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1. Ablation Study

The proposed diffusion model incorporates three critical
components, which contribute significantly to its effective-
ness: the relative features message passing scheme, the
vertex-index positional embeddings and the hierarchical
message passing scheme (see lines 215-271, including Fig.
3, of the main manuscript). To systematically assess the
contribution of one of the key elements to the overall per-
formance, we perform a series of ablation experiments.

Relative Features. As has been shown in the literature
[3, 11, 14], a key technique to increase the expressivity of
a graph neural network is the use of relative features on the
message passing scheme to enable propagation of relative
information to each of the nodes. Without the relative fea-
tures, the vertex update function relies only on the current
vertex features along with each neighbor which limits the
expressivity of the layer. This not only results in degrada-
tion of the performance, as shown in Tab. 2, but also in poor
manipulation performance from anchor points. Specifically,
as can be easily observed in Fig. 1 (first row), the manip-
ulations result in discontinuous spikes around the anchor
vertices. In contract, the proposed method, that utilizes a
relative feature message passing scheme, achieves smooth
manipulations that follow the anchor points without any ar-
tifacts.

Vertex-Index Embedding. As described in the main pa-
per, training a network directly on the partially noisy shape
space, is considerably challenging. The noise added on
the vertices translates to permutation equivariance for the
model, which results into learning point distributions with-
out any semantic topological information. To break this
equivariance, we introduced a vertex-index positional en-
coding p to enable the preservation of the topology on the
generated meshes [2, 8]. As shown in Fig. 1 (middle row),
the network trained without the vertex positional embed-
dings fails to generate results that preserve the topology of
the input, resulting in meshes with permuted triangles. This
can be quantified in Tab. 2, where the model trained with-
out the vertex positional embeddings results in significant
performance drop under both FID and ID metrics.

Hierarchical Message Passing. Inspired from [9], a key

novelty of the proposed framework is the hierarchical mes-
sage passing scheme that enables the aggregation of low and
high level features across vertices (see Eq. 3 on the main
paper). Using the proposed hierarchical message passing,
each node features contain both global and local topological
information, which is extremely important in tasks such as
region sampling and manipulation. As the proposed model
utilizes masked inputs, the generation of masked regions is
strongly contingent upon the context of the unmasked re-
gions. As shown in Fig. 1 (bottom row), without the use
of hierarchical features, several artifacts arise around the re-
gion boundaries. In contrast using the proposed hierarchical
message passing scheme, the generated regions are smooth
and preserve the topology of the input mesh since its vertex
contains contextual information of the global shape.
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Figure 1. Ablation Study. Qualitative Evaluation of the different
components of the proposed method.

Different GCN layers. In addition to the Spiral convo-
lution layer, we have also compared our work with some re-
cently proposed graph convolutional layers [1, 4, 7]. As can
be seen in Tab. 2, the adaptive sprial convolution method
achieves the best performance. In this paper, we utilized
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Table 1. Ablation Study. Quantitative comparison between dif-
ferent ablated components on MimicMe dataset. All figures are
measured in mm.

Method FID (↓) ID (↓)
w/o Relative Features 1.12 0.85
w/o Vertex-Index Emb. 14.1 2.19
w/o Hierarchical Features 1.32 0.12
Proposed 0.30 0.05

original spiral convolution layer for two reasons. First, as it
was utilized by the baseline methods [5, 6], we can easily
showcase the performance gain of the proposed framework.
Second, during our experimentation we observed that the
recently proposed adaptive spiral layer [1] despite achiev-
ing the best performance, its training time and model size
were substantially larger.

Table 2. Ablation Study. Quantitative comparison between dif-
ferent mesh convolution layers on MimicMe dataset. All figures
are measured in mm.

Method DIV (↑) FID (↓) ID (↓)
Proposed 0.34 0.30 0.05
Proposed w. LSA-Conv [7] 0.38 0.25 0.04
Proposed w. GEM [4] 0.32 0.34 0.06
Proposed w. Adaptive Spiral [1] 0.41 0.22 0.04

2. Region Sampling

MimicMe UHM STAR

Figure 2. Regions used for experiment 4.1 for each dataset. Each
color denotes a different region.

In the experiment of Sec. 4.1 of the main paper, we
use the term region sampling to refer to the process of im-
painting a specific part of a shape. For this experiment,
a 3D artist cropped the 3D face and body in several non-
overlapping anatomical regions, as depicted in Fig. 2, that
act as manipulation regions. In the supplementary video, we
included additional qualitative results on region sampling
for different face regions. As can be easily observed, com-
pared to the M-VAE method, the proposed method achieves

Table 3. Quantitative evaluation of specificity metric between the
proposed and the baseline methods for global sampling. Figures
in mm.

Method PCA(%90) PCA(%95) PCA(%99) SD LED Proposed
Specificity (↓) 2.24 2.31 2.44 3.27 2.97 2.11

diverse and realistic samples that are fully disentangled
from the rest of the shape.

3. Global Sampling

As mentioned in Sec. 4.3 of the main paper, apart from re-
gion sampling, the proposed model can be used to sample
full heads directly by simply masking the whole shape. In
this section, we qualitatively and quantitatively evaluate the
proposed model as a 3D morphable model. More specifi-
cally, to measure the generative abilities of the network we
used specificity metric, which is commonly used for the as-
sessment of parametric models. Specificity measures the
realism of the generated faces and their similarity to the re-
spective training samples. We compared our model with
the VAE baselines SD [5] and LED [6] along with a PCA
model trained on the same training set. To evaluate speci-
ficity metric, for each method, we generated 10,000 faces
and measured their per-vertex distance from their closest
sample on the ground-truth datasets. In Tab. 3, we report
the specificity performance of the proposed and the base-
line models. Following [10], for the PCA model, we report
three different results based on the percentage of retained
variance. The proposed method can generate diverse faces
that follow the training distribution and manages to outper-
form PCA models with considerably less parameters. Fig. 3
illustrates samples generated from the proposed model. As
can be easily observed the proposed model can generate di-
verse shapes with distinct characteristics that result to real-
istic faces.

