To align these modalities, we employ
Imagebind [27] to encode different inputs into unified features of the same di-
mension, which ensures semantic consistency across modalities.



8 M. Zhang, D. Jin, C. Gu et al.

M MM MM MM M  𝑴𝒔   𝑴𝒔
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BEAT,
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Large Motion Model (LMM)

M MM M  𝑴𝒔   𝑴𝒔

Text, Speech
Music, Video
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𝑡
Add noise

𝐱௧ 𝐱௧ ′

𝑓𝑟 Conditions

HumanML3D BEAT UESTC

Benchmarkstranslators

(a) Pretraining   (b) Finetuning (c) Inference

Random 
Masking

Random Down-sampling
Framerate 𝑓𝑟

𝑓𝑟

Fig. 3: Overall pipeline of LMM. Left: Our two-stage training procedure, includ-
ing unsupervised pretraining and supervised fine-tuning. Random down-sampling and
random mask strategies are applied to enhance knowledge absorption. Right: The
generic inference process of LMM. The noised motion sequence and the given context
are initially merged before being input into the network. LMM will then synthesize
motion sequences, consistent with the provided multi-modal condition signals.

As for the output, it encompasses motion sequences in various formats, such
as keypoints and SMPL [89]. To standardize motion representation, we define
a unified format similar to TOMATO [91], where we remove foot contact from
TOMATO. Our representation is described as:

mi = {ṙa, ṙx, ṙz, ry, jp, jv, jr, f} , (2)

where r denotes information related to the root. Specifically, ṙa ∈ R is the
angular velocity along the Y-axis, (ṙx, ṙz ∈ R) represent linear velocities on
the XZ-plane, and ry indicates the root’s height. jp ∈ R3(J−1), jv ∈ R3J , and
jr ∈ R6(J−1) correspond to the position, velocity, and rotation of local keypoints
relative to the root, with J denoting the number of joints (J −1 means all joints
without the root joint). Here we follow SMPL-X [100] and consider 22 main body
joints and 30 hand joints. Lastly, f denotes facial expression [69].

We further divide this representation into ten independent parts: global ori-
entation and trajectory, face expression, head, spine, left arm, right arm, left
leg, right leg, left hand, and right hand. When processing raw data, we allow for
missing body parts and annotate them in the metadata. For missing keypoints,
we manually estimate the missing points from known ones for completion, while
extra keypoints are discarded in this process. We then train a series of motion
translators to map our unified motion representation to each dataset’s specific
one. Thus, in the testing process of different tasks, once the model outputs in
our unified format, we can map the output to the corresponding motion format
through the translator, facilitating smooth metric evaluation.

4 Large Motion Model

Our model architecture closely follows the literature [128, 155], built upon a
transformer-based diffusion model. We primarily reference the FineMoGen [157]
as our baseline and extend it to support various condition signals, multi-tasking,
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Fig. 4: Architecture of LMM. LMM is a transformer-based diffusion model.
Dataset-dependent Read-In layers and Read-Out layers facilitate the conversion of
the motion sequence between our intermediate representation and the latent feature
space. In the stem of LMM, ArtAttention refines the feature representations through
the spatial and temporal attention branches.

multiple frame rates, and various mask forms. The overall workflow is illustrated
in Fig. 3 while the detailed architecture is shown in Fig. 4.

4.1 Transformer-based Diffusion Model

Diffusion models are powerful generative models, capable of producing high-
quality, diverse outcomes, garnering widespread attention, and demonstrating
formidable generative capabilities in many fields. Its essence lies in two inter-
twined processes: the forward diffusion process and the reverse diffusion process.
More details are provided in the supplementary materials.

4.2 Read-In Layer and Read-Out Layer

The read-in layer is responsible for transforming noised motion data into feature
representations of the form F ×H ×D, while the read-out layer generates clean
motion data from the feature space. Here, the first dimension represents the
number of frames in the motion sequence, and the second dimension represents
the number of body parts. Although we standardize all motion data into a unified
motion format, the differences in distribution among various datasets cannot be
completely ignored. Therefore, in the backbone network’s read-in and read-out
stages, we employ dataset-dependent motion encoders and decoders. Addition-
ally, to obtain more comprehensive knowledge for practical applications, during
training, there is a 10% probability of replacing the original dataset name with
“all”. Consequently, the corresponding read-in and read-out layers can be better
applied in real-world application scenarios.
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4.3 ArtAttention

To achieve outstanding zero-shot continuous generation capability, our model
builds upon the SAMI module from FineMoGen [157], incorporating upgrades
to address three new requirements: multi-modal condition, various frame rates,
and allowance for missing body parts, as shown in Fig. 4.

