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Abstract. Compositional zero-shot learning (CZSL) task aims to recog-
nize unseen compositional visual concepts, e.g ., sliced tomatoes, where
the model is learned only from the seen compositions, e.g ., sliced
potatoes and red tomatoes. Thanks to the prompt tuning on large
pre-trained visual language models such as CLIP, recent literature shows
impressively better CZSL performance than traditional vision-based meth-
ods. However, the key aspects that impact the generalization to unseen
compositions, including the diversity and informativeness of class context,
and the entanglement between visual primitives, i.e., state and object, are
not properly addressed in existing CLIP-based CZSL literature. In this pa-
per, we propose a model by prompting the language-informed distribution,
aka., PLID, for the CZSL task. Specifically, the PLID leverages pre-trained
large language models (LLM) to (i) formulate the language-informed
class distributions which are diverse and informative, and (ii) enhance
the compositionality of the class embedding. Moreover, a visual-language
primitive decomposition (VLPD) module is proposed to dynamically
fuse the classification decisions from the compositional and the primitive
space. Orthogonal to the existing literature of soft, hard, or distributional
prompts, our method advocates prompting the LLM-supported class
distributions, leading to a better zero-shot generalization. Experimental
results on MIT-States, UT-Zappos, and C-GQA datasets show the supe-
rior performance of the PLID to the prior arts. Our code and models are
released: https://github.com/Cogito2012/PLID.
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1 Introduction

Compositional visual recognition is a fundamental characteristic of human intel-
ligence [13] but it is challenging for modern deep learning systems. For exam-
ple, humans can easily recognize unseen sliced tomatoes after seeing sliced
potatoes and red tomatoes. Such a compositional zero-shot learning (CZSL)
capability is valuable in that, novel visual concepts from a huge combinatorial
semantic space could be recognized without “seeing” any of their training data.
For example, the C-GQA [28] dataset contains 413 states and 674 objects. This
implies a total of at least 278K compositional classes in an open world while only
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Fig. 1: Challenges of compositional recognition. (a) images of the same com-
positional class appear differently due to diverse visual backgrounds or foregrounds.
(b) red tomatoes and sliced tomatoes are visually correlated because 1) both are
tomatoes object, and 2) the object tomatoes is inherently entangled with the state red,
resulting in the need of primitive decomposition.

2% of them are accessible in training. Therefore, CZSL can significantly reduce
the need for large-scale training data.

Traditional vision-based methods either directly learn the visual feature of
compositions, or try to first decompose the visual data into representations
of simple primitives, i.e., states and objects, and then learn to re-compose the
compositions [1,7,10,15,24,27,28,37,47,51]. Thanks to the recent large pre-trained
vision-language models (VLM) such as CLIP [34], state-of-the-art CZSL methods
have been developed [6,21,30,42]. For instance, CSP [30] inherits the hard prompt
template of the CLIP, i.e., a photo of [state][object] where only the embeddings
of the states and objects are trained. The following methods [6,21,42] use soft
prompt introduced in CoOp [50], where the embeddings of the prompt templates
are jointly optimized, leading to a better CZSL performance. The impressive
performance of CLIP-based CZSL methods benefits from the sufficiently good
feature alignment between the image and text modalities, and the prompting
techniques for adapting the aligned features to recognizing compositional classes.

Despite the success of existing CLIP-based methods, we find several key
considerations to prompt the pre-trained CLIP for better CZSL modeling. First,
the diversity and informativeness of prompts are both important to distinguish
between compositional classes. CZSL can be treated as zero-shot learning on
fine-grained categories, which requires a fine-grained context to prompt the
CLIP model [22, 34]. However, to contextualize a class with fine granularity,
the hard prompt in [34] suffers from the heuristic design of prompt templates,
and a single prompt for each class lacks diversity to capture the intra-class
variance of visual data (Fig. 1a). Though the ProDA [22] proposes to learn a
collection of prompts that formulate class-specific distribution to address the
diversity, the lack of language informativeness in their prompts limits their
performance on fine-grained compositional categories. Second, the entanglement
between visual primitives, e.g . red and tomatoes in Fig. 1b, incurs difficulty in
learning decomposable visual representations that are useful for compositional
generalization [10,19], while such a capability is missing in [30,42]. Though the
more recent work [6, 21] learn to decompose the primitives and considers the
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re-composed compositional predictions, their language-only decomposition and
probability-level mixup potentially limit the generalizability in the open-world.

In this paper, we propose a novel CLIP-based method for the CZSL task by
prompting the language-informed distributions (PLID) over both the composi-
tional and primitive categories. To learn the diverse and informative textual class
representations, the PLID leverages off-the-shelf large language models (LLM) to
build the class-specific distributions and to enhance the class embeddings. Fur-
thermore, we propose a visual language primitive decomposition (VLPD) module
to decompose the image data into simple primitives for recognition of state and
objects. Eventually, the compositional classification is performed by fusing the
decisions from both the compositional and primitive spaces. The proposed PLID
shows state-of-the-art performance on CZSL benchmarks such as MIT-States [8],
UT-Zappos [44], and C-GQA [28].

