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A Supplementary Material

A.1 Video

The accompanying video shows the evolution (iterations) of the proposed event-
only bundle adjustment method on multiple sequences (both synthetic and real).

A.2 Problem unknowns, Operating Point and Perturbation

The unknowns of the problem are the camera trajectory R(t) and the gradient
map of the scene G

.
= ∇M . According to the chosen parameterization (Sec. 3.2),

the perturbations of the camera pose at time t (not necessarily a control pose)
and the gradient map are:

R(t) = exp(δφ∧)Rop(t), (12)
G = Gop +∆G, (13)

where we use the exponential map (notation from [4]). The “operating point”
(abbreviated “op”) consists of the current camera trajectory (parameterized by
Nposes control poses) and the map (e.g., gradient brightness values):

Pop = {Rop
1 , . . . , Rop

Nposes
,βop

1 , . . . ,βop
Np

}. (14)

To linearize the errors for the Gauss-Newton / Levenberg-Marquardt algorithm,
we consider pose perturbations in the Lie-group sense (control poses in the Lie
group and perturbations in the Lie algebra [4]), and pixel perturbations in gradi-
ent brightness space. That is, camera control poses and map pixels are perturbed
according to

Ri = exp(δϕ∧
i )R

op
i , (15)

βn = βop
n + δβn. (16)

A.3 Linearization of Error Terms (Analytical Derivatives)

Perturbing the camera motion and the scene map we aim to arrive at an expres-
sion like:

e ≈ eop + Jop,α∆Pα + Jop,β∆Pβ, (17)

where Jop,α
.
= ∂e

∂Pα

∣∣∣
op

and Jop,β
.
= ∂e

∂Pβ

∣∣∣
op

. Thus, we only consider the first-

order terms (i.e., discard higher order ones). Here, Jop,α is an Ne × 3Nposes
matrix, and Jop,β is an Ne × 2Np matrix, where Ne is the number of events and
Np is the number of valid panorama pixels.

Let us write the linearization of each error term in (17). Given the error entry
from the problem (5)-(6):

(e)k
.
= G

(
p(tk)

)
·∆p(tk)− skC. (18)
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After some calculations, we have:

(e)k ≈ (G(pop(tk))−∇Gop(pop(tk))Eop(tk)δφ(tk) +∆G(pop(tk)))

· (∆pop − (Eop(tk)δφ(tk)− Eop(tk −∆tk)δφ(tk −∆tk)))

− skC (19)

≈ G(pop(tk)) ·∆pop − skC︸ ︷︷ ︸
this is (eop)k

+∆p⊤
op∆G(pop(tk))︸ ︷︷ ︸
linear in ∆Pβ

−∆p⊤
op∇Gop(pop(tk))Eop(tk)δφ(tk)︸ ︷︷ ︸

linear in ∆Pα

−G(pop(tk)) · (Eop(tk)δφ(tk)− Eop(tk −∆tk)δφ(tk −∆tk))︸ ︷︷ ︸
linear in ∆Pα

, (20)

where

∆pop(tk)
.
= pop(tk)− pop(tk−1) (21)

Eop(t)
.
=

∂π

∂z

∣∣∣∣
zop

z∧op (22)

π is the equirectangular projection R3 → R2 (23)

z(t) = R(t)K−1xh (24)

zop(t)
.
= Rop(t)K−1xh (25)

xh = (x, y, 1)⊤are the homogeneous coordinates of point x (26)
∧ is the hat (skew-symmetric) operator [4] (27)

δφ is the perturbation of R(tk) (28)
δφ̃ is the perturbation of R(tk −∆tk) (29)

∇G
.
= ∇2Mop is the second-order spatial derivative of Mop (30)

Note that δφ̃ will use the two control poses closest to time tk −∆tk, which may
not necessarily be the same ones as those of δφ (at time tk).

In therms of the problem unknowns, equation (20) states that the predicted
(linearized) contrast in (4) depends on: the event camera orientations at two
different times {tk, tk −∆tk} and the first two spatial derivatives of brightness
at one pixel location p(tk).

