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Fig. 1: Eta Inversion for real image editing. We design an optimal time- and region-
dependent 1 function for DDIM sampling [39] for superior results. In the example above,
existing methods fail to change the torch into a flower or do not preserve the structure,
while Eta Inversion creates various plausible results. Tested with PtP [13].

Abstract. Diffusion models have achieved remarkable success in the
domain of text-guided image generation and, more recently, in text-guided
image editing. A commonly adopted strategy for editing real images
involves inverting the diffusion process to obtain a noisy representation
of the original image, which is then denoised to achieve the desired
edits. However, current methods for diffusion inversion often struggle to
produce edits that are both faithful to the specified text prompt and
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closely resemble the source image. To overcome these limitations, we
introduce a novel and adaptable diffusion inversion technique for real
image editing, which is grounded in a theoretical analysis of the role of n
in the DDIM sampling equation for enhanced editability. By designing a
universal diffusion inversion method with a time- and region-dependent
71 function, we enable flexible control over the editing extent. Through a
comprehensive series of quantitative and qualitative assessments, involving
a comparison with a broad array of recent methods, we demonstrate the
superiority of our approach. Our method not only sets a new benchmark
in the field but also significantly outperforms existing strategies.
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1 Introduction

Text-guided image synthesis [5,6, 18,26, 33,34, 38] is one of the essential tasks
in computer vision due to its enormous potential for design and art industries.
Recent breakthroughs in diffusion models [9, 14,31, 36, 39] drastically increased

text-to-image generation performance. Due to the success of diffusion-based
image generation, text-guided image editing with diffusion models is also gaining
interest in the research community [2,8,13,22,29,41]. However, editing a real
image is challenging and existing methods still struggle to produce consistent
high-quality results, yet insufficient to the industry’s high demand and interest.

Given a source image, a source prompt describing that image, and a target
prompt describing the desired output image, it is possible to invert the diffusion
process for the source image and edit the inverse latent according to the target
prompt. Similar to GAN inversion [35,44], diffusion inversion seeks to identify
the latent noise corresponding to a particular image. Unlike GANs [11], which
require a single generation step, diffusion models require many iterative steps,
making inversion more challenging.

Despite recent advancements in diffusion inversion [24, 39, 42] and editing
methods [2,13,41], proper quantitative evaluation is lacking, particularly studies
on all combinations of these techniques. We address this gap by reformulating and
integrating existing strategies within a single framework, categorizing existing
methods into two distinct groups: perfect reconstruction methods and imperfect
reconstruction methods. Using this framework, we conduct a thorough evaluation
of all methods under consistent and fair conditions, employing a variety of metrics.

Unlike previous methods that use a fixed n value, such as 0 or 1, in the
DDIM [39] sampling equation, our research explores whether a dynamic 7 function
is superior. Consequently, we analyze the role of 7 in diffusion inversion and
propose Eta Inversion, a perfect reconstruction method. Eta Inversion utilizes a
time- and region-dependent 7 to introduce optimal noise during the backward
process, achieving better editing diversity. To our knowledge, we are the first to
investigate an optimal time-dependent 7 function to balance editing extent and
source image similarity for improved performance. To prevent modifications to
the background of the image, we make 7 region-dependent, applying 1 > 0 only
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to specific object regions based on their cross-attention map. Comprehensive
experiments validate our findings, demonstrating state-of-the-art performance
both quantitatively and qualitatively. Our contributions are:

— We formulate a generalized framework for diffusion inversion methods.

— We formally explore the role of 7 in diffusion inversion and real image editing.

— We design a time- and region-dependent 7 function to inject optimal real
noise and achieve state-of-the-art performance in diffusion inversion.

— We provide an extensive benchmark for diffusion inversion by evaluating
existing inversion methods using various image editing methods.

