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Abstract. This paper introduces a novel framework for virtual try-on,
termed Wear-Any-Way. Different from previous methods, Wear-Any-Way
is a customizable solution. Besides generating high-fidelity results, our
method supports users to precisely manipulate the wearing style. To
achieve this goal, we first construct a strong pipeline for standard virtual
try-on, supporting single/multiple garment try-on and model-to-model
settings in complicated scenarios. To make it manipulable, we propose
sparse correspondence alignment which involves point-based control to
guide the generation for specific locations. With this design, Wear-Any-
Way gets state-of-the-art performance for the standard setting and pro-
vides a novel interaction form for customizing the wearing style. For
instance, it supports users to drag the sleeve to make it rolled up, drag
the coat to make it open, and utilize clicks to control the style of tuck,
etc. Wear-Any-Way enables more liberated and flexible expressions of the
attires, holding profound implications in the fashion industry. Project
page is mengtingchen.github.io/wear-any-way-page.
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1 Introduction

Virtual try-on aims to synthesize an image of the specific human wearing the
provided garments. It emerges as a significant technology within the realm of the
fashion industry, providing consumers with an immersive and interactive means
of experiencing apparel without physically trying.

Classical solutions for virtual try-on rely on Generative-Adversarial-Networks
(GANs) [12, 23, 29, 35, 36] to learn the feature warping from the garment image
to the person image. Recent advances in diffusion models [19] bring a huge
improvement in the generation quality for various image/video synthesis tasks,
including virtual try-on. Some recent works [26, 66] could generate high-fidelity
results leveraging pre-trained text-to-image diffusion models [50]. However, there
still exist drawbacks to these solutions.

First, most of them only support simple cases like well-arranged single gar-
ments with simple textures as input. For garments with complicated textures or
⋆ Corresponding author
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(a) Single Garment Try-on (b) Outfit Try-on

(c) Manipulation with clicks

(d) Manipulation with drag

Fig. 1: Manipulable try-on with Wear-Any-Way. Our method achieves state-of-
the-art performance for the standard setting of virtual try-on (first row), supporting
diversified input formats and scenarios. An impressive feature is that our method
supports users to manipulate the way of wearing using simple interactions like
click (second row) and drag (third row). It should be noted that all these applications
are accomplished with a single model in one pass.

patterns, existing solutions often fail to maintain the fidelity of the fine details.
In addition, most of the previous solutions do not solve the challenges in real-
world applications like model-to-model try-on, multi-garment try-on, complex
human poses, and complicated scenarios, etc.

Second, previous methods are unable to exert control over the wearing style.
However, the actual wearing style holds significant importance in the realm of
fashion. For instance, variations in the rolling up or down of sleeves, the tucking
and layering of tops and bottoms, the decision to leave a jacket open or closed,
and even the exploration of different sizes for the same garment all contribute
to diverse ways of wearing. These distinct styles can showcase varied states
of the same piece of clothing, highlighting the pivotal role of styling options,
particularly in the context of fashion applications.
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In this work, we propose Wear-Any-Way, a novel framework for virtual try-on
that solves the two aforementioned challenges at once. Wear-Any-Way could act
as a strong option for the standard setting of virtual try-on, it synthesizes high-
quality images and preserves the fine details of the patterns on the garment.
Besides, it serves as a universal solution for real-world applications, supporting
various sub-tasks like model-to-model try-on, multi-garment try-on, and com-
plicated scenarios like street scenes. The most important feature is that the
Wear-Any-Way supports users in customizing the wearing style. As shown in
Fig. 1, users could use simple interactions like click and drag to control the
rolling of sleeves, the open magnitude of the coat, and even the style of tuck.

To archive these functions, we first build a strong baseline for virtual try-on.
Recently, Reference-only [64] structure has proven effective in many downstream
tasks like image-to-video [22, 60] and image editing [5, 41, 42]. Inspired by these
methods, we build a dual-branch pipeline, the main branch is a denoising U-Net
initialized from a pre-trained inpainting Stable Diffusion [50]. The main U-Net
takes the person image as input while the reference U-Net extracts the features
from the garment image. The referential garment features are then injected
into the main branch with self-attention. To further improve the flexibility and
robustness, we also inject the guidance of the human pose. This pipeline achieves
state-of-the-art performance in the standard try-on setting.

