
ProMerge: Prompt and Merge
for Unsupervised Instance Segmentation

Supplementary Materials

We first provide pseudo-code for our approach (Sec. 1) along with further
details about our experiments (Sec. 2) and additional ablation studies (Sec. 3).
We also visualize qualitative results in Sec. 4.

1 Pseudo-code for ProMerge

In this section, we provide pseudo-code for our method (see Algorithm 1) along
with brief descriptions for four components: (i) prompting, (ii) background ag-
gregation, (iii) Cascade filtering, and (iv) merging.
Prompting. Our approach generates initial mask proposals by employing point-
prompting on visual features extracted from an image using an image encoder,
such as a ViT [4], and creating affinity matrices based on cosine similarities be-
tween selected prompt tokens and all patch tokens. In this prompting stage, we
use a hyperparameter for stride, representing the distance between two neighbor-
ing prompt tokens. We use a default value of 4. In our standard implementation,
we use DINO [2] features of spatial dimensions 60 × 60 and generate 225 mask
proposals, which we then classify into background and foreground categories.

We use another hyperparameter, τb, to threshold the cosine similarity be-
tween the embeddings of the seed prompt token and the other patches in the
affinity matrix. This step allows us to translate continuous affinities into dis-
crete masks for each seed prompt. For our experiments, we set τb = 0.2, unless
otherwise stated.

Following the prompting, we split connected components from each fore-
ground mask into separate masks, which helps separate a single large mask
covering multiple instances.
Background aggregation. After prompting visual features, binary masks are
classified as foreground or background. Background masks are identified by the
presence of numerous positive pixels along multiple image edges, and a represen-
tative background mask is created using a pixel-wise voting scheme from these
candidates.
Cascade filtering. In Cascade filtering, prompted masks are first sorted by
area in ascending order, then processed sequentially to track new pixels added by
each mask. Masks that significantly overlap with the background, as determined
by Intersection over Area (IoA) and feature similarity, are excluded from the
merging process. For this, we use hyperparameters, τbg

IoA and τbg
f . If a new mask

mainly introduces pixels that intersect with the background or shares a high
feature similarity with the background, we do not include it in the merging
process. We set τbg

IoA = 0.8 and τbg
f = 0.1 by default.

2

Algorithm 1 Pseudo-code of ProMerge in a PyTorch-like style
F: features (HxWxC)
s: stride
mm: matrix multiplication
cc_split: connected components splitting
merge_masks : merge clusters and proposal mask

Prompting
bg_masks, fg_masks = [], []
for i in range(0, H, s):

for j in range(0, W, s):
prompt_token = F[i, j, :]
mask = mm(F, prompt_token)> τb
if is_background(mask):

bg_masks.append(mask)
else:

fg_masks.append(cc_split(mask))

Background aggregation
for bg_mask in bg_masks:

voted_bg += bg_mask
voted_bg = round(voted_bg / len(bg_masks)) # pixel-wise voting

Cascade filtering
filtered_fg = []
sort(fg_masks, x=lambda x:sum(x)) # sort by size (asc.)
fg_seen = zeros(H,W)
bg_ft = mean(F[voted_bg, :], axis=0)
for fg in fg_masks:

fg_unseen = fg - fg[fg_seen>0]
intersection = fg_unseen & voted_bg
fg_ft = mean(F[fg, :], axis=0)
if sum(intersection) / sum(fg_unseen)< τbg

IoA and
(bg_ft @ fg_ft)< τbg

f :
fg_seen += fg_unseen
filtered_fg.append(fg)

Merging
clusters = set()
sort(filtered_fg, x=lambda x:sum(x), reverse=True)
for fg in filtered_fg:

masks_to_merge = []
for c in clusters:

c_mean = mean(F[c, :], axis=0)
fg_mean = mean(F[fg, :], axis=0)
if mm(fg_mean, c_mean)> τmerge

f :
masks_to_merge.append(c)

elif (sum(fg & c) / sum(fg))> τmerge
IoA :

masks_to_merge.append(c)
if len(masks_to_merge) == 0:

if len(masks_to_merge) == 0:
clusters.add(fg)
continue

merged_mask = merge_masks(masks_to_merge, fg)
clusters.replace(masks_to_merge, merged_mask)

Postprocessing
for mask in clusters:

mask = dense_crf(mask)
return clusters

3

Merging. In our iterative clustering approach, filtered prompted masks are pro-
cessed and merged in descending order of area, using the IoA metric and feature
similarity. Smaller masks merge with larger ones if their IoA area overlap exceeds
τmerge
IoA or if their similarity in feature space exceeds τmerge

f . We set τmerge
IoA = 0.1

and τmerge
f = 0.1 for our experiments.