2 Related Work

2.1 Diffusion Models for Image Generation and Editing

Diffusion models offer more stable training and better diversity than GANs [11],
making them a common choice for image generation. Denoising Diffusion Prob-
abilistic Models (DDPM) [14] showcased the capabilities of diffusion models
but require about 1000 inference steps for quality images. Denoising Diffusion
Implicit Models (DDIM) [39] improve this by reducing inference steps to 50,
removing stochastic elements from DDPM sampling. Although rooted in Vari-
ational Inference, diffusion models can also be viewed as score-based models
using Stochastic Differential Equations (SDEs) [10]. Latent Diffusion Models [36]
perform denoising in compressed latent space, greatly reducing inference cost and
time. Stable Diffusion [36] has become a standard for text-to-image generation
due to its public availability and impressive performance.

Text-guided image editing methods [1,2,8,13,29,41] aim to align an image
with a target prompt while maintaining its original structure. We focus on
methods that require no additional training or optimization for better flexibility.
Prompt-to-Prompt (PtP) [13] edits images by injecting cross-attention maps from
the source into the target prompt’s denoising process. Similarly, Plug-and-Play
(PnP) [41] not only injects cross-attention maps but also integrates spatial features.
Furthermore, MasaCtrl [2] focuses on motion editing and employs self-attention
maps instead of cross-attention maps.

2.2 Diffusion Inversion Methods

To perform real image editing, a noisy image or latent representation must
first be obtained via diffusion inversion. DDIM Inversion [39] achieves low error
reconstruction in an unconditional image generation setting, but classifier-free
guidance [15] leads to significant differences from the input image.

To address this, Null-text Inversion (NTI) [24] optimizes the null-text embed-
ding @; for each timestep, reducing the inversion gap but adding computational
overhead. Negative Prompt Inversion (NPI) [23] replaces the null-text with
the source text embedding, providing a fast, inference-only inversion pipeline.
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ProxNPI [12] enhances NPI with regularization and reconstruction guidance,
improving accuracy with minimal cost. EDICT [12] achieves exact inversion via
an auxiliary diffusion path but doubles inference time. DDPM Inversion [16]
and CycleDiffusion [43] use stored variance noise from the forward path for
exact inversion, but the non-normal distribution of this noise affects editing
performance. Direct Inversion [17] preserves similarity to the source image by
replacing latents during denoising with those from the DDIM Inversion forward
path, though this may limit the extent of editing. They also provided a dataset
for editing evaluation.

Unlike previous methods that use a static n value, our contribution lies in
enhancing editability by designing an optimal dynamic 7 function, an aspect not
previously explored. Furthermore, we are the first to employ real noise injection
for real image editing. This innovation allows us to optimally add real Gaussian
noise during editing with minimal inference overhead, achieving balanced and
precise image editing.

Table 1: Table of notation.

timestep ¢ : noise prediction €10 : moise prediction network | ¢¢ : marginal distribution of Eq. (2)

sampling 81,0+ score estimation network | piy,: marginal distribution of Eq. (6)
editing «; : noise schedule M, : attention map

forward path ar Hf:‘ @; w : standard Wiener process (forward)

: backward path €ada: additional noise ~ N'(0,1) | @ : standard Wiener process (backward)

: reconstructed {}

3 Preliminaries

3.1 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) [14] are generative models
consisting of a noising forward path and a denoising backward path. During
the forward path, Gaussian noise € is gradually added to the sample data point.
DDPM’s backward path consists of a noise prediction step and a sampling step.
Denoising Diffusion Implicit Models (DDIM) [39] are an extended version of
DDPM which escape from the Markovian forward process. The general form of
the sampling function of DDIM is given as below where €, is the estimated noise
at timestep ¢ for latent x;, computed as €; < €, o(x¢):

