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Supplementary Materials

A Proofs of Propositions

A.1 Proof of Proposition 1

Proposition 1 Let δηt
= ∥x(s)′

t−1 − DDIM(x
(t)′

t , c(t), ηt)∥2 be the source-target
branch distance at timestep t. If δ0 is small, there exists an ηt > 0 that satisfies
Eϵadd

[δηt
] > δ0.

Proof. Given a normally distributed random variable X ∼ N (µ, σ2), it is known
that the random variable |X| follows a Folded Normal Distribution with

E[|X|] = σ

√
2

π
e−µ2/2σ2

+ µ erf(
µ√
2σ2

), (1)

argmin
µ

E[|X|] = 0, (2)

where erf(z) = 2√
π

∫ z

0
e−t2 dt. Let x ∈ Rd and

µt :=
(x

(t)′

t −
√
1− ᾱtϵ

(t)′

t )
√
αt

+
√
1− ᾱt−1 − σ2

t ϵ
(t)′

t − x
(s)′

t−1. (3)

As Eq. (3) requires 1− ᾱt−1−σ2
t ≥ 0, using the definition of σt(ηt) we write

√
1− ᾱt−1 ≥ ηt

√
1− ᾱt−1

1− ᾱt

√
1− ᾱt

ᾱt−1
, (4)

resulting in the following condition for ηt:

√
1− ᾱt√
1− ᾱt

ᾱt−1

≥ ηt ≥ 0. (5)
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Assuming δ0 is sufficiently small with
√
1− ᾱt−1

√
2d
π > δ0, we show that

E
ϵadd

[δηt
] = E

ϵadd

[∥µt + σtϵadd∥2] (6)

≥ 1√
d

E
ϵadd

[∥µt + σtϵadd∥1] (Cauchy–Schwarz inequality) (7)

=
1√
d
E[Σd

i=1|µt,i + σtϵadd,i|] (Sum of ith dimension’s) (8)

=
1√
d

d∑
i=1

E[|µt,i + σtϵadd,i|] (9)

=
1√
d

d∑
i=1

E[|Xi|] (Xi ∼ N (µt,i, σ
2
t )) (10)

≥ 1√
d

d∑
i=1

E[|Xi|]µt,i=0 (Eq. (2)) (11)

=
1√
d

d∑
i=1

σt

√
2

π
(Eq. (1)) (12)

= σt

√
2d

π
(13)

= ηt

√
1− ᾱt−1

1− ᾱt

√
1− ᾱt

ᾱt−1

√
2d

π
. (14)

Thus, our proposition Eϵadd
[δηt

] > δ0 holds if we choose an ηt, which satisfies
√
1− ᾱt√
1− ᾱt

ᾱt−1

≥ ηt >
δ0√

1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1

√
2d
π

. (15)

□

A.2 Proof of Proposition 2

Assumption 1 We rewrite the following assumptions from prior works [17,20,
28] using our notation for completeness.

1. q0(x) ∈ C3 and Eq0(x)[∥x∥22] <∞.
2. ∀t ∈ [0, T ] : f t(·) ∈ C2. And ∃C > 0, ∀x ∈ Rd, t ∈ [0, T ] : ∥f t(x)∥2 ≤

C(1 + ∥x∥2).
3. ∃C > 0, ∀x,y ∈ Rd : ∥f t(x)− f t(y)∥2 ≤ C∥x− y∥2.
4. g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.
5. Open bounded set ∀O,

∫ T

0

∫
O
∥qt(x)∥22 + d · g(t)2∥∇x log qt(x)∥22 dx dt <∞.

6. ∃C > 0, ∀x ∈ Rd, t ∈ [0, T ] : ∥∇x log qt(x)∥22 ≤ C(1 + ∥x∥2).
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7. ∃C > 0, ∀x,y ∈ Rd : ∥∇x log qt(x)−∇y log qt(y)∥2 ≤ C∥x− y∥2.
8. ∃C > 0, ∀x ∈ Rd, t ∈ [0, T ] : ∥st,θ(x)∥2 ≤ C(1 + ∥x∥2).
9. ∃C > 0, ∀x,y ∈ Rd : ∥st,θ(x)− st,θ(y)∥2 ≤ C∥x− y∥2.

10. Novikov’s condition: E[exp (12
∫ T

0
∥∇x log qt(x)− st,θ(x)∥22)] <∞.

11. ∀t ∈ [0, T ], ∃k > 0 : qt(x) = O(e−∥x∥k
2 ), pt,ηt

(x) = O(e−∥x∥k
2 ) as ∥x∥2 →∞.

Proposition 2 Under Assumption 1, Eq. (16) holds, wherein DFisher denotes
the Fisher Divergence.

DKL(p
(t)′

0 ∥ p(t)0 ) = DKL(p
(t)′

T ∥ p(t)T )−
∫ T

0

η2t g
2
tDFisher(p

(t)′

t ∥ p(t)t ) dt (16)

Proof. Given the general form of the SDE (Eq. (17)), Eq. (18) and Eq. (19) are
the equations for the probability flow ODE, and Eq. (20) is the link between the
Fokker–Planck equation [28] and the probability flow.

dx = f t(x) dt+Gt(x) dw (17)

dx = f̃ t(x) dt (18)

f̃ t(x)← f t(x)−
1

2
∇ · [Gt(x)Gt(x)

⊺]− 1

2
Gt(x)Gt(x)

⊺∇x log pt(x) (19)

∂

∂t
pt(x) = −∇x · [f̃ t(x)pt(x)] (20)

Recall the forward path (Eq. (21)) and the extended backward path (Eq. (22))
of diffusion models (score-based models). In practice, we use Eq. (23) as the
backward path to sample data with the score estimation network st,θ(x) instead
of the unknown ground truth ∇x log qt(x).

dx = ftx dt+gt dw

(
ft =

1

2

d logαt

dt
, gt =

√
−d logαt

dt

)
(21)

dx = [ftx−
1 + η2t

2
g2t∇x log qt(x)] dt+ηtgt dw̄ (22)

dx = [ftx−
1 + η2t

2
g2t st,θ(x)]︸ ︷︷ ︸

At(x)

dt+ηtgt dw̄ (23)

Using f t(x) ← At(x) and Gt(x) ← ηtgt, we rewrite the probability flow
ODE (Eq. (18), Eq. (19)) as

dx = Ãt(x) dt, (24)

Ãt(x) = At(x) +
1

2
η2t g

2
t∇x log pt(x), (25)

and the Fokker-Plank equation (Eq. (20)) as

∂

∂t
pt(x) = −∇x · [Ãt(x)pt(x)]. (26)
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For real image editing (the backward path of the target), we are interested
in the unknown true inverted marginal distribution p

(t)
T and the inaccurately

inverted marginal distribution p
(t)′

T , which is obtained by diffusion inversion. Since
both distributions use the same backward path (Eq. (23)), we can formulate the
probability flow ODE for both as

A
(t)
t (x) = ftx−

1 + η2t
2

g2t s
(t)
t,θ(x), (27)