Afterward, we take a further step to make this strong baseline customizable.
Specifically, we investigate a point-based control that forces the specific points
on the garment image to match the target points on the person image in the
generation result. To align the features of the paired points, we propose sparse
correspondence alignment, which first learns a series of permutable point embed-
dings and injects these embeddings into both the main and reference U-Net by
modifying the attention layers. To assist the network learn the feature alignment
better, we design several strategies like condition dropping, zero-initialization,
and point-weighted loss to ease the optimization.

Equipped with all these techniques, Wear-Any-Way demonstrates superior
quality and controllability for virtual try-on. In general, our contributions could
be summarized in three folds:

– We construct a novel framework, Wear-Any-Way, which generates high-quality
results and supports users to precisely manipulate the way of wearing.

– We propose a strong, flexible, and robust baseline for virtual try-on, which
reaches state-of-the-art with extensive comparisons with previous methods.

– We design the sparse correspondence alignment to enable the point-based
control and further develop several strategies (i.e., conditional dropping,
zero-initialization, point-weighted loss) to enhance the controllability.

2 Related Work

GAN-based virtual try-on. Initially, numerous methods [12,23,29,31,35,36]
have utilized Generative Adversarial Networks (GANs). Some works [9,14,30,58]
typically adopt a two-stage strategy: first deforming the garment to fit the target
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body shape, then integrating the transformed clothing onto the human model
using a GAN-based try-on generator. To achieve accurate deformation, several
techniques estimate a dense flow map that guides the clothing reshaping process
[2,14,16,30,58]. Some works achieve simple fashion editing by dressing order [11]
and warp policies [31]. However, these existing approaches have limitations,
particularly when dealing with images of individuals in complex poses or against
intricate backgrounds, resulting in noticeable drops in performance. Moreover,
Conditional GANs (cGANs) encounter difficulties with significant spatial trans-
formations between the clothing and the subject’s posture, as highlighted by
CP-VTON [56], which brings to light the need for improved methods capable of
handling these challenges.

Diffusion-based virtual try-on. The exceptional generative capabilities of
diffusion have inspired several approaches to incorporate diffusion models into
fashion synthesis, covering tasks like visual try-on [3,6,24,39,59,66]. TryOnDif-
fusion [66] utilizes dual U-Nets for the try-on task. However, the requirement
for extensive datasets capturing various poses presents a significant challenge.
Consequently, there has been a pivot towards leveraging large-scale pre-trained
diffusion models as priors in the try-on process [20, 48, 51, 61]. Approaches like
LADI-VTON [39] and DCI-VTON [15] have been introduced, which treat cloth-
ing as pseudo-words or use warping networks to integrate garments into pre-
trained diffusion models. StableVITON [26] proposes a novel approach that
conditions the intermediate feature maps of a spatial encoder using a zero cross-
attention block. While these methods have addressed the issues of background
complexity, they struggle to preserve fine details and encounter problems such
as inaccurate warping. Moreover, they fail to enable flexible control over how
garments are worn, producing only a rigid, static image.

Our work extends the interactive capabilities of virtual try-on, which sets
new standards for performance and user interaction. Rather than just gen-
erating static images, Wear-Any-Way empowers users to manipulate garments
dynamically, allowing for an unprecedented level of customization that signifies
a significant leap in the personalization of digital fashion experiences.

Point-based image editing. Building on the achievements of diffusion mod-
els [20], various diffusion-based image editing techniques [1, 4, 7, 18, 25, 38] have
emerged, predominantly relying on textual instructions for editing. Techniques
such as those in [25, 28, 55] apply fine-tuning to models on single images to
produce alterations directed by descriptive texts. However, this text-guided ap-
proach often yields only broad-stroke modifications, lacking the precision re-
quired for detailed image editing.

To overcome the limitations of text-guided editing, studies explored point-
based editing [13, 44, 57]. DragGAN, notable for its intuitive drag-and-drop
manipulation, optimizes latent codes for handle points and incorporates point
tracking. However, GANs’ inherent limitations constrain DragGAN. FreeDrag
[34] refines DragGAN by eliminating point tracking, while [53] extends Drag-
GAN’s framework to diffusion models, showcasing versatility. Simultaneously,
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[41] utilizes diffusion models for drag-based editing, employing classifier guidance
to convert editing intentions into actionable gradients.

To address these shortcomings and enhance the granularity and adaptability
of image editing, our research leverages diffusion models’ exceptional genera-
tive capabilities. We propose a novel editing paradigm, Wear-Any-Way, com-
bining point-based precision with diffusion models’ rich generative potential.
Wear-Any-Way enhances fine-grained, context-aware image alterations, offering
unprecedented control over the editing process and outcomes.