For multi-modal signals, we preprocess all signals into token sequences us-
ing the ImageBind [27] model. To better integrate these features into our net-
work, we further refine them with two learnable transformer encoder layers.
This process transforms text, speech, music, and video into feature sequences
Ct ∈ RLt×(H·D),Cs ∈ RLs×(H·D),Cm ∈ RLm×(H·D),Cv ∈ RLv×(H·D), where
Lt, Ls, Lm, Lv represent the lengths of the corresponding condition sequences,
and H ·D denotes the feature length of each element.

Our attention mechanism can be divided into two main components: body-
part attention(spatial attention) and temporal attention. Assuming the feature
representation of our motion sequence is X ∈ RF×H×D. In the body-part at-
tention section, due to the presence of inherent missing body parts in our data
and the masked body parts introduced artificially during pre-training, we cannot
utilize a fixed set of coefficients to determine the mutual contributions among
body parts. Therefore, unlike the design in FineMoGen, for each frame, we opt
to use an attention structure to obtain a set of refined features Ys ∈ RF×H×D.

In the temporal attention section, we aim to leverage the self-correlation
inherent in the motion features X and guidance obtained from the condition
signals Ct,Cs,Cm,Cv to generate higher-quality features for each body part
in every frame. Here, we employ a Multi-head Attention mechanism, with each
head focusing on a specific body part, emphasizing the utilization of temporal
correlations to optimize features. We begin by utilizing Mixture-of-Expert to
obtain a set of features K ∈ RL×D from these condition features, where L
represents the sequence length of the corresponding feature source.

Empirically, we found that directly concatenating motion sequences and con-
dition sequences like FineMoGen and then applying Softmax processing hinders
the modeling of self-correlation in multi-condition scenarios, resulting in lower
motion quality, especially when the condition feature sequence is much longer
than the motion sequence. Therefore, we independently normalize the motion
feature Kx ∈ RF×D obtained and then normalize condition features. To sup-
port unconditional generation, we introduce 64 learnable tokens Kp and Vp

as placeholders. These tokens are concatenated with all condition signals for
normalization, resulting in Kc ∈ R(64+Lt+Ls+Lm+Lv)×D. This approach also fa-
cilitates better blending of the model across different conditions. The remaining
processing is similar to FineMoGen. After obtaining a series of time-varying sig-
nals, for each frame’s pose, we use time as the sole query feature to calculate
the correlation between each frame and each time-varying signal, as well as the
values at each signal point. Unlike FineMoGen, which uses frame indices to rep-
resent time, we use real time to support different frame rates. More details are
introduced in the supplementary material. Suppose the output of the temporal
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attention section is Yt ∈ RF×H×D, then the output of the entire ArtAttention
is Y = Ys +Yt.

4.4 Pre-Training and Fine-Tuning

Leveraging MotionVerse, we have collected a vast array of <input-motion> data
pairs. Disregarding the inputs, the abundant motion data inherently contains
valuable information, which can enable the model to comprehend numerous
characteristics of human motion, such as coherence, balance, and joint-based ro-
tations, among others. To enable the model to better acquire common knowledge
across datasets, we divide the entire training process into two main parts: Unsu-
pervised Pre-Training and Supervised Fine-Tuning. In the first stage, we
require our model to learn motion priors independent of conditions. While in the
second stage, the model is supposed to learn the correlation between condition
signals and motion sequences.

As illustrated in Fig. 3, in the unsupervised pretraining phase, to enrich
the model’s prior knowledge from these motion sequences, we employ random
downsampling and random masking strategies for data augmentation. Since our
representation includes terms related to velocity, when downsampling, we need to
recalculate the velocity values to match the downsampling rate, while the terms
related to states remain unchanged. This approach enables the model to better
learn from data with different original frame rates. As mentioned earlier in the
data preprocessing part, some body parts in the sequences are masked out, such
as the detailed keypoints of the left and right hands in the KIT dataset. We de-
note this original mask as Ms ∈ {0, 1}F×H . Based on this, we additionally apply
masking with a certain probability to obtain a new mask Mt ∈ {0, 1}F×H . After
the model performs the read-in operation, we replace the body parts marked as
1 in Mt with learnable empty tokens. When calculating the loss, we only ignore
the parts marked by Ms. This means that the model not only needs to restore
the noised sequence to its clean parts but also utilize the visible part to infer
the rest. With this modeling, the knowledge embedded in the data with missing
body parts can be better absorbed by the model.

In the supervised fine-tuning phase, our goal is to enable the model to learn
the relationship between condition signals and motion sequences. Here, we pass
the preprocessed condition token sequences as additional inputs to the model.
To support classifier-free guidance, during training, we randomly mask out the
condition signals with a probability of 10%.