A.4 Cumulative Formation of the Normal Equations

A key step of the Levenberg-Marquardt (LM) solver is forming the normal
equations. Regarding EMBA, the size of the full Jacobian matrix Jop in (7) is
Ne × (3Nposes +2Np). In general, an event data sequence has millions of events,
while Np is usually in the order of thousands. Hence, the memory needed to com-
pute and store Jop is unaffordable for normal PCs. To this end, we avoid com-
puting and storing the full Jop. Instead, we directly compute the left-hand side
(LHS) matrix A

.
= J⊤opJop and the right-hand side (RHS) vector b

.
= −J⊤opeop,

in a cumulative manner.
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LHS Matrix A Let r⊤k be the k-th row of Jop, which stores the derivatives
of an error term (e)k. With the partitioning in (9), we can further write r⊤k =
(r⊤k,α, r

⊤
k,β), where rk,α and rk,β are the camera pose part and map part of

rk, respectively. Then we can rewrite the LHS matrix as the sum of the outer
product of each row:

A
.
= J⊤opJop =

Ne∑
k=1

rkr
⊤
k =

Ne∑
k=1

(
rk,αrk,α

⊤ rk,αrk,β
⊤

rk,βrk,α
⊤ rk,βrk,β

⊤

)
. (31)

Let A11k
.
= rk,αrk,α

⊤, A12k
.
= rk,αrk,β

⊤, and A22k
.
= rk,βrk,β

⊤. They are the
contributions of (e)k to the LHS matrix A. Then (31) becomes:

A =

Ne∑
k=1

Ak =

Ne∑
k=1

(
A11k A12k
A12

⊤
k A22k

)
. (32)

It shows that the contribution of each event to A is additive, which offers a cumu-
lative way to form the LHS matrix A. As mentioned at the end of Appendix A.3,
an error term depends on map gradients at one map point (nearest neighbor).
This leads to a block-diagonal sparsity pattern of A22k, which significantly speeds
up solving the normal equations.

RHS Vector b Similarly, let cn be the n-th column of Jop. With the partition-
ing in (9), we can rewrite Jop as

Jop =
(
c1,α, . . . , c3Nposes,α, c1,β, . . . , c2Np,β

)
, (33)

where ci,α = ∂e
∂Pi,α

∣∣∣
op

and cj,β = ∂e
∂Pj,β

∣∣∣
op

store the derivatives of the whole er-

ror vector e with respect to each component of the pose/map state. Substituting
(33) into the RHS of (8), we obtain the cumulative formula of each entry of b:

b1i = −c⊤i,αeop = −
Ne∑
k=1

∂(e)k
∂Pi,α

∣∣∣∣
op

(eop)k

b2j = −c⊤j,βeop = −
Ne∑
k=1

∂(e)k
∂Pj,β

∣∣∣∣
op

(eop)k.

(34)

where ∂(e)k
∂Pαi

and ∂(e)k
∂Pβj

are the derivatives of the error term (e)k with respect to
the i/j-th component of the pose/map states.

Equations (32) and (34) allow us to accumulate the contribution of each event
to the normal equations (8), so that we can omit forming Jop. The size of A only
depends on the dimension of state parameters, i.e., (3Nposes + 2Np)

2, which is
significantly smaller than that of Jop, i.e., Ne × (3Nposes + 2Np).
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A.5 Sensitivity and Ablation Analyses

We characterize the sensitivity of EMBA with respect to some of its parameters
and also show the effect of a robust loss function. In the following, the map size
is 1024×512 px, the initial rotations come from CMax-ω, and the sequence used
is bicycle.

Contrast Threshold Firstly, we run EMBA with varying values of C =
{0.05, 0.1, 0.2, 0.5, 1.0} in the loss function, where C = 0.2 is the true value
for bicycle. We set f = 20 Hz and η = 5.0. Note that the value of C affects the
value of the PhE. Therefore, for a meaningful comparison, we use the PhE at
C = 0.2 as reference and calculate the equivalent PhE for the other C values.
The results are presented in Tab. 6. The closer C is to 0.2, the smaller the PhE.
The trials of C = {0.1, 0.2} achieve smaller rotation errors than the others. Nev-
ertheless, the trials of C = {0.05, 0.5, 1.0} still show a strong refinement effect,
in terms of both ARE and PhE (with respect to 1.69◦ ARE and 5.5 · 105 PhE,
in Tabs. 2 and 3), which implies that EMBA is robust to the choice of C. This is
important in applications because the contrast thresholds of real event cameras
are difficult to obtain and may vary greatly within the same dataset [41].