Sample(xy, €,1m:) = /1/ap(xs — V1 — avey) + /1 — ay_1 — o€ + 01€aaqa. (1)

o; is defined as o; = nt\/(l —a;—1)/(1 764,5)\/1 —ay/a—1, and g, > 0 is a
controllable hyperparameter. DDPM is a special case of DDIM where 7, = 1
for all t, whereas DDIM sampling uses n; = 0, making the sampling procedure
deterministic. For conditional image generation such as text-to-image genera-
tion, the noise estimation network receives an additional conditional input ¢ as
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€1,9(x, ¢). However, it has been empirically shown that the above conditioning is
insufficient for reflecting text conditions, so classifier-free guidance [15] is usually
used to amplify the text condition as €9 = w - € 9(x¢, c) + (1 — w) - € (x4, D),
where w is the guidance scale parameter and & is the empty prompt. We
can summarize the text-to-image generation procedure as Noise Prediction
€ « €0(xy,c,d,w = 7.5) and Sampling x,_1 < Sample(xz, €, = 0) and
simplify them as x;_1 < DDIM(ax;, ¢, J, w,n;).

3.2 Score-based Models

Eq. (2) and Eq. (3) are the forward and backward SDE of score-based models
corresponding to the forward and backward path of DDPM [40]. Eq. (4) is
the probability flow ODE and corresponds to DDIM (5 = 0) sampling [39, 40].
Eq. (5) is the extended version of the backward SDE which has the same
marginal distribution ¢; for any n > 0, and DDIM sampling (Eq. (1)) is a
numerical method of Eq. (5) [46]. Similarly, we can train a score function
sio(x) = —€r9(x)/V/1—ar = Vzlogg(x) and apply a numerical method to
Eq. (6).

1dlog oy
2 dt

gt =

1
dz = fx dt +g; dw, (ft: d Ogo‘t)

dt (

x = [fix — g7V log q;(x)] dt +g; dw (
da = [fix — 0.597 V4 log q; ()] dt (4

x = (

z = (

fre —0.5(1+ n7) g7V log q¢ ()] dt +n.g; Ao

d frex —0.5(1 + nf)gfsw(m)] dt +n;g; dw

3.3 DDIM Inversion

DDIM Inversion [39] is an important technique for real image editing and can
be derived from DDIM (n = 0) sampling (Eq. (1)) by approximating €; ~ €,41:

Tip1 =/ 64t+1/64t17t + \/@t+1(\/1/dt+l -1 \/1/07t — 1>€t- (7)

DDIM Inversion can be written as @41 < DDIM;yy (x4, ¢, ¥, w). With w =1, it
encodes latent noise with negligible reconstruction error, but large w values (e.g.,
w = 7.5 in Stable Diffusion) result in significant error accumulation, leading to
two issues:

Reconstruction The reconstructed image from the inverted noise differs from
the source image and fails to maintain the source’s features during image editing.
Editability The inverted noise deviates from a Gaussian distribution, causing
poor editing results and unexpected behavior.
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4 Generalized Framework

4.1 Existing Text-guided Image Editing Methods

We focus on training-free image editing using diffusion inversion for real image
editing. We generate an edited image with a pre-trained text-to-image model €y
like Stable Diffusion and adjust certain input parameters for high-quality editing
while maintaining the source image’s structure. The process involves denoising
with both the source and target prompts. By modifying mgt) and ¢®) of the
target process using information from the source branch, it is possible to steer
the editing process for better results (notation in Tab. 1):

2« DDIM( 2", c® @, w; M ). ®)

Source and target paths only differ in the modified input. In practice, existing
methods like PtP [13], MasaCtrl [2] and PnP [41] inject U-Net’s [37] attention
maps of the source inference process into the target inference process.

4.2 Inversion and Real Image Editing

To perform real image editing, we need to acquire the inverted source noise
wgf ) from the source image w((f). Applying DDIM Inversion (forward path) can
yield :I:gf ), but with considerable reconstruction errors as discussed in Sec. 3.3.
Therefore, diffusion inversion methods aim to enhance the forward path for
a precise and editable acgf ) and adjust the backward path to ensure accurate
reconstruction and optimal editing. Details of existing inversion methods are
provided in the supplementary materials.