3 Method

We first introduce the basic knowledge required for diffusion models in Sec. 3.1.
Afterward, we present our strong baseline for virtual try-on in Sec. 3.2. Next, we
dive into the details of our proposed sparse correspondence alignment in Sec. 3.3
and the training strategies in Sec. 3.4. In addition, in Sec. 3.5 we also elaborate
on the details for collecting the training point pairs and finally summarize the
the inference pipeline in Sec. 3.6.

3.1 Preliminaries

Text-to-image diffusion model. Diffusion models [19] exhibit promising ca-
pabilities in both image and video generation. In this study, we select the widely
adopted Stable Diffusion [50] as our foundational model, leveraging its efficient
denoising procedure in the latent space. The model initially employs a latent
encoder [27] to project an input image x0 into the latent space: z0 = E(x0).
Throughout training, Stable Diffusion transforms the latent representation into
Gaussian noise using the formula:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ U([0, 1]), and ᾱt is the cumulative product of the noise coefficient
αt at each step. Subsequently, the model learns to predict the added noise as:

Ez,c,ϵ,t(|ϵθ(zt, c, t)− ϵ|22). (2)

Here, t represents the diffusion timestep, and c denotes the conditioning text
prompts. During the inference phase, Stable Diffusion effectively reconstructs
an image from Gaussian noise step by step, predicting the noise added at each
stage. The denoised results are then fed into a latent decoder to regenerate
colored images from the latent representations, denoted as x̂0 = D(ẑ0).

3.2 Virtual Try-on Pipeline

As demonstrated in Fig. 2, our pipeline consists of two branches. The main
branch is the inpainting model initialized with the pre-trained weight of Stable
Diffusion [50]. It takes in a 9-channel tensor as input, with 4 channels of latent
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Fig. 2: The pipeline of Wear-Any-Way. The overall framework consists of two
U-Nets. The reference U-Net takes the garment image as input to extract fine-grained
features. The main U-Net takes charge of generating the try-on results. It takes the
person image (masked), the garment mask, and the latent noise as input. We exert the
pose control via an additional pose encoder. The point-based control is realized by a
point embedding network and a sparse correspondence alignment module. The detailed
structures are demonstrated on the right part. Symbols of flames and snowflakes denote
trainable and frozen parameters respectively.

noise, 4 channels of the latent for the inpainting background (i,e., person image
with the masked clothes region), and 1 channel for the binary mask (representing
for inpainting region). The original SD receives text embedding as conditions to
guide the diffusion procedure. Instead, we replace the text embedding with an
image embedding of the garment image extracted by a CLIP [49] image encoder.

The CLIP image embedding could guarantee the overall colors and textures
of the garment but fails to preserve the fine details. Recently, reference-only [64]
has proven effective in keeping the fine details of the reference image in many
fields of applications [5, 22, 42, 60]. TryonDiffusion [66] also leverages two U-Net
to make generations with high fidelity. Inspired by those explorations, we also use
a reference U-Net to extract the detailed features of the garment. Our reference
U-Net is a standard text-to-image diffusion model with 4-channel input. We
conduct feature fusion after each block by concatenating the “key” and “value”
of the reference U-Net after the main U-Net.

To further enhance the generation, we add the pose map as an additional
control. We construct a tiny convolution network to extract the features of the
pose map, and directly add it to the latent noise of the main U-Net. The pose
map is extracted from the provided person image with DW-Pose [62].
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3.3 Sparse Correspondence Alignment

To make our Wear-Any-Way customizable, we introduce a sparse correspondence
alignment mechanism into the diffusion procedure. Specifically, for the point
pair, one point is marked on the garment image and another is given on the
person image. We utilize the correspondence between the two points to control
the generation results: the marked position of the garment would match the
targeted position on the person image. In this way, users could precisely control
the wearing style by manipulating multiple point pairs.

As shown in Fig. 2, we first learn a series of point embedding to represent
the pair of control points. Afterward, we inject this control signal into both the
main U-Net and referential U-Net. To assist the model in learning the corre-
spondence relationships, we propose several strategies like condition dropping,
zero-initialization, and point-guided loss.
Point embedding. Assuming we sample N pairs of points, we use disk maps
D1×H×W

g/p to represent the points on the garment and person images respectively.
The background values are zeros. Points on the garment image are filled with
values from 1 to K randomly without repeat, while the points on the person
image are filled with the corresponding values. K denotes the maximum number
of control points enabled in one image with N ≤ K. In this work, we set K = 24.
This random assignment decouples the semantics and the points thus making
the point representation permutable. It serves as the basis to support arbitrary
numbers of point controls at arbitrary locations. Afterward, we design a point
embedding network with stacked convolution layers to project the disk maps into
high-dimension embeddings: EC×H×W

g/p . This network is optimized alone with the
diffusion model in the end-to-end training.
Embedding injection. We excel in controls by injecting the point embedding
into the attention layer. In our baseline, the features from the reference U-Net
are concatenated on the “key” and “value” of the self-attention as illustrated in
Eq. (3), where the subscripts of m,r represents the main and reference U-Net.