Ã
(t)

t (x) = A
(t)
t (x) +

1

2
η2t g

2
t∇x log p

(t)
t (x), (28)

Ã
(t)′

t (x) = A
(t)
t (x) +

1

2
η2t g

2
t∇x log p

(t)′

t (x), (29)

and the Fokker-Plank equation for both as

∂

∂t
p
(t)
t (x) = −∇x · [Ã

(t)

t (x)p
(t)
t (x)], (30)

∂

∂t
p
(t)′

t (x) = −∇x · [Ã
(t)′

t (x)p
(t)′

t (x)]. (31)

Finally, we show

∂DKL(p
(t)′

t ∥ p(t)t )

∂t
(32)

=
∂

∂t

∫
p
(t)′

t (x) log
p
(t)′

t (x)

p
(t)
t (x)

dx (33)

=

∫
∂

∂t
p
(t)′

t (x) log
p
(t)′

t (x)

p
(t)
t (x)

dx−
∫

p
(t)′

t (x)

p
(t)
t (x)

∂

∂t
p
(t)
t (x) dx (34)

=−
∫
∇x · [Ã

(t)′

t (x)p
(t)′

t (x)] log
p
(t)′

t (x)

p
(t)
t (x)

dx

+

∫
p
(t)′

t (x)

p
(t)
t (x)

∇x · [Ã
(t)

t (x)p
(t)
t (x)] dx (35)

=

∫
[Ã

(t)′

t (x)p
(t)′

t (x)]⊺∇x log
p
(t)′

t (x)

p
(t)
t (x)

dx

−
∫
[Ã

(t)

t (x)p
(t)
t (x)]⊺∇x

p
(t)′

t (x)

p
(t)
t (x)

dx (Assumption 1) (36)

=

∫
p
(t)′

t (x)[Ã
(t)′

t (x)⊺ − Ã
(t)

t (x)⊺][∇x log p
(t)′

t (x)−∇x log p
(t)
t (x)] dx (37)

=
1

2
η2t g

2
t

∫
p
(t)′

t (x)∥∇x log p
(t)′

t (x)−∇x log p
(t)
t (x)∥22 dx (38)

=η2t g
2
tDFisher(p

(t)′

t ∥ p(t)t ). (See [17,20]) (39)
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Thus, Eq. (16) holds by integrating Eq. (39).

□

A.3 Proof of Proposition 3

We omit the superscript (t) in this section for simplicity. We express the scale
of the score estimation error as ϵ, which we assume is sufficiently small:

st,θ(x) = ∇x log qt(x) + ϵError(x), (40)

with Error(x) = O(1). It is known that DKL(p0 ∥ q0) has order of ϵ2 as below [5,6]:

DKL(p0 ∥ q0) = ϵ2L(ηt) +O(ϵ3). (41)

Assumption 2 We rewrite the following assumptions from prior work [2] using
our notation for completeness.

1. Without loss of generality (time re-scaling), ft = − 1
2 , gt = 1.

2. ∃cU ∈ R, ∀x ∈ Rd : − log p0(x)− |x|2
2 ≥ cU .

3. ∀t ∈ [0, T ], − log pt(x) is strongly convex.
4. ∀t ∈ [0, T ], mtI ⪯ ∇2(− log pt(x)) ⪯ MtI where mt ≥ 1 for t ∈ (0, T ] and

m0 > 1.

The proof for Proposition 3 is based on two propositions from prior work [2],
which we reformulate to match our notation (Lemma 1 and Lemma 2). Under
Assumption 2 (1), ηt in our notation corresponds to ht from [2]. For the rest of
this section, δ represents the Dirac delta function.

Lemma 1 (Proposition 3.4 of [2]). Suppose the score estimation function
st,θ(x) only undergoes perturbation at some fixed arbitrary timestep ta ∈ (0, T ]
with Error(x) = δt−taE(x). Let ηt = η (ηt is constant for all t). Under Assump-
tion 2, and if η is large enough, there exists an upper bound Lub(η) ≥ L(η), which
is an exponentially decreasing function converging to 0. Thus, there exists an η
with L(η) < min(ϵ, L(0)).

Lemma 2 (Proposition 3.5 of [2]). Suppose the score estimation function
st,θ(x) only undergoes perturbation at some fixed timestep tb ≪ 1 near timestep
0 with Error(x) = δt−tbE(x). Let ηt = η (ηt is constant for all t). Under
Assumption 2, and if η is large enough, we have L(0)≪ L(η).

Proposition 3 Under Assumption 2, if the score estimation function st,θ(x)
undergoes perturbations only near the timestep T and near the timestep 0, there
exists a timestep Ta and a timestep Tb, along with a large constant ηconst > 0,
such that DKL(p0,ηt

∥ q0) becomes reduced when employing ηt as Eq. (42), in
comparison to ηt = 0 for all t or ηt = ηconst for all t.
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ηt =


ηconst if T ≥ t ≥ Ta

ηconst(t− Tb)/(Ta − Tb) if Ta > t ≥ Tb

0 if Tb > t ≥ 0

(42)

Proof. We define the following cases for three different possible ηt functions
(Fig. 1):

– Case 1: Eq. (42),
– Case 2: ηt = ηconst for all t,
– Case 3: ηt = 0 for all t.

We write Error(x) as below assuming perturbations only at ta (near timestep
T ) and at tb (near timestep 0):

Error(x) = (δt−ta + δt−tb)E(x). (43)

Let Ta be an arbitrary timestep with ta > Ta > tb. Assume we perform a
shorter diffusion backward pass from T to Ta by setting the final diffusion step
to Ta instead of 0 and measure its sample quality with DKL(pTa

∥ qTa
). Since we

now only operate in the time interval [Ta, T ] , we can ignore the perturbation at
tb and rewrite the error function as Error(x) = δt−taE(x). By applying Lemma 1
to our new diffusion pass in [Ta, T ], without loss of generality, there exists a
constant ηconst,a so that

L(ηconst,a) < min(ϵ, L(Ta)) ≤ L(Ta), (44)

DKL(pTa,ηconst,a
∥ qTa

) = ϵ2L(ηt) +O(ϵ3) = O(ϵ3) ≈ 0. (45)

Similarly, let Tb be an arbitrary timestep with Ta > Tb > tb and assume we
perform a shorter diffusion backward pass starting from Tb and ending at 0. From
Lemma 2, there exists a constant ηconst,b that satisfies L(0)≪ L(ηconst,b).

Let ηconst = max(ηconst,a, ηconst,b). We compare case 1 to case 2 and case 3
and show that case 1 has the best sampling quality among those three.
i) Comparison to case 2 (ηt = ηconst for all t).

1. T ≥ t ≥ Ta: By Lemma 1 and Eq. (45), we have DKL(pTa,ηt
∥ qTa

) ≈ 0 for
case 1 and DKL(pTa,ηconst

∥ qTa
) ≈ 0 for case 2.

2. Ta ≥ t ≥ Tb: Since we have DKL(pTa ∥ qTa) ≈ 0 for both cases and the
score function is accurate, the ηt function does not affect pTb,ηt

, thus we have
DKL(pTb

∥ qTb
) ≈ 0 for both case 1 and case 2.