Forward Path of Source (Inversion) The forward path can be expressed as

wg_)l — DDIMinV(:cgs)*,c(s), J,w ) with @ or w usually modified. The goal is
to emulate the ideal forward path, which is unknown in practice. Many methods
use DDIM;, (w = 1) to ensure wgf ) aligns well with a Gaussian distribution for
better editability.

Backward Path of Source and Target (Reconstruction and Editing)
The backward process aims to align with the ideal (unknown) or actual forward
path. Existing methods focus on matching the actual forward path by controlling
@ or w like NTT [24] and NPT [12,23]. When editing images, two backward paths
are used: one for the source prompt and one for the target prompt, written as:

z*) « DDIM(z(®,c®, @,w ), (9)

2« DDIM( 2V ™ | Bw . M), (10)
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Inversion methods strive to reduce the gap between wgs'_)l and azgs_)l, but perfect

reconstruction remains challenging.

Perfect Reconstruction Methods To achieve perfect source reconstruction, in-
termediate latents from the forward path can be directly reused for image editing.
By replacing the current latent in the backward source path with the correspond-

ing latent from the forward path at each timestep by setting mgs_)l — mii)l ,

we ensure that the backward source path precisely matches the forward path.
This alignment guarantees perfect reconstruction, and is employed by CycleDif-
fusion [43], DDPM Inversion [16], and Direct Inversion [17].

5 Theoretical Analysis of the Role of 7,

Diffusion inversion demands accurate source image reconstruction and editable tar-
get images (Sec. 3.3). Existing perfect reconstruction inversion methods (Sec. 4.2)
satisfy the former but lack editability and often yield images too similar to the
source. To enhance editability, we explore improving these methods without
compromising diffusion model properties.

Motivation Using deterministic DDIM sampling, the source and target backward
paths differ only in the estimated noise per timestep, leading to limited editing
and target images resembling the source. We aim to enable the target path to
diverge from the source path by introducing a stochastic term (additional noise)
using non-zero 7, DDIM sampling. In particular, we investigate the optimal
design of a function for 7, to achieve superior performance.

Proposition 1 (Proof in Supp.). Let§,, = ||a:§8_)1 - DDIM(m,(Et)/,c(t),m)||2
be the source-target branch distance at timestep t. If 6o is small, there exists an
ne > 0 that satisfies Ee,,,[05,] > 0.

Proposition 1 indicates that introducing a non-zero n; can encourage the target
path to escape from the source path without losing the property of diffusion
models. We further study the role of 7; theoretically to address two major
problems for real image editing: (i.) inaccurate inversion (pgf) # pgf)/) and
(ii.) inaccurate editing (s%(x) # Vg log qt(t)(x)). We use the continuous-time
framework of score-based models and measure the sample quality of generation
(editing) with KL Divergence Dxkr..

5.1 Inaccurate Inversion (pf_,f) # p;f)’)

As diffusion inversion methods fail to obtain the ideal inverted pgf), the image

generation (editing) procedure starts from an inaccurately inverted p(Tt) .
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Proposition 2 (Proof in Supp.). Under mild conditions (see supp.), Eq. (11)
is satisfied, wherein Dyisher denotes the Fisher Divergence.

T
D 116P) = D (0 1| p2) — / 202 Dpianee (0 | ) At (11)

Proposition 2 shares a similar concept to [21,27], which is generalized to Eq. (6). As

fOT nfngFiSher(pgt) I pgt)) dt > 0, we can reduce D, (p(()t) I pét)) by applying n;

with fOT ne dt > 0 (SDE) rather than setting ; = 0 for all ¢ (ODE). Proposition 2
indicates that introducing a non-zero 7; can improve the backward path of
inaccurate diffusion inversion.