Table 6: Sensitivity analysis on the camera’s contrast threshold C. Top: absolute
rotation error (ARE), in RMSE form. Bottom: equivalent squared photometric error.

C 0.05 0.1 0.2 0.5 1.0

ARE [◦] 1.193 0.899 0.923 0.966 1.341
Equivalent PhE [·105] 3.024 2.956 2.956 2.968 3.030

Weight of L2 Regularization We run EMBA with different values of η =
{0, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0} while setting C = 0.2 and f = 20 Hz. The results
are shown in Tab. 7. When η = 0, i.e., disabling the L2 regularization, the
resulted gradient map is shown in Fig. 9a, where a few pixels dominate the
optimization, thus suppressing the update of other pixels. Meanwhile, it reports
the worst ARE and PhE values among all η values (Tab. 7). This reveals that the
L2 regularization is essential, and it effectively encourages a good convergence
(like in Fig. 9b). As η increases from 0.1 to 5.0, both ARE and PhE decrease
smoothly until they achieve their best values at η = 5.0; afterwards they increase
with η. Empirically, η = 5.0 is a good choice in most cases.

Robust Loss Function The formula of the Huber loss function is:

ρ(u) =

{
u2 for |u| < δ,

(2|u| − δ) δ, otherwise.
(35)
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Table 7: Sensitivity analysis on the weight of L2 regularization η.

η 0 0.1 0.5 1.0 5.0 10.0 20.0

ARE [◦] 1.527 1.295 1.301 1.222 0.923 1.032 1.086
Equivalent PhE [·105] 3.160 3.053 3.049 3.032 2.956 3.015 3.071

(a) η = 0. (b) η = 5.

Fig. 9: Effect of L2 regularization on the refined gradient map.

We apply it to each error term, u = (e)k, thus replacing the data-fidelity
cost

∑
k((e)k)

2 in (6), (10) by
∑

k ρ((e)k). In the experiments, we set C = 0.2,
f = 20 Hz, η = 5.0 and δ = 0.1.

Tables 8 and 9 compare the Quadratic and Huber cost functions in terms of
rotation error and PhE on synthetic and real-world data, respectively. For a fair
comparison, we present the squared PhE for both Quadratic and Huber loss.

ARE : On synthetic data, the Huber loss function results in slightly better
rotation error than the Quadratic one in most trials, with only three exceptions.
All error differences are less than 0.35 degrees. On real-world data it is hard to
analyze the impact of the Huber loss function on rotation accuracy due to the
inherent evaluation problems (explained at the beginning of Sec. 4.3).

PhE : On the other hand, the refined PhE of the Huber loss is a little bigger
than that of the Quadratic loss on most synthetic and real-world sequences.
This is a predictable result, because the objective function of the Huber loss has
changed to a new “reweighted” squared PhE, where the weights of the outliers
are reduced.

In addition to Tabs. 8 and 9, we show a qualitative result here (more are
available in the accompanying video). Figure 10 compares the refined maps pro-
duced by the quadratic and Huber loss functions. The Huber panorama is similar
and slightly sharper than the quadratic one.

Control Pose Frequency We run EMBA to refine the same initial rotations
and maps, but varying the control pose frequency f = {10, 20, 50, 100} Hz.
C = 0.2 is set to its true value and η = 5.0. The results are reported in Tab. 10.
It turns out that EMBA is also robust to the choice of f . As f grows from 10 to
50 Hz, both ARE and PhE decrease slightly and reach a minimum at f = 50 Hz.
When f is increased to 100 Hz, the errors grow marginally, which implies that
a too high f does not lead to a better refinement.
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Table 8: Absolute rotation RMSE [deg] (ARE) and squared photometric error [×106]
(PhE) on synthetic sequences [20] (Schur solver, 1024 × 512 px map).