Note that our method is orthogonal to the existing hard prompt [34], soft
prompt tuning [50], and prompt distribution learning [4, 12, 18, 22]. We advo-
cate prompting the distribution of informative LLM-based class descriptions.
From a classification perspective, this is grounded on the classification-by-
description [5, 25, 26, 43], that LLM-generated text enables more informative
class representations. Compared to the deterministic soft or hard prompt afore-
mentioned, our distribution modeling could capture the intra-class diversity
and inter-class correlation for better zero-shot generalization. Compared to the
existing prompt distribution learning approaches, the class context is more lin-
guistically interpretable and provides fine-grained descriptive information about
the class. Our method is also parameter-efficient without the need to optimize
a large collection of prompts. Specific to the CZSL task, the enhanced class
embeddings by LLM descriptions enable visual language primitive decomposition
and decision fusion in both compositional and primitive space, which eventually
benefits the generalization to the unseen.

In summary, the contributions are as follows. (i) We develop a PLID method
that advocates prompting the language-informed distribution for compositional
zero-shot learning, which is orthogonal to existing soft or hard prompting and
distributional prompt learning. (ii) We propose primitive decomposition with
stochastic logit mixup to fuse the classification decision from compositional and
primitive predictions. (iii) We empirically show that PLID could achieve superior
performance to prior arts in both the closed-world and open-world settings on
MIT-States, UT-Zappos, and C-GQA datasets.

2 Related Work

Prompt Learning in VLM. Vision-Language Models (VLM) such as the
CLIP [34] pre-trained on web-scale datasets recently gained substantial attention
for their strong zero-shot recognition capability on various downstream tasks.
Such a capability is typically achieved by performing prompt engineering to adapt
pre-trained VLMs. Early prompting technique such as the hard prompt in CLIP
uses the heuristic template “a photo of [CLS]” as the textual input. Recently,
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the soft prompt tuning method in CoOp [50], CoCoOp [49], and ResPT [36]
that uses learnable embedding as the textual context of class names significantly
improved the model adaptation performance. This technique is further utilized
in MaPLe [11] that enables multi-modal prompt learning for both image and
text. However, the prompts of these methods are deterministic and lack the
diversity to capture the appearance variety in fine-grained visual data, so they
are prone to over-fit the training data. To handle this issue, ProDA [22] explicitly
introduces a collection of soft prompts to construct the class-specific Gaussian
distribution, which results in better zero-shot performance and inspires the recent
success of PPL [12] in the dense prediction task. Similarly, the PBPrompt [18]
uses neural networks to predict the class-specific prompt distribution and utilizes
optimal transport to align the stochastically sampled soft prompts and image
patch tokens. The recent work [4] assumes the latent embedding of prompt input
follows a Gaussian prior and adopts variational inference to learn the latent
distribution. In this paper, to take the merits of the informativeness of hard
prompt and the diversity of distributional modeling, we adopt the soft prompt
to adapt the distributions supported by LLM-generated class descriptions.

Compositional Zero-Shot Learning (CZSL). For a long period, the CZSL
task has been studied from a vision-based perspective in literature. They either
directly learn the compositional visual features or disentangle the visual features
into simple primitives, i.e., states and objects. For example, [16,28,29] performs a
direct classification by projecting the compositional visual features into a common
feature space, and [1, 7, 10,19,20,27,51] decompose the visual feature into simple
primitives so that the compositional recognition can be achieved by learning to
recompose from the primitives. Though the recent large-scale pre-trained CLIP
model shows impressive zero-shot capability, it is found to struggle to work well
for compositional reasoning [14,23,45]. Thanks to the recent prompt learning [50],
the CZSL task has been dominated by CLIP-based approaches [6,17,21,30,42,48].
The common idea is to prompt the frozen CLIP model to separately learn
the textual embeddings of simple primitives, which empirically show strong
compositionality for zero-shot generalization. Different to [17,48] that develop
primitive adapters and [6, 21, 42] that use learnable prompts for deterministic
vision-language alignment, our method takes the benefit of learnable prompt and
LLM-generated text for distributional alignment, addressing the importance of
diversity and informativeness for zero-shot generalization.

3 Preliminaries

CZSL Task Formulation. The CZSL task aims to recognize images of a
compositional category y ∈ C, where the semantic space C is a Cartesian product
between the state space S = {s1, . . . , s|S|} and object space O = {o1, . . . , o|O|},
i.e., C = S × O. For example, as shown in Fig. 1, a model trained on images
of red apple and sliced tomatoes needs to additionally recognize an image
of sliced apple. In training, only a set of seen compositions is available. In
closed-world testing, the model needs to recognize images from both the seen
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compositions in C(s) and the unseen compositions in C(u) that are assumed to be
feasible, where the cardinality |C(s)∪C(u)| ≪ |C| since most of the compositions in
C are practically not feasible. In open-world testing, the model needs to recognize
images given any composition in C.

VLMs for CZSL. Large pre-trained VLMs such as CLIP [34] have recently
been utilized by CSP [30] for the CZSL task. The core idea of CSP is to represent
the text embeddings of states in S and objects in O as learnable parameters
and contextualize them with the hard prompt template “a photo of [s][o]” as
the input of the CLIP text encoder, where [s] ∈ S and [o] ∈ O. Given an image
x, by using the cosine similarity (cos) as the logit, the class probability of the
composition y is defined as pθ(y|x) = softmax(cos(v, ty)), where θ are the
|S| + |O| learnable parameters, v and ty are the image feature and class text
embedding, respectively.

In training, the prediction pθ(ŷ|x) is supervised by multi-class cross-entropy
loss. In CZSL testing, a test image is recognized by finding the compositional class
c ∈ C which has the maximum cos(v, tc). The CSP method is simple, parameters
efficient, and it largely outperforms traditional approaches. However, due to the
lack of diversity and informativeness in prompting, the zero-shot capability of
CLIP is not fully exploited by CSP for the CZSL task.