4

2 Further implementation details

Here, we provide additional details about the datasets used in our paper and
training of ProMerge+.
Datasets. We evaluate our methods on six benchmarks, including COCO2017 [10],
COCO20K [13], LVIS [7], KITTI [5], subsets of Objects365 [12] and SA-1B [9].

COCO2017 and COCO20K are the standard datasets for object detection
and segmentation. COCO2017 is composed of 118K and 5K images for training
and validation splits respectively, while COCO20K is composed of 20K images.
For all results on COCO2017, we use the 5K images in the validation split.

LVIS is a more challenging dataset for object detection and segmentation,
with densely-annotated instance masks. We test our performance on the vali-
dation set, which contains 245K instances on 20K images. For KITTI and Ob-
jects365, we evaluate on 7K images following [14] and a subset of 44K images
in the val split, respectively. Lastly, for SA-1B, we assess on a subset of 11K
images, which come with 100+ annotations per image on average.1

Training details of ProMerge+. For training ProMerge+, we follow the same
training protocol as described in CutLER [14], and compare its performance with
CutLER after a single training cycle. For a fair comparison, we reimplement a
single round training of CutLER using the official codebase. Specifically, we
use Cascade Mask-RCNN [1] and initialize the image encoder (i.e., ResNet-50
backbone [8]) with DINO pretrained weights [2]. We also leverage the copy-and-
paste augmentation [6]. We train the detector on ImageNet [3] images with their
pseudo-labels obtained via ProMerge, after removing noisy masks whose area
is smaller than 5% of the size of the corresponding input image. For training,
we use a base learning rate of 0.005 for 80K steps that drops to 0.001 for the
remaining 80K iterations and use a weight decay of 5e−5. The training is based
on the Detectron2 framework [16].

1The subset for SA-1B can be downloaded from https://ai.meta.com/datasets/
segment-anything-downloads/

https://ai.meta.com/datasets/segment-anything-downloads/
https://ai.meta.com/datasets/segment-anything-downloads/

5

regular grid random iterative attentive MHA
APmk ARmk

100 APmk ARmk
100 APmk ARmk

100 APmk ARmk
100 APmk ARmk

100

2.4 7.5 2.4 7.3 2.4 5.3 2.0 5.6 2.2 6.3
Table 1: Effect of prompting methods. The regular grid prompting is used by
default in our method. Default setting is marked in gray .

3 Further ablation studies

In this section, we conduct further ablation studies regarding the proposed
method.
Difference between Cascade filtering and non-maximum suppression.
We note that, at a glance, the proposed Cascade filtering (CF) approach can bear
resemblance to the commonly used non-maximum suppression (NMS). However,
there are crucial differences: CF (i) filters mask proposals by comparing them to
a background mask, whereas NMS does so by comparing the proposals to each
other; (ii) considers the new pixel regions that are not part of any previously
accepted proposals combined; and (iii) takes into account feature similarity with
the background as well as pixel overlap. Indeed, we observe the stark difference
in APmk—2.4% for CF vs 0.8% for NMS on COCO2017, showing the importance
of pruning noisy background masks via CF.
Prompting methods. In our paper, we use features equally spaced in a regular
2D grid as prompt tokens to obtain initial mask proposals. Here, we explore
alternative prompting methods including random, iterative, attentive, and multi-
head attention (MHA) prompting.

Random prompting selects patches randomly from all of the patch tokens
(extracted from the image encoder) and uses them as prompt tokens. Iterative
prompting uses the initial grid of prompts, but shifts the prompt center over mul-
tiple iterations. This prompting method first takes the prompt token from a reg-
ular grid, and finds the spatial center of the tokens in the initial mask proposal.
The token at the mask center is then selected as the new prompt token. This
process is repeated three times to find the optimal set of prompt tokens, with the
goal of seeking prompts that represent the central components of objects. Atten-
tive prompting identifies distinctive patch tokens, which serve as prompt tokens,
by using a mode-seeking clustering algorithm (FINCH [11]). MHA prompting
leverages the observation from [2] that the last self-attention layer of the DINO-
ViT groups foreground objects. We first compute cosine similarities between the
[CLS] token and query features from each head in the last self-attention layer of
the DINO-ViT, producing multiple affinity maps. We then sum all the affinity
maps and identify 2D coordinates whose cumulative affinities are within the top
5%. We then use these corresponding patch tokens as prompt tokens, and run
inference without additional modifications to the ProMerge pipeline.