3. Tb ≥ t ≥ 0: Since ηt = 0 for t ≤ Tb for case 1, case 1’s DKL(p0,ηt ∥ q0) is
smaller than case 2’s DKL(p0,ηconst ∥ q0) by Lemma 2.

ii) Comparison to case 3 (ηt = 0 for all t).

1. T ≥ t ≥ Ta: By Lemma 1, Eq. (44) and Eq. (45), case 1 satisfies DKL(pTa,ηt
∥

qTa
) ≈ 0 while we have DKL(pTa,0 ∥ qTa

) > DKL(pTa,ηt
∥ qTa

) for case 3.
2. Ta ≥ t ≥ Tb: Since the score function is accurate and DKL(pTa,ηt ∥ qTa) ≈ 0

for case 1, DKL(pTb,ηt
∥ qTb

) ≈ 0 holds while we have DKL(pTa,0 ∥ qTa
) >

DKL(pTa,ηt
∥ qTa

) and therefore DKL(pTb,0 ∥ qTb
) > DKL(pTb,ηt

∥ qTb
) for

case 3.
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3. Tb ≥ t ≥ 0: For case 1 we have DKL(pTb,ηt
∥ qTb

) ≈ 0 and for case 3 we have
DKL(pTb,0 ∥ qTb

) > DKL(pTb,ηt
∥ qTb

). Since both case 1 and case 3 follow
the same ODE (ηt = 0 for t ≤ Tb), case 1’s DKL(p0,ηt ∥ q0) is smaller than
case 3’s DKL(p0,0 ∥ q0).

Following i) and ii), case 1 has the best sample quality, since its DKL(p0,ηt
∥ q0)

is smaller than DKL(p0,ηconst
∥ q0) of case 2 and DKL(p0,0 ∥ q0) of case 3.

□

T ta Ta Tb tb 0
0

ηconst
case 2 (ηt = ηconst)

case 3 (ηt = 0)

case 1 Eq. (42)

pe
rt

ur
ba

ti
on

pe
rt

ur
ba

ti
on

timestep t

Fig. 1: Proposition 3. We assume that the score estimation model is accurate and only
has two perturbations at ta and tb (tb close to 0). We show that the η function of case
1 provides better sample quality than case 2 and case 3.

B Experimental Details

We provide our hyperparameters for diffusion inversion and real image editing
in Tab. 1a and Tab. 1b. In general, all hyperparameters follow the official code
implementation of the respective method. Additionally, Tab. 1c shows which
backbone we used for each metric. Fig. 2 visualizes the η function for our three
proposed Eta Inversion configurations. For EtaInv (1) and (2), we set the cross-
attention map threshold to 0.2 and use a sampling count of n = 10. For EtaInv
(3), we do not use region-dependent η and use a sampling count of n = 1.

C Searching the Optimal Eta Function

In this section, we present several hyperparameter study results on how we
searched the optimal η function for EtaInv (2). We initialize all hyperparameters
to EtaInv (2) by default. Tests are performed using PyTorch [24] on an NVIDIA
V100 32GB GPU in 32-bit precision. Fig. 3 shows an overview of our experiments.
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Table 1: Experimental details.

(a) Inversion hyperparameters. In general, pa-
rameter values follow the official implementation.

Inversion Method Parameter Value

DDPM Inv. [12] skip 18

EDICT [30]
init_image_strength 1.0
leapfrog_steps True
mix_weight 0.93

Null-text Inv. [19] early_stop_epsilon 1e-05
num_inner_steps 10

ProxNPI [10]

dilate_mask 1
prox l0
quantile 0.7
recon_lr 1
recon_t 400

(b) Editing hyperparameters. In general, param-
eter values follow the official implementation.

Editing Method Parameter Value

PtP [11]
cross_replace_steps 0.4
self_replace_steps 0.6
equilizer_params_values 2.0

PnP [29] pnp_f_t 0.8
pnp_attn_t 0.5

MasaCtrl [1] step 4
layer 10

(c) Backbone models for metric computation.

Metric Backbone

CLIP similarity [26] ViT-B16 [9]
DINO structural similarity [3] ViT-B8 [9]
Perceptual Similarity (LPIPS) [32] AlexNet [14]

C.1 Sign of Slope dη(T−t)

dt

We first formulate η as a linear function for simplicity and explore how the slope
dη(T−t)

dt of the graph affects the editing performance. Fig. 3a displays the tested
η functions and Tab. 2a shows the metric values for each function. The results
demonstrate that dη(T−t)

dt < 0 shows better text-image alignment performance and
a better editing effect than dη(T−t)

dt ≥ 0, which aligns with our theoretical findings.
Therefore, we use a decreasing slope with dη(T−t)

dt < 0 for further experiments.

C.2 Optimal t, η−intercepts

Next, we analyze how different linear η functions affect performance. We define
several intercepts on the time axis (0.3, 0.4, 0.5, 0.6, 0.7) and on the η axis (0.6, 0.7,
0.8, 0.9, 1.0) and linearly interpolate between two intercepts as displayed in Fig. 3b.
Tab. 2b shows that a larger η and a smaller t (corresponding to applying noise
even at later timesteps) improve text-image alignment while sacrificing structural
similarity. EtaInv (2) with (η-intercept = 0.7, t-intercept = 0.6) provides a good
balance for both.

C.3 Non-zero Concavity d2η(T−t)

dt2

Furthermore, we perform several grid search experiments with non-linear η
functions by introducing an exponent p (1/3, 1/2, 1, 2, 3) resulting in a concave
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T 0.8T 0.6T 0.4T 0.2T 0
0

0.2

0.4

0.6

0.8

1

timestep t

ηt
EtaInv (1)
EtaInv (2)
EtaInv (3)

Fig. 2: η function for our three different EtaInv settings. EtaInv (1) uses smaller η
favoring structural similarity, EtaInv (2) uses larger η favoring prompt alignment, and
EtaInv (3) uses very large η even at later steps, optimized for style transfer.

(if p < 1) or convex (if p > 1) η function. First, we fix the t, η−intercept to EtaInv
(2) and compute metrics for different exponents in Tab. 2c. We can observe that
making EtaInv (2) concave improves image alignment since more total noise is
injected and that a convex EtaInv (2) achieves better structural similarity since
less noise is injected. Second, we provide an extensive grid search over various
intercepts and exponents in Tab. 3 where each power shows a similar trade-off
for alignment and similarity when altering the η and t intercept. Based on these
experiments we find that there is no immediate benefit of introducing a non-linear
η function and decide to fix it to linear for the remaining tests.

C.4 Sampling Count n

We test several different noise sampling counts (1, 10, 102, 103, 104) in Tab. 4a
and observe that a larger sampling count improves structural similarity while
reducing text-image CLIP similarity. We argue that a larger sample count reduces
the randomness in Eta Inversion by finding a noise that better approximates the
true source-target branch distance.