5 Experiments

5.1 Implementation Details

We designed four variants: LMM-Tiny, LMM-Small, LMM-Base, and LMM-
Large, which have 90M, 160M, 410M, 760M parameters respectively. We use
all data in MotionVerse for both pretraining and finetuning, except for the se-
quences used in evaluation. We maintained a fixed total batch size of 512. For
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Table 3: Quantitative results of text-to-motion generation on the Hu-
manML3D test set. ‘↑’(‘↓’) indicates that the values are better if the metric is
larger (smaller). We run all the evaluations 20 times and report the average metric
and 95% confidence interval. “MM” is MultiModality. The best scores are bold, and
the second-best results are underlined.

Methods R Precision↑ FID↓ MM Dist↓ Diversity↑ MM↑Top 1 Top 2 Top 3
Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
T2M-GPT [153] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MDM [128] - - 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

FineMoGen [157] 0.504±.002 0.690±.002 0.784±.002 0.151±.008 2.998±.008 9.263±.094 2.696±.079

MoMask [31] 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

LMM-Tiny 0.496±.002 0.685±.002 0.785±.002 0.415±.002 3.087±.012 9.176±.074 1.465±.048

LMM-Small 0.505±.002 0.693±.002 0.789±.002 0.227±.002 3.051±.012 9.295±.076 1.761±.049

LMM-Base 0.511±.002 0.710±.002 0.802±.002 0.138±.002 2.971±.012 9.573±.076 2.426±.054

LMM-Large 0.525±.002 0.719±.002 0.811±.002 0.040±.002 2.943±.012 9.814±.076 2.683±.054

Table 4: Quantitative results of motion prediction on the AMASS and
3DPW test set for different time steps (ms). We report the MPJPE error in mm.

Method AMASS-BMLrub 3DPW
80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

LTD-10-10 [95] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1
SIMLPE [35] 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7 12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2
GCNext [133] 10.2 19.3 34.1 40.3 50.6 57.3 62.0 65.3 11.8 22.0 37.9 44.2 55.1 62.1 67.8 72.0
LMM-Tiny 15.9 24.1 38.2 45.9 61.2 73.4 80.3 87.2 17.3 26.2 40.1 47.3 62.8 74.8 82.5 87.0
LMM-Small 14.7 23.2 37.5 43.8 58.3 69.2 75.2 81.9 16.2 25.7 39.4 45.9 60.7 71.5 79.5 82.8
LMM-Base 13.1 21.5 35.9 41.1 53.6 60.8 66.9 70.3 14.1 23.9 38.2 44.1 55.3 64.8 70.3 73.6
LMM-Large 12.8 20.9 34.3 39.6 49.1 55.3 60.5 63.1 13.1 22.6 37.1 42.4 52.4 59.2 63.8 68.0

the Tiny model, we conducted training directly on 8 NVIDIA V100 GPUs with
32GB memory each, with a batch size of 64 per GPU. For larger models, we use
FP16 and gradient accumulation to achieve training effects equivalent to a batch
size of 512 without exceeding 32 V100 GPUs. During the pre-training phase, we
employed the Adam optimizer with a fixed learning rate of 2 × 10−4 for 80K
iterations. In the fine-tuning phase, we used the same optimizer, initially iterat-
ing for 20K steps with a learning rate of 2 × 10−4, followed by 20K steps with
a learning rate of 2× 10−5. For more details, please refer to the supplementary
material.

5.2 Quantitative Results

We evaluate our LMM variants on three tasks: text-to-motion, music-to-dance,
motion prediction, and four datasets: HumanML3D [32], 3DPW [96], AMASS [93],
and AIST++ [66], as shown in Tab. 3, Tab. 4 and Tab. 5. More experimental
results are reported in the supplementary material.

Text-to-Motion. Tab. 3 demonstrates that our LMM-Large surpasses other
existing works in terms of accuracy and fidelity while maintaining comparable
diversity. On the other hand, LMM-Tiny, which shares a similar structure with
FineMoGen, performs worse than it. This discrepancy can be attributed to the
significant challenges posed by the large amounts of diverse data and the trade-
offs across different tasks during model training, especially for smaller models
like LMM-Tiny.
Motion Prediction. Tab. 4 reports the performance on AMASS and 3DPW
test splits. The superior performance of LMM-Large can be attributed to its ro-
bust motion prior, which is obtained from the mega-scale data. It is worth noting
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Table 5: Quantitative results for Music-conditioned Dance Generation.
Quantitative results on AIST++ test set.