4 Proposed Method

Overview. Figure 2 shows an overview of the PLID. The basic idea is to use
LLMs to generate sentence-level descriptions for each compositional class, and
learn to prompt the class-wise text distributions (supported by the descriptions)
to be aligned with image data. Besides, we introduce visual language primitive
decomposition (VLPD) and stochastic logit mixup (SLM) to enable recognition
at both compositional and primitive levels. In testing, an image is recognized by
fusing the decisions from the directly predicted and the recomposed compositions.

4.1 Prompting Language-Informed Distribution

Motivation. To adapt the large pre-trained CLIP [34] to downstream tasks,
recent distributional prompt learning [4, 12, 18, 22] shows the importance of
context diversity by distribution modeling for strong generalization. Motivated by
the inherent fine-granularity of compositional recognition in the CZSL task, we
argue that not only the context diversity but also the context informativeness by
language modeling, are both important factors to adapt CLIP to the zero-shot
learning task. The insight behind this is that the sentence-level descriptions could
contextualize compositional classes in a more fine-grained manner than the prior
arts. Therefore, we propose to address the two factors by learning to Prompt the
Language-Informed Distributions (PLID) for the CZSL task.

Compositional Class Description. To generate diverse and informative
text descriptions for each compositional class, we adopt a similar way as [26]
by prompting an LLM that shows instruction-following capability. An example
below shows the format of the LLM instruction.
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compositional space

[1]The photo shows a red apple.
[2]A red apple is pictured.

…
[M]An apple in the photo is red. TF
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soft-prompted compositional embedding
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Fig. 2: Overview of PLID. The model is developed for the CZSL task by aligning the
semantics of image x (e.g ., image on the right) and compositional class y = (s, o) (e.g .,
“red apple”) via a frozen CLIP [34]. It constructs language-informed text distributions
in both compositional and primitive (attribute and object) spaces (middle part) by
soft prompting and LLM-generated class descriptions (left part). The features of the
image and text are enhanced by text and visual feature enhancement (TFE and VFE).
Eventually, the compositional decisions from the two spaces are fused as the prediction.

Keywords: sliced, potato, picture
Output: The picture features a beautifully arranged plate of thinly

sliced potatoes.
###

See the Supplement B for more details. For each composition y = (s, o), we
generate M descriptions denoted as S(y) = {S(y)

1 , . . . , S
(y)
M } where S

(y)
m is a

linguistically complete sentence. Different to [26] that aims to interpret the
zero-shot recognition by attribute phrases from LLMs, we utilize the LLM-based
sentence-level descriptions in the CZSL task for two benefits: (i) provide diverse
and informative textual context for modeling the class distributions, and (ii)
enhance the class embedding with fine-grained descriptive information.

Language-Informed Distribution (LID). For both the image and text
modalities, we use the frozen CLIP model and learnable feature enhancement
modules to represent the visual and language features, which are also adopted in
existing CZSL literature [6, 21].

Specifically, for the text modality, each composition y is tokenized and em-
bedded by CLIP embedding layer and further prompted by concatenating with
learnable context vectors, i.e., “[p1] . . . [pL][s][o]”, where p1:L is initialized by
“a photo of” and shared with all classes. Followed by the frozen CLIP text en-
coder ET , the embedding of class y is qy = ET ([p1] . . . [pL][s][o]) where qy ∈ Rd.
Following the CZSL literature [21,42], here the soft prompt p1:L and primitive
embeddings [s][o] are learnable while ET is frozen in training.

To simultaneously address the lack of diversity and informativeness of the
soft prompts, we propose to formulate the class-specific distributions supported
by the texts S(y) and learn to prompt these distributions. Specifically, we encode
S(y) by the frozen CLIP text encoder: D(y) = ET (S(y)), where D(y) ∈ RM×d.
Then, we use D(y) to enhance qy by ty = ΨTFE(qy,D

(y)) where ΨTFE is the text
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feature enhancement (TFE) implemented by a single-layer cross attention Trans-
former [39]. Similarly, given an image x, to mitigate the loss of fine-grained cues,
we augment it with N views to be X = {x(1), . . . ,x(N)}. Followed by the frozen
CLIP visual encoder EV , the feature of x is enhanced by v=ΨVFE(EV (x), EV (X))
where ΨVFE is the visual feature enhancement (VFE) by cross attention [39],
implemented with the same structure as TFE for simplicity.

⋯⋯ ⋯
DSP(,!) DSP(,")

ℰ, ⋯
soft prompt

hard promptCLIP text encoder

Fig. 3: Prompting for intra- and
inter-class covariance optimization.

We treat the enhanced text feature ty of
class y as the class mean and ty + D(y) as
the distribution support points (DSP) that
follow the Gaussian N (ty,Σy) where Σy is
the text variance of the class y. The motivation
of ty +D(y) is to enable the flexibility of DSP
to traverse around in the d dimensional space
in training since ty is trainable while D(y) are
pre-trained. For all |C(s)| (denoted as C) seen
compositional classes, we build joint Gaussians
N (µ1:C ,Σ1:C) similar to ProDA [22], where
the means µ1:C ∈ RC×d are given by ty over
C classes, and the covariance Σ1:C ∈ Rd×C×C

is defined across C classes for each feature dimension from DSP.
Discussions. Compared to the ProDA [22] that learns a collection of non-

informative prompts, our DSPs are language-informed by D(y) that provides
more fine-grained descriptive information to help recognition and decomposition.
Besides, our method is more parameter-efficient than ProDA since we only have a
single soft prompt to learn. This is especially important for the CZSL task where
there is a huge number of compositional classes. Lastly, we highlight the benefit
of performing the intra- and inter-class covariance optimization induced by the
learning objective of distribution modeling, which will be introduced below.