C.5 Cross-attention Map Source

There are three different sources for cross-attention maps: (i.) from the forward
(inversion) path; (ii.) from the the backward path of the source latent; and (iii.)
from the backward path of the target latent. Therefore, we provide results for
each cross-attention map source in Tab. 4b while additionally including two more
tests: GT, which uses the ground-truth foreground-background segmentation map
provided by the dataset instead of cross-attention; and Source+Target which
combines the backward attention maps from the source and the target branch
with a max operation. We found that averaged attention masks from the forward
path (i.) are most accurate and stable, since Eta Inversion injects no noise in
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the forward path, leading to a balanced trade-off of text-image alignment and
structural similarity.

C.6 Mask Threshold Mth

Finally, Tab. 4c shows text-image alignment and structural similarity metrics
for different attention map thresholds. Additionally, Smooth does not threshold
the attention map but instead multiplies it to η, reducing η at low attention
values, which did not achieve good results. For the threshold experiments, a larger
attention threshold reduces the region where η > 0 and noise is injected (see
Fig. 3d), consequently showing worse text-image alignment and better structural
similarity. We find that the threshold Mth = 0.2 achieves the best results.

T 0.5T 0
0

0.2

0.4

0.6

0.8

1

timestep t

ηt

dη(T−t)

dt
< 0

dη(T−t)

dt
= 0

dη(T−t)

dt
> 0

(a) Sign of slope
dη(T−t)

dt

T 0.8T 0.6T 0.4T 0.2T 0
0

0.2

0.4

0.6

0.8

1

timestep t

ηt

(b) t, η−intercepts

T 0.8T 0.6T
0

0.2

0.4

0.6

0.8

p
=
1/3p

=
1p

=
2

p
=
1/2

p
=
3

timestep t

ηt

d2η(T−t)

dt2
< 0

d2η(T−t)

dt2
= 0

d2η(T−t)

dt2
> 0

(c) Concavity
d2η(T−t)

dt2

0
.1

0.1
0.
1

0.1

0
.2

0.2

0
.2

0.3

0
.3

0.3

0.4

0.4

Attention Mask

ηt(i, j, k) = 0 if M(s)
t (i, j, k) < Mth

(d) Mask thres. Mth

Fig. 3: Exploring the optimal η function.
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Table 2: Extensive parameter study for slope, intercept, and concavity of the η function
evaluated on PIE-Bench with PtP. Hyperparameters are set to EtaInv (2) by default.

(a) Slope
dη(T−t)

dt results. A negative/decreasing slope leads to better text-image alignment. An
increasing slope may lead to better similarity but, in practice, fails to edit the image sufficiently since
no noise is injected in the early diffusion steps, which is needed to edit high-level features.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Slope
dη(T−t)

dt
text-img ↑ text-cap. ↑ DINOv1 ↓ LPIPS ↓ BG-LPIPS ↓

−1.0 31.49 95.71 2.65 29.73 10.76
−0.8 31.45 96.14 2.49 28.50 10.37
−0.6 31.38 95.14 2.36 27.35 10.00
−0.4 31.33 94.71 2.22 26.22 9.65
−0.2 31.33 94.14 2.10 25.08 9.30
0.0 31.28 95.00 2.01 24.02 8.97
0.2 31.28 94.57 1.92 23.15 8.69
0.4 31.24 94.14 1.86 22.45 8.46
0.6 31.23 95.00 1.82 21.90 8.28
0.8 31.20 95.00 1.79 21.55 8.17
1.0 31.16 94.57 1.78 21.41 8.13

(b) t, η−intercept results. A larger η improves alignment while sacrificing similarity. A larger t reduces
the total injected noise and improves similarity while worsening alignment. We chose η = 0.7, t = 0.6
for Eta Inversion (2).

Metric (×102)

Text-Image Alignment (CLIP) ↑ Structural Similarity (DINOv1) ↓

η
t

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

0.6 31.22 31.19 31.19 31.14 31.12 1.76 1.71 1.67 1.60 1.53
0.7 31.30 31.30 31.26 31.25 31.18 1.93 1.88 1.82 1.70 1.61
0.8 31.32 31.35 31.34 31.26 31.24 2.11 2.03 1.96 1.83 1.71
0.9 31.42 31.41 31.40 31.33 31.29 2.29 2.20 2.14 1.97 1.84
1.0 31.45 31.43 31.43 31.44 31.33 2.47 2.39 2.33 2.14 1.95

(c) Concavity results. An exponent p > 1 leads to a convex graph, which reduces η and thus the
total noise injected. Consequently, text-image alignment worsens while similarity improves. A linear
η function (p = 1) is sufficient for a good balance of text-image alignment and structural similarity.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Exponent p text-img ↑ text-cap. ↑ DINOv1 ↓ LPIPS ↓ BG-LPIPS ↓

1/3 31.30 95.43 1.98 23.86 8.89
1/2 31.29 94.29 1.89 22.99 8.61
1 31.25 95.43 1.70 21.14 8.00
2 31.14 95.00 1.55 19.34 7.41
3 31.08 95.29 1.48 18.38 7.11
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Table 3: t, η−intercept results for various concavity/exponents. Every exponent shows
a similar trade-off for alignment and similarity, e.g., when increasing η and decreasing
t. We conclude that a linear function (p = 1) is sufficient for good editing results.
Remaining hyperparameters are set to match Eta Inversion (2).

Metric (×102)

Text-Image Alignment (CLIP) ↑ Structural Similarity (DINOv1) ↓

Exponent p η
t

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

1/3

0.6 31.25 31.26 31.28 31.28 31.21 1.98 1.94 1.89 1.80 1.70
0.7 31.37 31.33 31.35 31.30 31.26 2.19 2.13 2.07 1.98 1.86
0.8 31.39 31.42 31.40 31.37 31.31 2.40 2.34 2.28 2.17 2.01
0.9 31.43 31.46 31.45 31.40 31.39 2.60 2.54 2.46 2.36 2.19
1.0 31.43 31.49 31.52 31.52 31.46 2.81 2.74 2.68 2.55 2.38

1/2

0.6 31.25 31.28 31.27 31.22 31.18 1.92 1.88 1.81 1.73 1.63
0.7 31.31 31.30 31.31 31.29 31.26 2.10 2.05 1.98 1.89 1.77
0.8 31.40 31.40 31.36 31.36 31.31 2.31 2.25 2.17 2.05 1.90
0.9 31.45 31.46 31.40 31.39 31.38 2.50 2.44 2.35 2.25 2.06
1.0 31.46 31.51 31.49 31.44 31.43 2.71 2.66 2.55 2.43 2.24

1

0.6 31.22 31.19 31.19 31.14 31.12 1.76 1.71 1.67 1.60 1.53
0.7 31.30 31.30 31.26 31.25 31.18 1.93 1.88 1.82 1.70 1.61
0.8 31.32 31.35 31.34 31.26 31.24 2.11 2.03 1.96 1.83 1.71
0.9 31.42 31.41 31.40 31.33 31.29 2.29 2.20 2.14 1.97 1.84
1.0 31.45 31.43 31.43 31.44 31.33 2.47 2.39 2.33 2.14 1.95