Attention = softmax(
Qm · cat(Km,Kr)

T

√
dk

) · cat(Vm, Vr) (3)

This attention layer enables garment features extracted by the reference
U-Net to be integrated into the main U-Net. To enable the correspondence
control with point guidance, we modify this attention layer via adding the point
embedding of the person and garment with the “query” and “key” as in Eq. (4).

Attention = softmax(
(Qm+Ep) · cat(Km+Ep,Kr+Eg)

T

√
dk

) · cat(Vm, Vr) (4)

In this way, when integrating the garment feature into the main U-Net, the
feature aggregation would consider the correspondence of the point pairs. The
feature located by the point of the garment could be aligned to the position
of the point on the person image. Thus, users could assign control points to
manipulate the wearing style by clicking and dragging.
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Fig. 3: Pipeline of collecting the training point-pairs. As shown on the left,
the person and garment images are sent into the same Stable Diffusion to extract the
feature. We calculate the cosine similarity between the two feature maps to get the
point pairs. Some densely sampled point pairs are demonstrated on the right.

3.4 Training strategies

Besides the design of the model structure, we also develop several training
strategies to assist Wear-Any-Way to learn the correspondence alignment.
Condition dropping. We observe that, even without the guidance of point
pairs, the generation results on the training set are already very close to the
ground truth. We analyze that, the inpainting mask and the human pose map
could indicate the wearing style of the training sample to some extent. To enforce
the model to learn from the control point, we increase the possibility of dropping
the pose map and degrading the inpainting mask to a box around the mask.
Zero-initialization. Adding the point embedding to the attention “key” and
“value” causes the unstability of the training optimization. To achieve a pro-
gressive integration, we get the inspiration of ControlNet [65] to add a zero-
initialized convolutional layer at the output of the point embedding network.
This zero-initialization brings better convergence.
Point-weighted loss. To enhance the controllability of the paired points. We
increase the loss weight around the sampled points on the person image. The
supervision of Wear-Any-Way is an MSE loss for predicting the noise.

3.5 Training Points Collection

It is crucial to get precisely matched point pairs for training. Considering that
there are no densely annotated point data between the garment and person
image, we make extensive explorations to collect point pairs.

The challenge lies in the fact that garments are not rigid like steel. When
worn on the human body, garments could undergo deformation. Previous virtual
matching/correspondence learning methods [33,46,52] could only deal with rigid
objects like buildings. Fashion/human key points detection methods [37, 62, 67]
could localize point pairs. However, they could only detect a few predefined key
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Fig. 4: The inference pipeline of Wear-Any-Way. For click-based control, users
provide garment images, person images, and point pairs to customize the generation.
When the user drags the image, the starting and end points are translated as the
garment and person points. While the parsed clothes are regarded as the garment
image. Thus, the drag could be transformed into the click-based setting.

points, which fail to generate arbitrary sampled points for truly flexible control.
Recently, some works [17, 54, 63] find that the pre-trained diffusion models are
naturally image matchers. In this work, we also explore correspondence learning
by leveraging pre-trained text-to-image diffusion models.

As illustrated in Fig. 3, we leverage the siamese text-to-video diffusion model
to extract features from the person and garment image respectively. We take the
feature map of the last later and ensemble the prediction results at multiple time
steps to get a robust matching. Given a point on the person image, we select the
corresponding point on the garment image with the maximum cosine similarity.
The dense point-matching results are demonstrated on the right of Fig. 3. Given
a person image, we first extract the mask for the wearing clothes. Afterward,
we randomly sample points in the internal and boundary regions of the mask as
queries and leverage the matching pipeline to extract the corresponding points
on the garment image. We chose the mapping direction from the person image
to the garment image because some points on the garment image could not be
matched on the on-body image when the poses were complex.