Learning Objective. Given the visual feature v ∈ Rd of image x and the text
embeddings t1:C from class-wise joint distributions N (µ1:C ,Σ1:C), minimizing
the cross-entropy loss is equivalent to minimizing the upper bound of negative
log-likelihood (NLL):

− logEt1:Cp(y|v, t1:C) ≤ − log
exp(hy/τ)∑C

k=1 exp((hk + h
(m)
k,y )/τ)

:= Ly(x, y), (1)

where the compositional logit hy = cos(v, ty), the pairwise margin h
(m)
k,y =

v⊤Ak,yv/(2τ) and A ∈ Rd×C×C is given by Ak,y = Σkk +Σyy −Σky −Σyk.
The covariance Ak,y indicates the correlation between the k-th out of C classes
and the target class y on each of d feature dimensions. The insight of minimizing
Ly(x, y) is illustrated in Fig. 3, which encourages minimizing intra-class variance
by Σyy and Σkk, and maximizing inter-class separability indicated by Σky and
Σyk. In Supplement C, we discuss the case when C is too large to compute A,
our workaround by covariance sharing within each object group leads to negligible
performance decrease.
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4.2 Primitives Decomposition for Fused Recognition

𝒗
𝑓!

𝑓" old

wet

cat dog mud

black

state

object

𝐡(")

𝐡($)

𝐇("#)

text embedding of seen composition class
state logit object logit recomposed logit

Fig. 4: VLPD for recomposing.

Motivation. Considering the fundamental
challenge in the CZSL task, that the visual
primitives are inherently entangled in an im-
age, an unseen composition in testing can be
hardly identified if its object (or its state) em-
bedding is over-fitted to the visual data of seen
compositions. To this end, it is better to in-
herit the benefits of the decompose-recompose
paradigm [10, 19, 51] by decomposing visual
features into simple primitives, i.e., states and
objects, from which the recomposed decision
can be leveraged for zero-shot recognition. Thanks to the compositionality of
CLIP [38, 41], such motivation can be achieved by the visual-language primitive
decomposition (VLPD). See Fig. 4 and we explain it below. Based on VLPD,
we propose the stochastic logit mixup to fuse the directly learned compositions
and the recomposed ones.

VLPD. Specifically, we use two parallel neural networks fs and fo to de-
compose v into the state visual feature fs(v) and object visual feature fo(v),
respectively. To get the primitive-level supervisions, given the training composi-
tions C(s) (see the circle dots in Fig. 4), we group their enhanced embeddings
{ty} over the subset Yo, in which all compositions share the same given object
o (see vertical ellipses in Fig. 4), and group {ty} over the subset Ys, in which
all compositions share the same given state s (see horizontal ellipses in Fig. 4).
Thus, given a state s and an object o, the predicted object logit hs and state
logit ho are computed by

hs = cos

fs(v),
1

|Ys|
∑
y∈Ys

ty

 , ho = cos

fo(v),
1

|Yo|
∑
y∈Yo

ty

 . (2)

Different from DFSP [21] that only decomposes text features, we additionally use
fs and fo to decompose visual features v and empirically show the superiority of
performing both visual and language decomposition (see Tab. 6).

Following the spirit of distribution modeling, we also introduce the distribu-
tions over state and object categories, where the corresponding DSP, denoted as
D(s) and D(o), are obtained by grouping D(y) over Ys and Yo, respectively. This
leads to the following upper-bounded cross-entropy losses:

Ls(x, s) = − log
exp(hs/τ)∑|S|

k=1 exp((hk + h
(m)
k,s )/τ)

,

Lo(x, o) = − log
exp(ho/τ)∑|O|

k=1 exp((hk + h
(m)
k,o )/τ)

,

(3)

where h
(m)
k,s and h

(m)
k,o are determined the same way as h(m)

k,y in Eq. (1). See details
in Supplement D. By this way, the merits of language-informed distribution
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modeling, i.e., the inter- and intra-class covariance optimization constraints, can
be introduced into primitive space for fused recognition as introduced below.

Composition Fusion. With the individually supervised fs and fo, we have
p(y|v) = p(s|v) · p(o|v) according to conditional independence, that induces
p(y|v) ∝ exp((hs + ho)/τ). Therefore, the recomposed logit matrix H(rc) ∈
R|S|×|O| is a Cartesian (element-wise combinatorial) sum between h(s) ∈ R|S|

and h(o) ∈ R|O|, i.e., H(rc) = h(s) ⊕ h(o)⊤, where h(s) contains all state logits
and h(o) contains all object logits. See the red and blue squares in Fig. 4.

Given the recomposed logit h
(rc)
y ∈ H(rc) and the directly learned composi-

tional logit hy by Eq. (1), we propose to stochastic fusion method in training by
sampling a coefficient λ from a Beta prior distribution:

h̃y = (1− λ)hy + λh(rc)
y , λ ∼ Beta(a, b), (4)

where (a, b) are hyperparameters indicating the prior preference for each decision.
In training, we replace the hy and hk of Eq. (1) with the mixed logit h̃y and h̃k,
respectively. In testing, no stochasticity is needed so the Beta expectation of λ,
which is a/(a+ b), is used to get the fused logit h̃y.