2

0.6 31.15 31.13 31.11 31.09 31.05 1.60 1.57 1.53 1.48 1.44
0.7 31.23 31.22 31.16 31.14 31.10 1.71 1.65 1.60 1.55 1.49
0.8 31.28 31.28 31.24 31.17 31.10 1.84 1.78 1.69 1.62 1.54
0.9 31.34 31.30 31.28 31.24 31.14 1.99 1.90 1.82 1.72 1.60
1.0 31.41 31.39 31.34 31.28 31.18 2.14 2.05 1.93 1.83 1.68

3

0.6 31.11 31.10 31.08 31.05 31.04 1.53 1.50 1.46 1.43 1.39
0.7 31.16 31.15 31.11 31.08 31.05 1.60 1.56 1.52 1.48 1.43
0.8 31.24 31.21 31.16 31.09 31.05 1.69 1.64 1.58 1.52 1.47
0.9 31.28 31.26 31.20 31.14 31.07 1.81 1.74 1.67 1.58 1.51
1.0 31.33 31.29 31.25 31.18 31.10 1.92 1.85 1.77 1.66 1.56



13

Table 4: Extensive parameter study for noise sample count, attention source, and
attention threshold evaluated on PIE-Bench with PtP. Hyperparameters are set to
EtaInv (2) by default.

(a) Noise sample count n results. Large sample counts generally lead to better similarity, while lower
sample counts achieve better prompt alignment.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Sample count n text-img ↑ text-cap. ↑ DINOv1 ↓ LPIPS ↓ BG-LPIPS ↓

1 31.19 95.57 1.72 21.26 8.08
10 31.25 95.43 1.70 21.14 8.00
102 31.22 95.00 1.73 21.27 8.07
103 31.12 94.71 1.70 21.11 8.04
104 31.13 95.71 1.70 21.06 7.99

(b) Cross-attention map source results. GT uses ground-truth foreground-background maps from
PIE-Bench. Forward are cross-attention maps collected during the forward path. Forward (mean)
averages all forward attention maps to one map. Backward Source and Backward Target are the
attention maps from the backward source and target path respectively. Backward Source+Target
combines both activations to one map via the max-operator. We found that forward (mean) provides
the best balance for text alignment and similarity.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Attention source text-img ↑ text-cap. ↑ DINOv1 ↓ LPIPS ↓ BG-LPIPS ↓

No mask 31.27 95.43 1.85 22.77 9.03
GT 31.22 94.71 1.67 20.67 7.00
Forward 31.24 95.43 1.75 21.59 8.27
Forward (Mean) 31.25 95.43 1.70 21.14 8.00
Backward Source 31.26 95.14 1.81 22.30 8.74
Backward Target 31.22 94.71 1.80 22.27 8.73
Backward Source+Target 31.25 94.86 1.83 22.48 8.84

(c) Cross-attention threshold results. A higher threshold reduces the region where noise is being
injected, resulting in less editing and better similarity while negatively affecting alignment. Smooth
multiplies η with the attention map activations instead of thresholding it, resulting in smaller η
being applied to less activated regions. Mth = 0.2 provides a good tradeoff between alignment and
similarity metrics.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Attention threshold Mth text-img ↑ text-cap. ↑ DINOv1 ↓ LPIPS ↓ BG-LPIPS ↓

No mask 31.27 95.43 1.85 22.77 9.03
0.1 31.25 95.71 1.81 22.21 8.59
0.2 31.25 95.43 1.70 21.14 8.00
0.3 31.15 94.71 1.64 20.25 7.62
0.4 31.08 95.29 1.56 19.35 7.24
0.5 31.05 95.71 1.51 18.82 7.02

Smooth 31.05 94.99 1.51 18.77 7.02
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D Existing Diffusion Inversion Methods

We summarize existing diffusion inversion methods in Tab. 5. The table divides
each forward and backward path into (η, w) and strategy. Former indicates the
used η parameter (DDIM or DDPM) with the guidance scale parameter w, while
strategy indicates additional effort by the inversion method to reduce the gap to
the (ideal) forward path.

Table 5: Summary of existing diffusion inversion methods.

forward path backward path

Inversion Method (η, w) strategy (η, w) strategy

DDIM Inv. [27] (0, 1) - (0, 7.5) -
NTI [19] (0, 1) - (0, 7.5) optimized ∅t

NPI [18] (0, 1) - (0, 7.5) ∅← c(s)

ProxNPI [10] (0, 1) - (0, 7.5) ∅← c(s), modified ϵ̃θ

Direct Inv. [13] (0, 1) - (0, 7.5) x
(s)′

t−1 ← x
(s)∗

t−1

EDICT [30] (0, 3) Coupled Transformations (0, 3) Coupled Transformations
DDPM Inv. [12] - q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I) (1, 3.5) x

(s)′

t−1 ← x
(s)∗

t−1 , modified ϵadd

E Text-guided Image Editing Methods

In this section, we introduce commonly used training-free text-guided image
editing methods. We also state the inversion method used by the original paper
for real image editing.

E.1 Prompt-to-Prompt (PtP) [11]

Editing To forward information from the source to the target backward path,
PtP replaces the cross-attention maps of the target with the maps from the
source. Since PtP needs to know which attention maps to exchange, each word in
the source prompt must be matched to a word in the target prompt. Thus, PtP
introduces restrictions for specifying an appropriate source and target prompt.

Inversion The proposed Prompt-to-Prompt in [11] applies DDIM Inversion
(w = 1) and DDIM sampling (w = 7.5) without any additional strategy, which
negatively affects structural similarity.

E.2 MasaCtrl [1]

Editing MasaCtrl focuses on non-rigid real image editing (motion editing). Unlike
PtP, MasaCtrl replaces self-attention maps instead of cross-attention maps. For
real image editing, MasaCtrl uses an empty prompt for the source prompt.
Otherwise, when performing synthetic editing and if a source prompt is specified,
MasaCtrl optionally uses masked guidance by obtaining a mask from the cross-
attention maps for the word to edit.



15

Inversion MasaCtrl applies DDIM Inversion (w = 1) and replaces the source
prompt c(s) with an empty prompt ∅. Consequently, MasaCtrl does not require
a source prompt for inversion.

E.3 Plug-and-Play (PnP) [29]

Editing Plug-and-Play also focuses on modifying self-attention maps similar to
MasaCtrl. In addition, PnP performs spatial feature injection in U-Net’s decoder
layers from the source to the target branch. They thereby report better structural
preservation than PtP.

Inversion Same as MasaCtrl, Plug-and-Play applies DDIM Inversion (w = 1)
and replaces the source prompt c(s) with an empty prompt ∅.

F Image Editing Metrics

It is unclear how to evaluate image editing performance. Instead of having a
single metric measuring both text-image alignment with the target prompt and
structural similarity with the source image, previous methods focus on evaluating
these two concepts separately. For text-image alignment, CLIP [26] is commonly
used, while for structural similarity, a strong feature extractor like DINO [3]
is utilized along with more classical evaluation metrics such as MS-SSIM [31].
Below, we give a detailed explanation of all our metrics.