EKF-SMT CMax-GAE CMax-ω

Sequence before Quad Huber before Quad Huber before Quad Huber

A
R

E

playroom 5.86 6.09 6.15 4.63 4.42 4.32 3.22 2.86 2.79
bicycle 1.47 1.18 1.01 1.65 1.50 1.41 1.69 0.92 0.97
city 1.69 1.68 1.39 – N/A N/A 1.53 0.97 0.94
street 3.44 3.46 3.23 – N/A N/A 0.97 0.74 0.74
town 4.32 4.40 4.23 4.66 4.53 4.44 1.91 0.86 1.21
bay 2.50 2.41 2.30 – N/A N/A 1.80 1.41 1.39

P
hE

playroom 0.35 0.23 0.26 0.35 0.19 0.21 0.33 0.15 0.18
bicycle 0.52 0.30 0.32 0.53 0.31 0.34 0.55 0.30 0.33
city 2.62 2.13 2.19 – N/A N/A 2.71 1.98 2.11
street 1.82 1.52 1.50 – N/A N/A 1.90 1.34 1.43
town 1.88 1.51 1.62 1.90 1.54 1.65 1.92 1.43 1.55
bay 2.26 1.96 1.95 – N/A N/A 2.30 1.83 1.98

Table 9: Absolute rotation RMSE [deg] (ARE) and squared photometric error [×106]
(PhE) on real sequences [30] (Schur solver, 1024 × 512 px map).

RTPT CMax-GAE CMax-ω

Sequence before Quad Huber before Quad Huber before Quad Huber

A
R

E

shapes 2.19 2.85 2.62 2.51 2.69 2.61 4.11 4.44 4.13
poster 3.80 3.96 3.99 3.63 4.09 4.16 4.07 4.20 4.13
boxes 1.74 2.32 2.26 2.02 2.40 2.32 3.22 2.87 2.92
dynamic 2.00 2.29 2.40 1.70 2.00 1.97 3.13 2.79 2.80

P
hE

shapes 0.68 0.37 0.52 0.61 0.38 0.50 0.58 0.36 0.50
poster 4.69 2.58 2.88 5.03 3.07 3.30 4.37 2.58 2.87
boxes 4.46 2.30 2.43 4.52 2.93 2.99 3.92 2.25 2.42
dynamic 3.29 2.24 2.37 3.16 2.39 2.71 3.05 2.13 2.30
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(a) Quadratic. (b) Huber.

Fig. 10: Effect of robust loss function. Refined maps obtained with (a) Quadratic and
(b) Huber loss functions. (bicycle sequence, initialized by CMax-ω trajectory).

Table 10: Sensitivity analysis on the control pose frequency f .

f [Hz] 10 20 50 100

ARE [◦] 0.984 0.923 0.890 1.112
PhE [·105] 3.120 2.956 2.926 2.929

A.6 Additional Discussion of the Experiments

Front-end failures In the experiments, four different front-end methods are
used to initialize EMBA. RTPT fails on all synthetic sequences and EKF-SMT
fails on all real-world ones. The explanation is as follows: RTPT loses track due to
its limitation on the range of camera rotations that can be tracked. It monitors
the tracking quality during operation and stops updating the map when the
quality decreases below a threshold, which offen happens if the camera’s FOV
gets close to the left or right boundaries of the panoramic map. The tracking
failure of EKF-SMT happens mostly when the camera changes the rotation
direction abruptly. We suspect it is due to the error propagation between the
tracking and mapping threads. Small errors in the poses or the map are amplified,
corrupting the states and their uncertainty in the respective Bayesian filters.

Camera translation in ECD datasets In Sec. 4, we mentioned that the
four sequences from the ECD dataset [30] were recorded by a hand-held event
camera, so the camera motion inevitably contains translations, which affects all
involved front-end methods as well as our BA approach. Figure 11 displays the
translational component of the GT poses provided by the mocap. It shows that
the magnitude of the translation grows, as time progresses and the speed of the
motion increases. We use the first part of the sequences, where the translational
motion is still small (about less than 10 cm) for the desk-sized scenes.
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(a) shapes (b) poster

(c) boxes (d) dynamic

Fig. 11: From the motion capture system: groundtruth camera translation magnitude
of the four ECD sequences [30].