The insights behind the stochasticity are that the Beta distribution indicates
the prior preference to hy or h(rc)

y . It provides the flexibility of which compositional
decision to trust in, and the stochasticity of the coefficient λ inherently introduces
a regularization effect in training [3]. Moreover, compared to softmax probability
mixup [6], our logit mixup avoids the limitation of softmax normalization over a
huge number of compositional classes, that rich information of class relationship
is lost after softmax normalization according to [2]. Such class relationships are
even more important in the CZSL problem as indicated in [28].

5 Experiments

Datasets. We perform experiments on three CZSL datasets, i.e., MIT-States [8],
UT-Zappos [44], and C-GQA [28], following the standard splitting protocols in
CZSL literature [21,30,33]. MIT-States consists of 115 states and 245 objects,
with 53,753 images in total. Following [21,30,33], it is split into 1,262 seen and
300/400 unseen compositions for training and validation/testing, respectively. UT-
Zappos contains 16 states and 12 objects for 50,025 images in total, and it is split
into 83 seen and 15/18 unseen compositions for training and validation/testing.
C-GQA contains 453 states and 870 objects for 39,298 images, and it is split into
5,592 seen and 1,040/923 unseen compositions for training and validation/testing,
respectively, resulting in 7,555 and 278,362 target compositions in closed- and
open-world settings.

Evaluation. We report the metrics in both closed-world (CW) and open-
world (OW) settings, including the best seen accuracy (S), the best unseen
accuracy (U), the best harmonic mean (H) between the seen and unseen accu-
racy, and the area under the curve (AUC) of unseen versus seen accuracy. For
OW evaluation, following the CSP [30], we adopt the feasibility calibration by
GloVe [32] to filter out infeasible compositions.
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Table 1: CZSL results of Closed- and Open-World settings on three datasets. Except
for the re-implementation results of ProDA for CZSL, all baseline results are from
published literature. The “–” indicates no results reported by the PCVL paper or not
applicable by ProDA for more than 278K compositional classes on the C-GQA dataset.

Method MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC

Closed

CLIP [34] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [50] 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
ProDA [22] 37.4 51.7 32.7 16.1 63.7 60.7 47.6 32.7 – – – –
CSP [30] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
PCVL [42] 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2 – – – –
HPL [40] 47.5 50.6 37.3 20.2 63.0 68.8 48.2 35.0 30.8 28.4 22.4 7.2
DFSP [21] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5
PLID 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33.0 27.9 11.0

Open

CLIP [34] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.3
CoOp [50] 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.7
ProDA [22] 37.5 18.3 17.3 5.1 63.9 34.6 34.3 18.4 – – – –
CSP [30] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
PCVL [42] 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 – – – –
HPL [40] 46.4 18.9 19.8 6.9 63.4 48.1 40.2 24.6 30.1 5.8 7.5 1.4
DFSP [21] 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4
PLID 49.1 18.7 20.4 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5

Implementation Details. We implement the PLID based on the CSP
codebase in PyTorch. The CLIP architecture ViT-L/14 is used by default. On the
MIT-States, we generate M = 64 texts and augment an image with N = 8 views,
and adopt Beta(1, 9) as prior. The dropout rates of cross-attention layers in TFE
and VFE are set at 0.5, and the dropout rate of 0.3 for the learnable state and
object embeddings. For the soft prompt embeddings, we set the context length of
the text encoder to 8 for all datasets. Following [21], we use Adam optimizer with
base learning rate 5e-5 and weight decay 2e-5, and step-wise decay it with the
factor of 0.5 every 5 training epochs for a total of 20 epochs. Complete training
hyperparameters on three datasets are in the Supplement E.

5.1 Main Results

The results are reported in Tab. 1. We compare with the CZSL baselines that
are developed on the same frozen CLIP model. The table shows that under
both the closed-world and open-world test settings, our proposed PLID method
achieves the best performance in most metrics on the three datasets. Note that
ProDA [22] also formulates the class-wise Gaussian distributions to address the
intra-class diversity, but it can only outperform CLIP and CoOp on all metrics.
This indicates the importance of both diversity and informativeness for the CZSL
task. On the UT-Zappos dataset, the PLID outperforms the DFSP in terms of S,
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Table 2: Ablation study. (a): the baseline that uses mean pooling of text embeddings
from T5-generated sentences. (b): add language-informed distribution (LID). (c): use
text and visual feature enhancement module (FE). (d): change the LLM from T5-base
to the OPT-1.3B. (e): apply primitive decomposition for fused decision (PDF).

LID FE OPT PDF Hcw AUCcw How AUCow

(a) 35.41 18.56 17.37 5.56
(b) ✓ 37.06 20.43 18.65 6.50
(c) ✓ ✓ 37.87 21.09 19.70 6.95
(d) ✓ ✓ ✓ 38.80 21.67 19.61 7.01
(e) ✓ ✓ ✓ ✓ 38.97 22.12 20.41 7.34

H, and AUC by 0.6%, 5.2%, and 2.7% respectively, while inferior to the DFSP
on the best unseen metric. The potential reason is that DFSP fuses the text
features into the image images, which better preserves the generalizability of
CLIP for the small downstream UT-Zappos dataset. Note that the HPL method
uses prompt learning and recognition at both compositional and primitive levels,
but it performs only slightly better than CSP and way worse than our method,
indicating that traditional prompt learning helps but is not enough to adapt the
CLIP model to the CZSL task.