F.1 Text-Image Alignment

Text(t) - Image(t) CLIP Similarity (text-img) This metric first computes
the target prompt text embeddings and the output image embeddings using CLIP,
normalizes them, and finally computes the dot product of the two embeddings.
The larger the dot product value, the better the target prompt and the output
image are aligned.

Text(t) - Image Caption(t) [4] CLIP Similarity (text-cap) Similar to
text-image CLIP similarity, but instead of using the output image embeddings,
a caption of the output image is obtained via BLIP [16]. We then embed the
generated caption by CLIP and compute the dot product of the target prompt
text embeddings and the generated caption embeddings. Since there is a gap
between CLIP’s image space and CLIP’s text space, this has the advantage that
both embeddings lie in CLIP’s text space.

Directional CLIP Similarity [25] (directional) Unlike the above two metrics,
this metric additionally incorporates the source prompt and the source image.
The idea of this metric is that, in CLIP space, the direction from the source
prompt to the target prompt should match the direction from the source image to
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the output image. Therefore, directional CLIP similarity computes the respective
embeddings of both prompts and images and then retrieves the text direction
and image direction by taking their respective difference. Lastly, the dot product
of those two directions serves as the metric value.

CLIP Accuracy (acc) This metric was originally introduced in [23] and
computes the ratio of output images where the text-image CLIP similarity is
higher with the target prompt than with the source prompt. We noticed in our
experiments that most inversion and editing methods reach a perfect score of 1.
Thus, we decided to use text-caption similarity via BLIP instead of text-image
similarity.

F.2 Structural Similarity

DINO [3] Self-similarity DINO self-similarity measures the similarity between
the source image and the target image by obtaining embeddings via DINO
and computing their MSE loss. DINO effectively extracts structural features of
images compared to other feature extraction models. We provide metrics for both
DINOv1 [3] and DINOv2 [22] but focus on the more commonly used DINOv1.

LPIPS [32] LPIPS is another metric similar to DINO self-similarity operating
on AlexNet [14] and focusing on matching human perception.

BG-LPIPS [13,23] BG-LPIPS computes the LPIPS only on the background
part of the source and output image, which should not be edited. This metric
works well for edits like replacing or editing single objects rather than performing
style transfer, where there is no clear background. The background mask is
provided by the user or dataset.

MS-SSIM [31] Multi-scale structural similarity (MS-SSIM) is an improved
version of SSIM and computes similarity over various image scales by consecutive
downsampling.

F.3 Text-Image Alignment and Structural Similarity

VIEScore [15] VIEScore is specifically introduced for evaluating image gen-
eration and editing performance using GPT-4V(ision) [21]. For image editing,
VIEScore assesses both text-image alignment and structural similarity. It employs
a carefully designed prompt that rates the editing performance with three separate
scores, ranging from 0 to 10, where higher is better: overall score, alignment score,
and similarity score. The overall score evaluates the image editing in general,
whereas the alignment score and similarity score focus on text-image alignment
and structural similarity, respectively.
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G Additional Quantitative and Qualitative Results

G.1 Additional Quantitative Results

Tab. 6 provides results for PIE-Bench editing with additional metrics. Fig. 4 shows
trade-off plots for PtP, PnP and MasaCtrl. PIE-Bench also divides all 700 edits
into ten categories, such as random edits or changing objects. We thus evaluate
and present our metrics for each category individually in Tab. 7. Additionally,
we provide supplementary metrics for the GPT-4 [21] based VIEScore [15] on
subsets of PIE-Bench in Tab. 8, and pairwise compare our method with Direct
Inversion through human evaluation in Tab. 9. Furthermore, Tab. 10 provides
metrics for the ImageNetR-TI2I [29] dataset. In all additional experiments, our
method achieves state-of-the-art results in most cases.

In Tab. 11, we evaluate the reconstruction accuracy and inference time of our
method. We observe that our method achieves perfect reconstruction, matching
VAE reconstruction, which serves as the upper bound. Additionally, our method
introduces negligible overhead and offers an inference speed similar to standard
DDIM Inversion, when compared to both standard inversion and all three tested
editing methods.

G.2 Additional Qualitative Results

In addition to the above quantitative results, we provide more qualitative com-
parisons of our method with various other inversion and editing approaches.
Fig. 5, Fig. 6, and Fig. 7 show qualitative results on PIE-Bench [13] images
using PtP [8], PnP [29], and MasaCtrl [1] respectively. Additionally, Fig. 8 shows
examples where a larger η as in EtaInv (3) leads to better editing results (e.g.,
style transfer). Finally, Fig. 9 shows the impact of η on image editing where higher
η values result in better target prompt alignment while negatively influencing
structural similarity.

29.5 30 30.5 31

2

4

6

DDIM Inv.

NTI

NPI
ProxNPI

EDICT

DDPM Inv.
Dir. Inv.
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Fig. 4: Visualization of CLIP text-image metrics (higher is better) and DINO metrics
(lower is better) on PIE-Bench for PtP (left), PnP (middle), and MasaCtrl (right).
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Table 6: PIE-Bench [13] evaluation with additional metrics.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Editing Inversion text-img ↑ text-cap ↑ directional ↑ acc ↑ DINOv1 ↓ DINOv2 ↓ LPIPS ↓ BG-LPIPS ↓ MS-SSIM ↑

PtP

DDIM Inv. [27] 30.99 75.73 1.49 94.57 6.94 0.98 46.65 24.97 61.93
Null-text Inv. [19] 30.73 74.41 3.35 92.57 1.24 0.32 15.13 5.69 88.76
NPI [18] 30.49 74.28 3.80 92.71 2.03 0.43 19.28 8.24 85.93
ProxNPI [10] 30.31 74.00 3.48 92.43 1.92 0.41 17.69 7.76 86.83
EDICT [30] 29.28 72.69 0.83 92.71 0.41 0.16 6.65 3.10 93.71
DDPM Inv. [12] 29.43 73.12 0.69 92.71 0.42 0.18 6.87 3.27 93.38
Direct Inv. [13] 30.92 75.76 2.34 94.71 1.28 0.32 15.79 6.33 88.34
EtaInv (1) 31.01 76.08 2.39 95.00 1.34 0.34 16.58 6.57 87.60
EtaInv (2) 31.25 76.20 2.67 95.43 1.70 0.40 21.14 8.00 83.19
EtaInv (3) 31.52 76.27 3.21 95.00 3.05 0.59 33.57 13.31 68.86

PnP

DDIM Inv. [27] 29.38 69.38 4.17 85.57 6.11 0.94 40.84 20.84 69.30
Null-text Inv. [19] 30.75 73.77 4.62 90.43 3.27 0.61 30.51 14.17 78.37
NPI [18] 30.73 73.83 4.84 91.29 2.67 0.53 26.18 11.57 81.81
ProxNPI [10] 30.54 74.02 4.12 90.71 2.29 0.46 21.76 9.57 84.43
EDICT [30] 24.69 60.09 2.58 63.43 4.26 0.73 30.22 14.96 76.46
DDPM Inv. [12] 30.26 73.72 2.02 94.86 1.04 0.29 12.50 5.84 89.35
Direct Inv. [13] 31.32 76.13 3.10 95.14 2.27 0.48 25.59 12.98 82.34
EtaInv (1) 31.33 76.47 2.66 94.86 2.34 0.50 27.33 14.05 80.85
EtaInv (2) 31.63 76.36 3.22 95.29 3.40 0.64 36.59 18.72 70.83
EtaInv (3) 31.92 77.10 3.98 94.57 5.16 0.88 50.39 26.61 50.53