5.2 Inaccurate Editing (sgg () # Vg log qgt) (x))

If we would assume that the score estimation network is perfect, such that
s(fg (x) = Vg log qt(t)(x), the choice of 7, would not change the marginal distri-

t
bution as p,(gf,)h = qt(t) [3]. However, since we consider training-free image editing

methods, and reuse the score estimation network from a pre-trained image gener-
ation model, a non-negligible score estimation error is introduced. As a result,
1 impacts the marginal distribution and good performance cannot be guaran-
teed by setting 1 = 0 [3]. Therefore, it is beneficial to optimize 7, for superior
performance.

Proposition 3 (Proof in Supp.). Assuming mild conditions (see supp.), if
the score estimation function s%(x) undergoes perturbations only near timestep
T and near timestep 0, there exist a timestep T, and a timestep Ty, along with

a large constant Neonst > 0, such that DKL(pét) I qét)) becomes reduced when
employing n: as Eq. (12), in comparison to nz = 0 for all t or 9 = Neonst for all t.

Tlconst it T Z t 2 Ta
m = nconst(t - Tb)/(Ta - Tb) if Ta >t 2> Tb (12)
0 ifTy>t>0
Proposition 3 is inspired by several findings of [3]. Even though we need to make

assumptions for the score estimation function for our theory, it reveals the insight
that decreasing n during the backward process can better approximate the true
target image distribution and lead to better editing results in practice.

6 Proposed Inversion Method

In this section, we discuss how to design an optimal n function based on our
theoretical findings. Our full Eta Inversion algorithm is depicted in Algorithm 1.
Fig. 2 provides an overview of our method.
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Fig. 2: Eta Inversion for real image editing. We design an optimal time- and region-
dependent 7 function to inject real noise in the target path to improve editability.

6.1 Exploring the Optimal  Function

Time-dependent 1 Image editing aims to modify high-level features (e.g.,
objects) while preserving low-level features (e.g., background details). High-
level features are generated early (near timestep T'), and low-level features are
generated later (near timestep 0) [14,39,45]. Therefore, we employ a larger 7,
value initially to edit high-level features and a smaller 7; value later to maintain
finer details, aligning with Propositions 1 and 3 by progressively reducing 7, for
smaller timesteps.

Region-dependent n (Masked 1) To improve editing, we employ a region-
dependent 7 inspired by existing editing methods [2, 13,41] that use attention
maps to propagate information from the source to the target path. Concurrent
with our method, DiffEditor [25] also employs a region-dependent 7 but requires
an input mask. Our method, on the other hand, uses cross-attention maps to
selectively apply a non-zero n to targeted regions without requiring external
input. By leveraging the cross-attention map for an object and applying noise
(n > 0) only where the map exceeds a threshold (Fig. 2), we can edit the object
while preserving the background. Adjusting the threshold changes the extent of
the editing by modifying the region addressed.

6.2 Improving the Injected Noise €,4q

Although methods like CycleDiffusion [43], DDPM Inversion [16], and Direct
Inversion [17] ensure perfect reconstruction by closing the gap between the forward

and backward source path with :cg‘i); — wgi)l , they can produce unexpected

editing results if the distance ||.7;§S_)I - DDIM(mES)/, c®), ;)| is too large. This
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(a) Histograms of noise '3} for one sample im-  (b) The noise standard deviation o(e;), across
age from PIE-Bench [17] at ¢ = 1. Only Eta timesteps, averaged over 100 images. Only Eta
Inversion shows a true Gaussian shape with a Inversion consistently maintains o = 1 for all

standard deviation (o) of 1. timesteps.

Fig. 3: Noise distribution of DDPM Inversion and Eta Inversion. Eta Inversion applies
unit Gaussian noise, unlike DDPM Inversion, which applies noise such that z; — z7 = 0.

issue arises because such compensation violates the properties of diffusion models.
Specifically, CycleDiffusion [13] and DDPM Inversion [16] calculate €,qq4 to meet
the condition wgi)l = DDIM(wgs) e, n:). However, this €,q4 deviates from a
Gaussian distribution, which adversely impacts image generation and editing.