5.2 Model Analysis

To comprehensively analyze the proposed PLID, we perform extensive ablation
study and design analysis on the middle-sized MIT-States dataset in this section.
More ablation results are provided in the Supplement E.

Major Components. In Tab. 2, we show the contribution of the major
components in the PLID model. It is clear that they are all beneficial. We highlight
some important observations: (1) The LID method in row (b) significantly
improves the performance compared to the baseline (a) that does not formulate
Gaussian distribution in training, and they are much better than ProDA (20.43%
vs 16.1% of AUCcw) when referring to Tab. 1. This implies that addressing
the context diversity by modeling the Gaussian distribution like the ProDA
is not sufficient, but context informativeness is critical and preferred for the
CZSL task. (2) Rows (c)(d) show that feature enhancement (FE) and the better
LLM OPT-1.3B can also bring performance gains. (3) Rows (e) show that the
primitive decomposition for fused decision (PDF) could further improve the CZSL
performance in both closed- and open-world settings. In the following paragraphs,
we further validate the effect or design choices of these components in detail.

Effect of LID. In Tab. 3, we investigate at which semantic level the language-
informed distribution (LID) should be applied. Denote the Gaussian distribution
on state, object, and composition as Ns, No, and Ny, respectively. The Tab. 3
results clearly show the superiority of applying LID on all three semantic levels.
This indicates the generality of LID towards many potential zero-shot or open-
vocabulary recognition problems.
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Table 3: Effect of LID on states (Ns),
objects (No), and compositions (Ny). The
first row indicates the model without LID.

NsNoNy Hcw AUCcw How AUCow

38.44 21.67 19.53 6.99
✓ ✓ 38.30 21.62 19.49 6.95

✓ 38.49 21.90 19.93 7.20
✓ ✓ ✓ 38.97 22.12 20.41 7.34

Table 4: Effect of LLMs. Note that GPT-
3.5 is not open-sourced so that we use its
API call to get text descriptions.

LLMs Hcw AUCcw How AUCow

Mistral-7B 37.22 20.78 19.22 6.74
GPT-3.5 37.38 20.61 19.38 6.80
T5-base 38.41 21.53 20.46 7.34
OPT-1.3B 38.97 22.12 20.41 7.34

Table 5: Design choices of feature en-
hancement (FE), including the use of text
or visual FE (TFE/VFE) and the number
of their cross-attention layers.

TFEVFElayers Hcw AUCcw How AUCow

✓ 1 37.89 21.07 19.37 6.78
✓ 1 37.48 21.04 19.43 6.72

✓ ✓ 3 37.46 20.65 19.15 6.70
✓ ✓ 1 38.97 22.12 20.41 7.34

Table 6: Effect of VLPD and fusion, i.e. the
decomposition modalities (text or image) and
deterministic (det.) or stochastic (stoc.) fusion.

VLPD fusion
Hcw AUCcw How AUCowtext image det. stoc.

✓ 37.94 20.98 19.67 6.98
✓ ✓ 38.40 21.31 19.99 7.13
✓ ✓ 38.42 21.69 20.24 7.31
✓ ✓ ✓ 38.67 21.90 19.99 7.15
✓ ✓ ✓ 38.97 22.12 20.41 7.34

Effect of LLM. In Tab. 4, we analyze the choice of LLMs by comparing
PLID variants using different LLMs, including the T5-base [35], OPT-1.3B [46],
GPT-3.5 [31], and Mistral-7B [9]. It shows the performance varies across different
LLMs. Note that the capacity of GPT-3.5 and Mistral-7B on general language
processing tasks is much better than T5-base and OPT-1.3B. However, we do
not see improvements by using these generally larger and better LLMs, but a
small OPT-1.3B is sufficient to achieve the best performance. We provide some
examples of the generated texts by these LLMs in Supplement B.

TFE and VFE. In Tab. 5, we explore the design choices of the text and
visual feature enhancement (TFE and VFE) modules. The results show that using
one layer of randomly initialized cross-attention for both TFE and VFE performs
the best. Using more cross-attention layers will cause a significant performance
drop (see the 3rd row). We attribute the cause to the over-fitting issue when
more learnable parameters are introduced.

VLPD and Fusion. In Tab. 6, we validate the design choices of visual
language primitive decomposition (VLPD) and the stochastic compositional
fusion. Compared with the results of the first two rows, it shows clear advantages
of primitive decomposition over both image and text modalities. Note that
DFSP [21] also has primitive decomposition but only on text modality. Our
better performance than DFSP and the results in Tab. 6 thus tell the need for
decomposition on both visual and image. Besides, to validate our stochastic
compositional fusion, we compare it with the model without fusion in the 3rd row
and the model with only deterministic fusion (weighted average without Beta
sampling) in the 4th row. They also show the benefit of fusion with stochasticity.
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Fig. 5: Impact of M and N . We set N = 8
for the Fig. 5a while M = 64 for the Fig. 5b.
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Fig. 7: tSNE visualization of the text embeddings with (the 2nd row) and without (the
1st row) learnable distribution modeling over compositions (the 1st column), states (the
2nd column), and objects (the 3rd column). This figure clearly shows that our method
achieves good performance by distribution modeling.