Masa

DDIM Inv. [27] 30.74 75.22 1.37 95.00 7.55 1.02 47.68 25.37 60.37
Null-text Inv. [19] 30.07 72.79 2.64 93.00 4.49 0.68 25.02 11.92 77.35
NPI [18] 29.54 71.17 2.95 87.29 4.51 0.70 26.03 12.41 77.93
ProxNPI [10] 29.49 71.50 2.59 88.14 3.92 0.63 22.99 10.99 80.51
EDICT [30] 29.68 73.46 0.81 93.29 0.79 0.23 8.59 4.20 92.32
DDPM Inv. [12] 29.57 73.17 0.70 93.00 0.75 0.22 8.65 4.12 91.51
Direct Inv. [13] 30.37 74.50 1.39 94.57 4.32 0.66 26.91 13.76 76.95
EtaInv (1) 30.39 74.00 1.62 93.14 3.66 0.59 23.12 11.57 79.61
EtaInv (2) 30.62 74.32 1.96 93.86 5.24 0.80 33.07 16.64 68.18
EtaInv (3) 30.72 74.24 2.22 94.00 7.21 1.06 44.97 23.65 47.64
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Table 8: VIEScore [15] for the PIE-Bench random (0) and change style (9) subsets.
VIEScore ranges from 0 to 10 (higher is better) and provides three scores: overall,
text-image alignment (align.), and structural similarity (sim.). For PtP and MasaCtrl,
our method achieves state-of-the-art overall and alignment scores.

PIE-Bench Random PIE-Bench Style

Editing Inversion overall ↑ align. ↑ sim. ↑ overall ↑ align. ↑ sim. ↑

PtP

DDIM Inv. [27] 4.31 4.78 5.36 1.72 1.79 3.10
Null-text Inv. [19] 5.43 5.83 8.07 4.03 4.16 8.01
NPI [18] 5.87 6.35 7.83 3.85 4.09 7.18
ProxNPI [10] 5.24 5.65 7.63 3.18 3.33 7.56
EDICT [30] 1.48 1.56 8.06 0.43 0.43 9.19
DDPM Inv. [12] 1.40 1.48 8.37 0.38 0.38 8.63
Direct Inv. [13] 5.27 5.66 8.08 3.18 3.24 7.09
Eta Inversion (1) 4.98 5.34 8.13 3.16 3.23 7.09
Eta Inversion (2) 5.60 6.07 8.01 3.48 3.65 6.70
Eta Inversion (3) 6.21 6.73 7.65 4.24 4.54 6.06

PnP

DDIM Inv. [27] 4.26 4.99 5.13 4.25 4.60 5.43
Null-text Inv. [19] 6.02 6.63 7.23 5.99 6.30 7.80
NPI [18] 6.37 6.91 7.68 5.94 6.34 7.96
ProxNPI [10] 5.79 6.29 7.83 4.70 4.88 8.10
EDICT [30] 2.60 2.87 4.17 2.35 2.69 3.90
DDPM Inv. [12] 4.12 4.39 8.49 2.03 2.06 7.48
Direct Inv. [13] 5.04 5.43 7.46 4.74 4.93 7.94
Eta Inversion (1) 5.06 5.44 7.18 3.53 3.63 7.33
Eta Inversion (2) 5.56 5.99 6.91 4.44 4.81 6.24
Eta Inversion (3) 5.88 6.49 6.63 5.34 5.78 6.55

Masa

DDIM Inv. [27] 2.55 2.91 3.93 1.29 1.39 2.63
Null-text Inv. [19] 3.86 4.13 7.64 1.84 1.99 6.81
NPI [18] 3.81 4.19 6.97 2.74 2.91 6.61
ProxNPI [10] 3.65 4.01 7.37 1.68 1.74 6.38
EDICT [30] 1.56 1.63 8.64 0.57 0.58 8.34
DDPM Inv. [12] 1.31 1.39 8.91 0.43 0.43 8.71
Direct Inv. [13] 2.61 2.78 7.48 1.24 1.29 5.78
Eta Inversion (1) 3.19 3.33 8.04 1.18 1.21 7.30
Eta Inversion (2) 4.36 4.53 7.48 2.15 2.18 6.03
Eta Inversion (3) 3.83 4.11 6.66 2.48 2.55 5.55

Table 9: Human evaluation on PIE-Bench. We conducted 740 comparisons on PIE-
Bench’s random (0) and change style (9) subsets, where participants were asked to
choose if Direct Inversion’s output is better, if Eta Inversion’s output is better, or if it
is a tie. In non-tie cases, Eta Inversion was preferred approximately 2 to 3.5 times more
than Direct Inversion.

Editing method: PtP Tie Direct Inversion Eta Inversion
PIE-Bench (random) 69.76% 10.70% 19.53%
PIE-Bench (change style) 52.50% 10.63% 36.86%
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Table 10: ImageNet-R-TI2I [29] evaluation with various metrics. For all three editing
methods, our approach achieves the best CLIP text-image and text-caption metrics.

Metric (×102)

Text-Image Alignment (CLIP) Structural Similarity

Editing Inversion text-img ↑ text-cap ↑ directional ↑ acc ↑ DINOv1 ↓ DINOv2 ↓ LPIPS ↓ MS-SSIM ↑

PtP

DDIM Inv. [27] 30.06 69.87 2.49 98.89 8.35 1.07 50.48 55.17
Null-text Inv. [19] 30.32 70.58 5.40 94.44 2.18 0.53 26.10 81.51
NPI [18] 30.34 68.43 6.15 94.44 3.25 0.63 28.71 79.33
ProxNPI [10] 29.99 69.09 5.41 92.22 3.08 0.59 25.61 80.94
EDICT [30] 29.39 67.69 2.62 94.44 0.94 0.32 12.40 89.85
DDPM Inv. [12] 28.98 67.14 0.69 97.78 0.46 0.22 7.87 92.22
Direct Inv. [13] 30.34 70.23 3.27 97.78 1.80 0.45 21.98 82.99
EtaInv (1) 30.54 70.89 3.40 97.78 1.89 0.46 22.68 82.17
EtaInv (2) 30.94 71.17 4.24 94.44 3.70 0.67 38.66 64.84
EtaInv (3) 31.44 73.02 5.25 98.89 5.05 0.81 45.65 56.46