Our approach also employs the compensation strategy used in [16,17,43] to
ensure perfect reconstruction but improves on it by sampling €,qq directly from
a Gaussian distribution (Fig. 3). To minimize the forward-backward gap and
reduce the necessary compensation, we sample €,qq multiple times and select the
noise that minimizes this gap using arg min ||w§i)z - DDIM(:cgs)/, c®) ny; €aad)||
(Algorithm 1 Backward L. 5, 6).

Algorithm 1 Eta Inversion

Input: = Backward:

1: initialize acgf)/7a3§f>/ — iltgf)*

2: define time- and region-dependent 7
3: fort=T,T—1,...,1do

4 2] (€aaq) = DDIM(

2, @) w = 7.5; €aqa)

Output: reconstructed a:(()s)/,
edited a:(()t)

Forward:

()" (s)

1: initialize x;’ <+ x; 5:  {e} + sample noise n times ~ N(0, )
2: fort=0,1,....,7 —1do : (s)* (s)’
L 6:  €min ¢ argmin_ oz —2,” (€aad)|
3 2()) < DDIMj( aaa€le) T
m,ﬁ” e w=1) 7 :B,Ei)l — :L’,ESJI
4f end for &) ()" (s)* 8 ) « DDIM(z(" , ™, ni,w = 7.5; €min)
5: return x;’ , Ty q,..., T, 9: end for

’ t)/
el

10: return x (satisfying ac(()s)/ = m((f))
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Table 2: Evaluation results of inversion methods with various editing methods on PIE-
Bench. Our method achieves the highest CLIP scores in most cases while maintaining
relatively low structural similarity scores. Etalnv (1) and Etalnv (2) employ a
region-dependent 7, which further helps improve structural similarity compared to their
versions without mask (w/o mask).

Metric (x10?) | CLIP similarity 1 CLIP accuracy T DINO | LPIPS | BG-LPIPS |

Method ‘ PtP PnP Masa PtP PnP Masa ‘ PtP PnP Masa PtP PnP Masa PtP PnP Masa
DDIM Inv. [39] 30.99 29.38 30.74 94.57 85.57 95.00 ‘ 6.94 6.11 7.55 46.65 40.84 47.68 24.97 20.84 25.37
Null-text Inv. [24] 30.73 30.75 30.07 92.57 90.43 93.00 1.24 327 449 15.13 30.51 25.02 5.69 14.17 11.92
NPT [23] 30.49 30.73 29.54 92.71 91.29 87.29 | 2.03 2.67 4.51 19.28 26.18 26.03 824 11.57 12.41
ProxNPIT [12] 30.31 30.54 29.49 92.43 90.71 88.14 | 1.92 229 3.92 17.69 21.76 2299 7.76 9.57 10.99
EDICT [12] 29.28 24.69 29.68 92.71 63.43 9329 0.41 426 0.79 6.65 30.22 859 3.10 14.96 4.20
DDPM Inv. [16] 29.43 30.26 29.57 92.71 94.86 93.00 0.42 1.04 0.75 6.87 1250 8.65 3.27 584 4.12
Direct Inv. [17] 30.92 31.32 30.37 94.71 95.14 94.57 | 1.28 227 4.32 1579 25.59 2691 6.33 12.98 13.76
Eta Inversion (1) 31.01 31.33 30.39 95.00 94.86 93.14 | 1.34 234 3.66 16.58 27.33 23.12 6.57 14.05 11.57
Eta Inversion (1) w/o mask | 31.00 31.34 30.37 95.29 95.00 92.71 | 1.37 237 3.69 16.85 27.68 23.40 6.74 14.33 11.79
Eta Inversion (2) 31.25 31.63 30.62 9543 9529 93.86 | 1.70 3.40 5.24 21.14 36.59 33.07 8.00 18.72 16.64
Eta Inversion (2) w/o mask | 31.27 31.62 30.62 95.43 95.86 94.14 | 1.85 3.58 546 22.77 3843 34.81 9.03 20.19 18.03

Table 3: Evaluation results on the change-style subset of PIE-Bench. Etalnv (3) is
optimized for style transfer and uses a larger n to significantly outperform previous
methods in terms of CLIP similarity. Since style transfer requires changing the whole
image, EtaInv (3) does not use ) masking.