Hyperparameters. In Fig. 5, we show the impact of the number of generated
text descriptions M and the number of augmented image views N . It shows
that the best performance is achieved when M = 64 and N = 8. We note that
more augmented image views slightly decrease the performance, which could be
attributed to the over-fitting of the seen compositions. In Fig. 6, we show the
impact of the Beta prior parameters (a, b). We set them to (1, 1) for random
sampling, (1, 9) for preference to the composition, (9, 1) for preference to re-
composition, and (5, 5) for equal preference, respectively. It reveals that trusting
more of the directly learned composition by Beta(1, 9) achieves the best results.

Class Distributions. We use the tSNE to visualize the generated text
embeddings D and the learned DSP from or PLID model in Fig. 7, where the
same set of 10 compositional (or state/object) classes are randomly selected from
MIT-States dataset. It shows that by learning the distribution of each composition,
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(b) Comparison with model without LID.

Fig. 8: Case studies. In Fig. 8a, we show the success and failure cases from MIT-States
dataset. In Fig. 8b, we quantitatively validate the language-informed distribution (LID).
Correct and incorrect predictions are in green and red color, respectively.

state, and object from LLM-generated texts using Eq. (1) and (3) and TFE
module, class embeddings can be distributed more compactly in each class
(small intra-class variance), and better separated among multiple classes (large
inter-class distance). This clearly shows why our proposed language-informed
distribution modeling works in the CZSL task.

Case Study. In Fig. 8a, we show some success and failure cases of our
PLID model. They reveal PLID still could make mistakes on the state prediction
(cooked pasta) and object prediction (engraved floor), which indicates there
are still rooms for improvement. In Fig. 8b, we show that PLID could work much
better than the model without LID. For example, the sunny creek and frayed
wire are incorrect potentially due to the lack of handling (i) intra-class variety,
as the dry creek images can be sunny and the frayed hose class could contain
wire images, and (ii) inter-class correlation, as the sunny is correlated to both
the dry creek images and other sunny images.

6 Conclusion

In this work, we propose a novel CLIP-based compositional zero-shot learn-
ing (CZSL) method named PLID. It leverages the generated text description
of each class from large language models to formulate the class-specific Gaus-
sian distributions. By softly prompting these language-informed distributions,
PLID could achieve diversified and informative class embeddings for fine-grained
compositional classes. Besides, we decompose the visual embeddings of image
data into states and objects, from which the re-composed predictions are de-
rived to calibrate the prediction by our proposed stochastic logit mixup strategy.
Experimental results show the superiority of the PLID on multiple CZSL datasets.



PLID for CZSL 15

Acknowledgements

WT Bao and Y Kong were partially supported by the Office of Naval Research
(ONR) grant N00014-23-1-2046 and N00014-23-1-2417. LC Chen and H Huang
were partially supported by NSF IIS 2347592, 2347604, 2348159, 2348169, DBI
2405416, CCF 2348306, CNS 2347617. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of ONR or NSF.

References

1. Atzmon, Y., Kreuk, F., Shalit, U., Chechik, G.: A causal view of compositional
zero-shot recognition. In: Adv. Neural Inform. Process. Syst. (2020)

2. Bang, D., Baek, K., Kim, J., Jeon, Y., Kim, J.H., Kim, J., Lee, J., Shim, H.: Logit
mixing training for more reliable and accurate prediction. In: IJCAI (2022)

3. Carratino, L., CissÃ©, M., Jenatton, R., Vert, J.P.: On mixup regularization.
JMLR 23(325) (2022)

4. Derakhshani, M.M., Sanchez, E., Bulat, A., da Costa, V.G.T., Snoek, C.G.M.,
Tzimiropoulos, G., Martinez, B.: Bayesian prompt learning for image-language
model generalization. In: ICCV (2023)

5. He, R., Sun, S., Yu, X., Xue, C., Zhang, W., Torr, P., Bai, S., Qi, X.: Is synthetic
data from generative models ready for image recognition? In: ICLR (2023)

6. Huang, S., Gong, B., Feng, Y., Lv, Y., Wang, D.: Troika: Multi-path cross-modal
traction for compositional zero-shot learning. In: CVPR (2024)

7. Huynh, D., Elhamifar, E.: Compositional zero-shot learning via fine-grained dense
feature composition. In: Adv. Neural Inform. Process. Syst. (2020)

8. Isola, P., Lim, J.J., Adelson, E.H.: Discovering states and transformations in image
collections. In: CVPR (2015)

9. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D.d.l.,
Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al.: Mistral 7b. arXiv preprint
arXiv:2310.06825 (2023)

10. Karthik, S., Mancini, M., Akata, Z.: Kg-sp: Knowledge guided simple primitives
for open world compositional zero-shot learning. In: CVPR (2022)

11. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: Multi-modal
prompt learning. In: CVPR (2023)

12. Kwon, H., Song, T., Jeong, S., Kim, J., Jang, J., Sohn, K.: Probabilistic prompt
learning for dense prediction. In: CVPR (2023)

13. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behavioral and brain sciences 40 (2017)

14. Lewis, M., Yu, Q., Merullo, J., Pavlick, E.: Does clip bind concepts? probing
compositionality in large image models. arXiv preprint arXiv:2212.10537 (2022)

15. Li, X., Yang, X., Wei, K., Deng, C., Yang, M.: Siamese contrastive embedding
network for compositional zero-shot learning. In: CVPR (2022)