PnP

DDIM Inv. [27] 28.83 67.13 7.91 87.78 7.45 1.11 46.03 62.50
Null-text Inv. [19] 30.35 70.75 7.49 90.00 4.75 0.79 41.87 68.19
NPI [18] 30.82 70.77 8.11 92.22 4.23 0.74 37.62 72.69
ProxNPI [10] 30.20 69.28 6.28 96.67 3.68 0.64 31.20 76.82
EDICT [30] 23.44 58.15 5.65 57.78 6.54 0.95 43.21 62.90
DDPM Inv. [12] 29.91 69.18 3.20 93.33 1.43 0.40 16.63 85.14
Direct Inv. [13] 30.80 71.40 5.36 98.89 3.02 0.60 30.71 77.23
EtaInv (1) 30.97 71.64 5.57 97.78 3.30 0.62 32.50 75.15
EtaInv (2) 31.27 73.31 6.86 97.78 5.24 0.86 47.84 54.70
EtaInv (3) 31.61 73.85 7.33 97.78 5.86 0.96 53.60 44.77

Masa

DDIM Inv. [27] 29.67 68.81 1.23 98.89 9.80 1.18 53.96 51.68
Null-text Inv. [19] 29.61 65.74 2.97 90.00 6.79 0.93 34.57 67.39
NPI [18] 28.07 63.98 3.91 84.44 7.39 1.02 36.60 67.09
ProxNPI [10] 27.42 63.35 2.70 87.78 6.42 0.90 32.28 70.95
EDICT [30] 29.38 68.50 3.33 95.56 1.96 0.44 16.93 85.68
DDPM Inv. [12] 29.28 67.91 0.93 100.00 0.93 0.31 11.15 89.09
Direct Inv. [13] 29.40 67.05 0.53 97.78 5.70 0.80 30.59 71.67
EtaInv (1) 29.49 67.67 0.62 97.78 5.99 0.83 31.98 69.71
EtaInv (2) 29.71 67.88 0.92 98.89 7.82 1.05 42.91 52.07
EtaInv (3) 29.92 68.86 1.19 97.78 8.88 1.19 48.30 42.22

Table 11: Reconstruction benchmark of inversion methods on the COCO training
set [7] (left). Inference time of inversion methods (right). Our method matches VAE
reconstruction metrics, thus demonstrating perfect reconstruction. Additionally, our
inference time is only slightly higher than DDIM Inversion for inversion (Inv.) and
the three editing methods PtP, PnP, and MasaCtrl. Inference time is measured on an
NVIDIA V100.

Reconstruction error Inference time (s)

Method PSNR ↑ LPIPS ↓ SSIM ↑ Inv. PtP PnP Masa

DDIM Inv. [27] 14.3 0.500 0.469 22.1 23.5 19.3 25.6
Null-text Inv. [19] 26.3 0.072 0.745 200.9 202.7 198.4 204.6
NPI [18] 24.0 0.147 0.697 22.1 23.6 19.3 25.6
ProxNPI [10] 26.6 0.067 0.751 25.7 27.3 22.8 29.3
EDICT [30] 26.6 0.067 0.751 44.0 53.9 45.1 55.8
DDPM Inv. [12] 26.6 0.067 0.751 32.1 41.0 35.5 43.0
Direct Inv. [13] 26.6 0.067 0.751 22.1 23.5 19.3 25.6
Eta Inversion 26.6 0.067 0.751 22.8 24.3 19.9 26.4
Eta Inversion w/o mask 26.6 0.067 0.751 22.3 23.9 19.4 25.9

VAE Reconstruction 26.6 0.067 0.751 - - - -
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“a kitten walking through the grass” → “a duck walking through the grass”

“painting of a shepherd dog sitting in a laundry room next to a washing machine” →
“painting of a poodle dog sitting in a laundry room next to a washing machine”

“a detailed oil painting of a calm beautiful woman with stars in her hair” → “a detailed
oil painting of a laughing beautiful woman with stars in her hair”

“a cat sitting next to a mirror” → “a tiger sitting next to a mirror”

“a woman in a black bikini top and yoga pants is meditating” → “a wax statue of
woman in a black bikini top and yoga pants is meditating”

“a slanted mountain bicycle on the road in front of a building” → “a slanted rusty
mountain bicycle on the road in front of a building”

Source DDIM Inv [27] NTI [19] EDICT [30] Dir. Inv. [13] EtaInv (2)

Fig. 5: Additional qualitative results for PtP editing.
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“a man wearing a tie” → “a man wearing a black and yellow stripes tie ”

“a woman in front of a glowing yellow light” → “a woman riding a lion in front of a
glowing yellow light”

“a basket of books and a cup” → “a basket of books and a candle”

“two red and white toy gnomes are sitting on a snow covered surface” → “two blue
and green toy gnomes are sitting on a snow covered surface”

“a view of the mountains covered in snow” → “a view of the mountains covered in
leaves”

“a boat is docked on a lake in the heavy fog” → “a boat is docked on a lake in the
sunny day”

Source DDIM Inv [27] NTI [19] EDICT [30] Dir. Inv. [13] EtaInv (2)

Fig. 6: Additional qualitative results for PnP editing.
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“the christmas illustration of a santa’s laughing face” → “the christmas illustration of
a santa’s angry face”

“an illustration of a cat sitting on top of a rock” → “an illustration of a bear sitting on
top of a rock”

“a cat standing on fence” → “a cat wearing hat standing on fence”

“a glass of red drink on the beach” → “a glass of red wine on the beach”

“a painting of a cabin in the snow with mountains in the background” → “a painting of
a car in the snow with mountains in the background”

“a lion in a suit sitting at a table with a laptop” → “a lion in a suit sitting at a table”

Source DDIM Inv [27] NTI [19] EDICT [30] Dir. Inv. [13] EtaInv (2)

Fig. 7: Additional qualitative results for MasaCtrl editing.
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“a collie dog is sitting on a bed” → “a garfield cat is sitting on a sofa”

“a living room with a couch and a table” → “a watercolor of a living room with a
couch and a table”

“a black and white drawing of a woman with long hair” → “a colorful and detailed
drawing of a woman with long hair”

“a woman with black hair and red lipstick holding a flower” → “a woman with silver
hair and red lipstick holding a flower”

“a dry tree in the wild” → “a blooming tree in the wild”

“a little girl wearing sunglasses and a gray shirt leaning against a wall” → “a little girl
wearing sunglasses and a gray dress leaning against a wall”

Source DDIM Inv [27] NTI [19] EDICT [30] Dir. Inv. [13] EtaInv (3)

Fig. 8: Additional qualitative results for EtaInv (3) PtP editing.
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“a painting of a rat with red eyes” → “a painting of a pig with red eyes”

[0.0, 0.0] [0.2, 0.0] [0.4, 0.0] [0.6, 0.0] [0.8, 0.0] [1.0, 0.0]

[0.2, 0.2] [0.4, 0.2] [0.6, 0.2] [0.8, 0.2] [1.0, 0.2]

Source [0.4, 0.4] [0.6, 0.4] [0.8, 0.4] [1.0, 0.4]

Fig. 9: Impact of η on image editing. We use a different linear η function for each
generation by linearly interpolating η on the interval [η(T ), η(0)]. Increasing η leads to
better target prompt alignment while sacrificing background similarity. We disabled
masking for demonstration purposes.
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