Metric (x107) | CLIP similarity t ~ CLIP accuracy 1 DINO |} LPIPS |

Method | PtP PnP Masa PtP  PnP Masa | PtP PnP Masa PtP  PnP Masa
DDIM Inv. [39] 31.00 30.21 30.67 83.75 73.75 86.25| 6.47 6.09 6.90 46.76 42.63 47.42
Null-text Tnv. [24] |32.06 32.79 29.97 88.75 91.25 86.25| 1.60 3.98 4.07 19.60 37.26 25.81
NPI [23] 31.44 3237 29.60 9250 90.00 75.00 | 222 3.30 4.04 22.18 32.26 27.37
ProxNPT [12] 30.88 31.66 29.38 86.25 85.00 80.00 | 2.02 252 3.36 19.18 2547 22.68
EDICT [12] 29.45 2532 29.93 91.25 58.75 90.00 | 041 4.22 0.73 6.68 3111 857
DDPM Inv. [16] 29.78 30.64 29.78 90.00 90.00 90.00 | 043 0.97 0.66 6.99 1253 8.50
Direct Inv. [17] 3171 3251 30.37 91.25 93.75 85.00 | 1.64 247 3.79 19.87 27.22 26.56

Eta Inversion (3) | 32.85 33.12 30.82 90.00 86.25 86.25| 4.19 5.16 6.69 47.76 52.66 46.17

7 Experiments

7.1 Setup

We unify and re-implement existing diffusion inversion methods based on dif-
fusers [30] and opt for Stable Diffusion v1.4 [36] with T = 50 steps, using default
settings for all methods. For image editing, we apply PtP [13], PnP [11], and
MasaCtrl [2] on the dataset PIE-Bench [17]. Evaluating image editing perfor-
mance is challenging due to the lack of clear metrics. Prior works [17,24, 41]
focused on two factors: (i.) text-image alignment, indicating the output image’s
faithfulness to the target prompt; and (ii.) structural similarity, showing how
well the output image preserves the source image’s structure.

For text-image alignment we use: (i.) CLIP similarity: the dot product of
normalized CLIP [32] embeddings of the target prompt and the output image; and
(ii.) CLIP accuracy: ratio of output images where the text-caption similarity
with the target prompt is higher than with the source prompt [29]. Text-caption
similarity [7] is defined as the CLIP similarity between the target prompt and
the BLIP-generated [19] caption of the output image. For structural similarity we
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“an orange cat sitting on top of a fence” — “a black cat sitting on top of a fence”
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“a woman in a jacket standing in the rain” — “a woman in a blouse standing in the rain”

Source DDIM Inv. NTI EDICT Direct Inv. Etalnv (1) Etalnv (2)

Fig. 4: Image editing qualitative results created with PtP [13] and various inversion
methods. Our method, particularly EtaInv (2), outperforms existing methods and
edits the image to a greater degree. We preserve the structure of the source image while
correctly editing the image to match the target prompt.

use: (i.) DINOv1 ViT [4]; (ii.) LPIPS [417]; and (iii.) BG-LPIPS [17], which
computes LPIPS only on the background part (mask is provided by PIE-Bench).

We present our results on the complete PIE-Bench dataset, as well as on the
change-style subset of PIE-Bench, which focuses exclusively on style transfer. In
general, we found that a decreasing linear 77 schedule improves results, and that
a larger n results in more editing, which aligns with our findings. Additionally, a
larger noise sample count n achieves better structural similarity scores and more
stable editing overall. We propose three distinct linear 7 functions, each optimized
for a specific objective: structural similarity (Etalnv (1)), target prompt alignment
(Etalnv (2)), and style transfer (Etalnv (3)). The 7 functions used, additional
qualitative and quantitative results, and comprehensive hyperparameter grid
search results are included in the supplementary materials.