Methods Motion Quality Motion Diversity Freezing
Best Align Score↑FIDk ↓ FID

†
g ↓ Divk ↑ FID

†
g ↑ PFF↓ AUCf ↓

Ground-truth 17.10 10.60 8.19 7.45 0.00 0.00 0.2374
DanceNet [167] 69.18 25.49 2.86 2.85 0.00 0.98 0.1430
DanceRevolution [43] 73.42 25.52 3.52 4.87 11.01 12.22 0.1950
Bailando [121] 28.16 9.62 7.83 6.34 14.91 13.25 0.2332
TM2D [29] 19.01 20.09 9.45 6.36 0.00 0.00 0.2049
LMM-Tiny 37.62 28.95 6.92 5.94 0.00 0.00 0.1736
LMM-Small 34.18 27.53 7.46 6.17 0.00 0.00 0.1791
LMM-Base 25.43 24.18 9.05 6.55 0.00 0.00 0.2084
LMM-Large 22.08 21.97 9.85 6.72 0.00 0.00 0.2249

that due to the errors introduced by the motion translation step, the accuracy of
LMM-Large is still lower than other methods in short-distance prediction. How-
ever, it exhibits a significant advantage in long-distance prediction. Furthermore,
we observed that the advantage of LMM-Large is more pronounced on 3DPW.
This is because the 3DPW benchmark demands higher generalization ability
from the model. After extensive learning of motion priors, our LMM-Large ex-
hibits a more prominent performance on out-of-distribution tests.
Music-to-Dance. Our Large model achieves comparable performance to the
current state-of-the-art, as shown in Tab. 5. In terms of diversity-related met-
rics, our approach demonstrates a significant advantage. Our performance in the
metrics FIDk and FIDg did not surpass existing methods. One possible rea-
son could be the relatively small proportion of the music2dance dataset in the
current dataset composition.

5.3 Ablation Study

Table 6: Ablation of the pretraining strategy. All experiments utilized LMM-
Base as the base model.

Downsample Random Mask Attention HumanML3D 3DPW
Top 1 FID MModality 80 400 1000

1) - - ArtAttention 0.031±.001 32.814±.176 5.293±.129 17.3 48.4 89.3
2) ✓ - ArtAttention 0.028±.001 31.365±.171 5.714±.147 16.2 46.5 78.4
3) - ✓ ArtAttention 0.515±.002 0.151±.002 2.214±.051 14.5 45.5 76.1
4) ✓ ✓ SAMI [157] 0.400±.009 1.866±.009 2.983±.071 15.9 47.2 80.9
5) ✓ ✓ ArtAttention 0.511±.002 0.138±.002 2.426±.054 14.1 44.1 73.6

Tab. 6 shows the ablation results. We observed that random masking is a
necessary component. When the model’s expressive power is strong enough, it
can directly recover the clean motion sequence from the noised motion sequence.
Consequently, during the fine-tuning stage, our condition signal may not play its
expected role. Introducing random masking during training will make it more
difficult for the model to solely restore the original sequence from the motion
sequence, leading it to rely more on the additional information provided by the
condition signal. Additionally, we found that both downsampling and random
masking strategies are beneficial for improving the multimodality metrics in the
text-to-motion task. This implies that the model can better absorb knowledge
from different datasets with the help of these two strategies. These strategies also
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(a) Hands on hips and shake head (b) Sit and lean on to a table

(c) Sit and write (d) Sit and feel embarrassed

(e) Play guitar (with music condition) (f) Clap hands (with music condition)

Fig. 5: Visualization results of LMM-Large. Figure a)-d) show examples of text-
driven motion generation. Figure e) and f) show synthesized motion sequences under
both textual and musical constraints.

significantly impact the effectiveness of motion prediction. Finally, we compared
our proposed ArtAttention with the original SAMI and found that our proposed
method is more suitable for the scenario of large motion models.

5.4 Qualitative Results

As shown in Fig. 5 (a)-(d), LMM-Large can response to diverse textual descrip-
tions with fine-grained control, which benefits from the large-scale training data
and the well-designed architecture. In addition, Fig. 5 (e)-(f) provide examples
for motion generation under both text description and music rhythms. Our gen-
erated motions successfully execute the given commands and follow the music
beats simultaneously. For more visualization results, please kindly refer to the
demo video in our homepage.

6 Conclusion and Discussion

In this paper, we establish a comprehensive motion-centric benchmark, Motion-
Verse, comprising then conditional motion generation and motion completion
tasks. We align all motion data to a unified intermediate format and convert all
condition signals into token sequences that are closer in feature space. Building
upon this foundation, we introduce the first large motion model, LMM, capable
of generating high-quality actions under multi-condition guidance. We identify
and address three challenges encountered in constructing large motion models
through careful model structure design, especially our used novel attention mod-
ule, ArtAttention. Our proposed LMM model achieves comparable performance
and even surpasses existing state-of-the-art methods.
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