4. Runtime Performance

Despite the considerable improvements that diffusion mod-
els have demonstrated on generative tasks, they suffer from
the inherent drawback of prolonged inference times. In
Tab. 4 we report the average inference performance on 100
runs of the proposed and the baseline methods on a single
Nvidia RTX 4090. As expected the diffusion model attains
slower inference times compared to VAE-based methods.

However, it is important to note that in contrast to the
baseline methods, the proposed diffusion based model does
not require any optimization for manipulation and fitting
tasks. In this sense, the manipulation of a region trans-
lates to a single diffusion denoising pass, which requires
the same inference time as region sampling. As shown in
Sec 4.2 of the main paper, this can effectively reduce the



Figure 3. Faces sampled from the proposed method.

Table 4. Runtime performance of the proposed and the baseline
methods across datasets. Times measured in seconds.

Method MimicMe UHM STAR
SD [5] 0.04 0.12 0.08
LED [5] 0.06 0.14 0.09
Proposed 2.92 3.17 2.98

inference time by 10 × (∼ 3.2sec) compared to the baseline
methods (∼ 22sec) for manipulation and fitting tasks.

5. Comparison with ARAP
We compared our method on shape editing against popu-
lar As-Rigid-As-Possible (ARAP) method [12]. Given that
ARAP uses an alternating minimization strategy it is signif-
icantly slower on large meshes compared to the proposed
method ( 10min for an edit vs 3.4sec for ours) and does
not have any shape prior model which results in non feasi-
ble deformations (e.g. the pointing nose-tip and the curved
eye) and artifacts. It is also important to note that ARAP
method, similar to any non-learnable model, can not handle
part swapping or generate and complete face regions.

6. Failure Cases
Editing shapes can cause failure cases when the anchors ex-
ceed the range of the statistical distribution. As shown in
Fig. 5, when the anchor point (red) is dragged far away from
the statistical plausible nose tips, the rest of the manipulated
region fails to follow, resulting in a vertex-pick. This can
also be quantified with the displacement plot, where the dis-
placement of a masked vertex (green) in the neighborhood
of the anchor gradually reach a plateau (green line) com-
pared to the displacement of the anchor point that continues
to increase as we linearly drag it (red line).

7. Effectiveness of Evaluation Metrics
To evaluate our model’s generative performance we devised
two heuristic measures (FID, ID) that leverage the PCA’s la-
tent space as a powerful and expressive prior. To measure
the FID/ID losses we project the manipulated and the origi-
nal samples and measure their distances in the latent space.
Thus, the distances between the PCA projections of the
manipulated and the original shapes would align with the
model’s manipulation performance. Intuitively, the smaller
the edited region within a shape, the closer the distance be-
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Figure 4. Qualitative and Quantitative comparison between the proposed and the ARAP [12] methods on face editing.
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Figure 5. Failure cases of the proposed model.
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Figure 6. Effectiveness of the ID loss. As the manipulated region
expands, it’s expected that the ID loss will increase, resulting in
more noticeable changes to the identity of the object.

tween the original and manipulated latent codes. This is
also validated in Fig. 6, where the ID loss rises in correla-
tion with the expansion of the manipulated area.

8. Discussion

Our work focuses on a critical task of 3D editing with nu-
merous applications in 3D shape modeling. Despite exten-
sive research in this field, the problem has not been effec-
tively tackled. Our contribution is a simple, fast and power-

ful framework to effectively solve this issue. Previous meth-
ods [5, 6, 13], which enforce disentanglement via latent
space partitioning, are fundamentally flawed. They com-
promise reconstruction quality for disentanglement and fail
to produce localized edits. Additionally, these methods are
limited to predefined regions and require slow optimization
to edit shapes. In contrast, our approach provides an in-
tuitive and interpretable solution, that is deeply embedded
with the task, that can guarantee localized edits and allows
flexible definitions of manipulated regions on the fly. In
addition, this is the first study that has proposed a single
versatile model to edit, manipulate, swap and generate 3D
shapes and expressions fully defined by the user.

9. Limitations and Ethical Concerns
The development of a powerful 3D shape manipulation
method undoubtedly raises concerns regarding the autho-
rization of manipulations and the potential of using AI-
generated content for harmful purposes. Additionally, since
the model may have been trained on a dataset that does not
accurately represent the world’s population demographics,
it is important to note racial biases that may occur and their
possible impacts. Moreover, perpetuating unrealistic beauty
standards through the alteration of facial and body features
may contribute to body image issues and societal pressures.
While the potential ethical concerns of the proposed method
are limited, careful consideration of the ethical implications
is essential in the development and deployment of these
technologies.

Regarding the limitations of the proposed method, sim-
ilar to previous approaches in 3D shape manipulation, our
denoising model relies on a fixed template. This fixed topol-



ogy serves as a constraint for PCA and all explicit 3DMMs
methods in the literature to achieve high-fidelity perfor-
mance. Undoubtedly, a major reason behind the success
of fixed topology models is their ability to leverage intrinsic
correspondence across data, enabling the learning of high-
frequency details using compact latent spaces. To mitigate
the limitations of fixed topology, one could potentially ex-
plore the use of implicit models that do not operate within a
fixed topology setting. However, to date, such models have
severe limitations and cannot achieve the controllability and
expressivity of 3DMMs.
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