7.2 PIE-Bench Results

Tab. 2 presents our results on PIE-Bench with Etalnv (1) and (2). For PtP,
our method balances text-image alignment and structural similarity, achieving
the highest CLIP text-image score and a low structural similarity score. PnP
also shows our method as the best in CLIP similarity and accuracy. While our
structural metrics are inferior, a too low score may indicate insufficient editing
(like EDICT’s PtP result in Fig. 4). Lastly, with MasaCtrl, we achieve the second-
best CLIP similarity but worse structural similarity compared to other techniques.
Fig. ba visualizes the trade-off between text-image and structural similarity for
PtP (see supplementary for PuP and MasaCtrl).
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DINO (x10%) “car” — “motorcycle”

o [P DDIM Inv.

NPI

2 ProxNPIe * “Etalnv (¢
. NI | | a3y )
EDICT DDPM Inv. Dir. Inv.
20.5 30 30.5 31
CLIP similarity (x10%)

(a) Visualization of CLIP text-image metrics Source NTI Dir. Inv. Etalnv
(higher is better) and DINO structural similarity
metrics (lower is better) on PIE-Bench for PtP. (b) Failure cases of our proposed method.

Fig. 5: CLIP-DINO trade-off plot and failure cases.

Fig. 4 showcases qualitative results for the top-performing methods. Our
proposed Eta Inversion demonstrates superior editing performance. Notably,
Etalnv (2), which employs a higher 1, promotes more editing. Furthermore,
utilizing a region-dependent 7 enhances structural similarity metrics by preserving
more background (Fig. 6) while introducing a slight decrease in CLIP metrics.

Style Transfer Results Style transfer requires changing the whole image
to a higher degree than other tasks (e.g., object replacing). Thus, we disable
7 masking and increase 7 to introduce more noise to further enlarge the gap
between the source and target branch for a better editing effect. Tab. 3 shows
that Etalnv (3) significantly improves CLIP similarity over previous methods,
which we attribute to the injected real noise. Although DINO and LPIPS scores
suggest underperformance, these metrics are less useful for style transfer, which
requires complete image editing. Fig. 7 further demonstrates that Etalnv (3)
achieves more impactful and faithful style transfer.

“photo of a goat and a cat standing ...” — “photo of a horse and a cat standing ...”

m

i
Y

Source DDIM Inv. Direct Inv. EtaInv (no mask) Etalnv (mask)

Fig. 6: Effectiveness of a region-dependent (masked) n function. Only Etalnv (mask)
preserves the cat in the original image.
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“a kitchen” — “an oil painting of ...”

Source DDIM Inv NTI EDICT Direct Inv  Etalnv (2) Etalnv (3)

Fig. 7: Style transfer results created with PtP [13] and various inversion methods. Eta
Inversion (3) with a larger 7 function improves style transfer.

8 Limitations

Some image edits yield unrealistic outcomes or insufficient changes, despite
preserving the original structure (Fig. 5b). Adjusting the seed and 7 function can
improve results, but no universal setting works for every edit. Future efforts will
focus on automating the optimal 7 selection. Furthermore, existing metrics for
evaluating image editing are limited, as none measure both structural similarity
with the source image and faithfulness to the target prompt. We propose exploring
Multimodal Large Language Models [10,20, 28] for more effective image editing
assessment in future research.

9 Conclusion

In this paper, we propose a unified framework for diffusion inversion and introduce
Eta Inversion, a novel approach for real image editing. Our method incorporates
real noise into the editing process by utilizing an optimally designed 7 function
within DDIM sampling for faithful image editing. Through detailed comparison
and analysis of the role of 1, we demonstrate state-of-the-art performance in
real image editing across various metrics, offering both compelling qualitative
outcomes and precise editing control.
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