16. Li, Y.L., Xu, Y., Mao, X., Lu, C.: Symmetry and group in attribute-object compo-
sitions. In: CVPR (2020)

17. Li, Y., Liu, Z., Chen, H., Yao, L.: Context-based and diversity-driven specificity in
compositional zero-shot learning. In: CVPR (2024)



16 W. Bao et al.

18. Liu, X., Wang, D., Li, M., Duan, Z., Xu, Y., Chen, B., Zhou, M.: Patch-token
aligned bayesian prompt learning for vision-language models. arXiv preprint
arXiv:2303.09100 (2023)

19. Liu, Z., Li, Y., Yao, L., Chang, X., Fang, W., Wu, X., Yang, Y.: Simple primitives
with feasibility-and contextuality-dependence for open-world compositional zero-
shot learning. arXiv preprint arXiv:2211.02895 (2022)

20. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: ECCV (2016)

21. Lu, X., Liu, Z., Guo, S., Guo, J.: Decomposed soft prompt guided fusion enhancing
for compositional zero-shot learning. In: CVPR (2023)

22. Lu, Y., Liu, J., Zhang, Y., Liu, Y., Tian, X.: Prompt distribution learning. In:
CVPR (2022)

23. Ma, Z., Hong, J., Gul, M.O., Gandhi, M., Gao, I., Krishna, R.: Crepe: Can vision-
language foundation models reason compositionally? In: CVPR (2023)

24. Mancini, M., Naeem, M.F., Xian, Y., Akata, Z.: Open world compositional zero-shot
learning. In: CVPR (2021)

25. Maniparambil, M., Vorster, C., Molloy, D., Murphy, N., McGuinness, K., O’Connor,
N.E.: Enhancing clip with gpt-4: Harnessing visual descriptions as prompts. arXiv
preprint arXiv:2307.11661 (2023)

26. Menon, S., Vondrick, C.: Visual classification via description from large language
models. In: ICLR (2023)

27. Misra, I., Gupta, A., Hebert, M.: From red wine to red tomato: Composition with
context. In: CVPR (2017)

28. Naeem, M.F., Xian, Y., Tombari, F., Akata, Z.: Learning graph embeddings for
compositional zero-shot learning. In: CVPR (2021)

29. Nagarajan, T., Grauman, K.: Attributes as operators: factorizing unseen attribute-
object compositions. In: ECCV (2018)

30. Nayak, N.V., Yu, P., Bach, S.H.: Learning to compose soft prompts for compositional
zero-shot learning. In: ICLR (2023)

31. OpenAI: OpenAI GPT-3.5 API [gpt-3.5-turbo-0125]. https://openai.com/blog/
chatgpt, accessed: 2023

32. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP (2014)

33. Purushwalkam, S., Nickel, M., Gupta, A., Ranzato, M.: Task-driven modular
networks for zero-shot compositional learning. In: ICCV (2019)

34. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: ICML (2021)

35. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR 21(1), 5485–5551 (2020)

36. Razdaibiedina, A., Mao, Y., Hou, R., Khabsa, M., Lewis, M., Ba, J., Almahairi, A.:
Residual prompt tuning: Improving prompt tuning with residual reparameterization.
In: ACL (2023)

37. Tokmakov, P., Wang, Y.X., Hebert, M.: Learning compositional representations for
few-shot recognition. In: ICCV (2019)

38. Trager, M., Perera, P., Zancato, L., Achille, A., Bhatia, P., Xiang, B., Soatto, S.:
Linear spaces of meanings: the compositional language of vlms. arXiv preprint
arXiv:2302.14383 (2023)

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt


PLID for CZSL 17

39. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: Adv. Neural Inform. Process. Syst.
(2017)

40. Wang, H., Yang, M., Wei, K., Deng, C.: Hierarchical prompt learning for composi-
tional zero-shot recognition. In: IJCAI (2023)

41. Wolff, M., Brendel, W., Wolff, S.: The independent compositional subspace hypoth-
esis for the structure of clip’s last layer. In: ICLR Workshop (2023)

42. Xu, G., Kordjamshidi, P., Chai, J.: Prompting large pre-trained vision-language
models for compositional concept learning. arXiv preprint arXiv:2211.05077 (2022)

43. Yan, A., Wang, Y., Zhong, Y., Dong, C., He, Z., Lu, Y., Wang, W., Shang, J.,
McAuley, J.: Learning concise and descriptive attributes for visual recognition.
arXiv preprint arXiv:2308.03685 (2023)

44. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In:
CVPR (2014)

45. Yuksekgonul, M., Bianchi, F., Kalluri, P., Jurafsky, D., Zou, J.: When and why
vision-language models behave like bags-of-words, and what to do about it? In:
ICLR (2023)

46. Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab,
M., Li, X., Lin, X.V., et al.: Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068 (2022)

47. Zhang, T., Liang, K., Du, R., Sun, X., Ma, Z., Guo, J.: Learning invariant visual
representations for compositional zero-shot learning. In: ECCV (2022)

48. Zheng, Z., Zhu, H., Nevatia, R.: Caila: Concept-aware intra-layer adapters for com-
positional zero-shot learning. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 1721–1731 (2024)

49. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-
language models. In: CVPR (2022)

50. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language
models. IJCV (2022)

51. Zou, Y., Zhang, S., Chen, K., Tian, Y., Wang, Y., Moura, J.M.: Compositional
few-shot recognition with primitive discovery and enhancing. In: ACM MM (2020)


	Prompting Language-Informed Distribution for Compositional Zero-Shot Learning