As shown in Tab. 1, random prompting performs best among these alterna-
tive methods, showing notably higher recall than iterative, attentive, and MHA
prompting. We conjecture that random prompting tends to cover diverse regions
of an image, thus lifting recall. However, the default regular grid prompting that

6

we employ in ProMerge shows slightly higher recall than random prompting, as
it is guaranteed to cover the entire image area, provided that the prompt tokens
are sufficiently dense.

7

Fig. 1: Qualitative comparison between training-free unsupervised methods.
TokenCut [15] and MaskCut [14] fail to appropriately segment multiple instances. In
contrast, ProMerge (ours) successfully identifies multiple objects in an image. Zoom in
for detail.

4 Further visualizations

Here, we first showcase qualitative examples of training-free methods including
ProMerge, TokenCut [15], and MaskCut [14]. Then, we visualize successful and
failure cases of our approach.

4.1 Qualitative comparison

In Fig. 1, we can see that both TokenCut and MaskCut struggle with segmenting
multiple instances in an image due to their reliance on a predefined number of
predictions per image (set to 3 in the original paper), whereas our approach
flexibly segments numerous objects according to the input image.

8

Fig. 2: Successful cases of ProMerge. We provide additional visualizations that
highlight ProMerge’s ability to segment multiple distinct objects per image.

4.2 Success and failure cases of ProMerge

We show successful cases with multiple instance masks per image in Fig. 2. In
Fig. 3, on the other hand, we visualize typical failure cases in which ProMerge
undersegments multiple neighboring instances or oversegments an instance due
to occlusion. We attribute these artifacts to using visual features that are not
explicitly trained for grouping pixels of an object based on an underlying seman-
tic understanding. That is, ProMerge is not aware of the semantic boundaries of
a single instance and is thus inclined to make mistakes in regions where multiple
objects of the same category, sharing the same color or texture, are adjacent, or
different parts of an object are located remotely.

9

Fig. 3: Typical failure cases of ProMerge. As ProMerge does not use features with
an explicit understanding of a concept (i.e., class), ProMerge predicts lower quality
masks for multiple instances of the same concept that are densely packed. ProMerge
also struggles with recognizing a single object whose parts are scattered across different
image regions due to occlusion. For example, adjacent teddy bears with similar textures
are segmented as one (bottom left). In the case in which a chair is occluded by a person
sitting, ProMerge generates four separate annotations for different parts of the same
chair (right image in the second row).

10

References

1. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.
In: CVPR (2018) 4

2. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021) 1,
4, 5

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 4

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
ICLR (2021) 1

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012) 4

6. Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.Y., Cubuk, E.D., Le, Q.V.,
Zoph, B.: Simple copy-paste is a strong data augmentation method for instance
segmentation. In: CVPR (2021) 4

7. Gupta, A., DollÃąr, P., Girshick, R.: Lvis: A dataset for large vocabulary instance
segmentation. In: CVPR (2019) 4

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 4

9. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollar, P., Girshick, R.: Segment anything.
In: ICCV (2023) 4

10. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014) 4

11. Sarfraz, M.S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering us-
ing first neighbor relations. In: CVPR (2019) 5

12. Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, J., Sun, J.: Objects365:
A large-scale, high-quality dataset for object detection. In: ICCV (2019) 4

13. Vo, H.V., Pérez, P., Ponce, J.: Toward unsupervised, multi-object discovery in
large-scale image collections. In: ECCV (2020) 4

14. Wang, X., Girdhar, R., Yu, S.X., Misra, I.: Cut and learn for unsupervised object
detection and instance segmentation. In: CVPR (2023) 4, 7

15. Wang, Y., Shen, X., Hu, S.X., Yuan, Y., Crowley, J.L., Vaufreydaz, D.: Self-
supervised transformers for unsupervised object discovery using normalized cut.
In: CVPR (2022) 7

16. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://
github.com/facebookresearch/detectron2 (2019) 4

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	ProMerge: Prompt and Mergefor Unsupervised Instance SegmentationSupplementary Materials