3.6 Inference with manipulation

Equipped with the sparse correspondence alignment, Wear-Any-Way supports
users to customize the try-on results using control points. The inference pipeline
is illustrated in Fig. 4. For the click-based setting, besides providing the garment
image and person images, users could assign multiple point pairs on these two
images as control signals. The coordinates on the garment image indicated
by the garment points could be aligned to the corresponding position of the
person points in the generation result. For the drag-based control, the starting
and end points are processed as garment points and person points, while the
parsed clothes are regarded as the garment image. In this way, the drag-based
manipulation could be transformed into click-based controls.
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4 Experiments

4.1 Implementation Details

Detailed configurations. The main U-Net and the reference U-Net both lever-
age the pre-trained weights from Stable Diffusion-1.5 [50]. We collect 0.3 million
high-quality try-on data with “person image, up-clothes, down-clothes” triplets
to train our model. However, for fair comparisons with other works, we also train
Wear-Any-Way on VITON-HD [10] and Dresscode [40] respectively to report the
quantitative results and make qualitative comparisons. To make our model try
the upper and down clothes in one pass. We concatenate two input garment
image together from H × W × 3 to H × 2W × 3. We randomly drop a garment
image to an all-zeros image to preserve the ability of single-garment generation.
Training hyper-parameters. During training, we set the initial learning rate
5e-5 with a batch size of 64. The models are trained using 8× A100 GPUs. For
the main U-Net, we train the parameters of the decoder, and the self-attention
layers of the encoder; All parameters of the reference U-Net are trained. For the
data augmentation, we conduct random crop on the person image, and exert
random flip simultaneously on the garment and person images. In addition, we
also use random color jitter to improve the robustness. We train our model with
the resolution of 768 × 576 on the self-collected data for better visual quality.
We also train a 512× 384 version for fair comparisons with previous works.

4.2 Evaluation protocols.

Standard virtual try-on. We first evaluate the performance of Wear-Any-Way
on standard virtual try-on benchmarks (i.e.,VITON-HD [10] Dresscode [40])
to report qualitative results. Meanwhile, we give qualitative comparisons with
state-of-the-art methods to prove the effectiveness of our design.
Evaluation for point control. To evaluate the ability of point-based control,
we get inspiration from previous drag-based image editing methods [41,45,53] to
calculate the landmark distance. Specifically, we detect the fashion landmarks
using FashionAI [67] detector on the pair of garment image and the person
image. Afterward, we use the paired landmarks Lgarment and Lperson as the
control points to generate a try-on image (the person image could be viewed as
the ground truth). Next, we use the same detector to localize the landmarks on
the newly generated image, noted as Lgen. We calculate the Euclidean distance
between Lperson and Lgen to evaluate the control ability. Ideally, the landmark
distance should be small if the generation is well-controlled by the points. We
construct a benchmark covering the upper-, down-, and coat-clothes with 1000
samples in total for a comprehensive evaluation.

4.3 Ablations Studies

We first conduct experiments for our strong baseline of standard virtual try-on.
Afterward, we provide a detailed analysis of the sparse correspondence alignment
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Fig. 5: Ablation studies on feature extractors. Our design shows notable
superiority compared with CLIP image encoder [49], DINOv2 [43], ControlNet [65].

module. In addition, we also discuss the correspondence matching methods used
for collecting the paired points.
Strong baseline. We first investigate the design of our strong baseline for
virtual try-on. We claim that the reference U-Net is crucial for preserving the fine
details of garments. Previous works like AnyDoor [8] uses a image encoder (e.g.,
DINOv2 [43]) to extract the garment features. StableVITON [26] leverages a
ControlNet-like [65] structure to extract finer representations. We organize the
qualitative comparisons in Fig. 5. We leverage the CLIP image encoder, DINOv2,
and ControlNet as feature extractors and apply the same training settings for fair
comparison. We observe that CLIP, DINOv2, and ControlNet could only encode
the global appearances of the garments, but fail to preserve the identity of the
detailed patterns/texts/logos. In contrast, the reference U-Net provides fine-
grained details and is able to preserve the high-fidelity details of the garments.
Sparse correspondence alignment. It is the core component of our point-
based control. We first conduct ablation studies for the control injection methods
in Tab. 1. We follow the evaluation protocol introduced in Sec. 4.2 to calculate
the landmark distance. Without the point embedding, our try-on baseline (row 1)
gets a high landmark distance. In the second row, we first explore injecting the
point embedding at the input noise of the main and reference U-Net. In the third
row, we report the results of injecting the control signal in the attention layer as
introduced in Sec. 3.3. In Tab. 2, we add the enhancement strategies presented
in Sec. 3.4 step-by-step to verify the effectiveness of our designs.
Training point pair collection. As introduced in Sec. 3.5, we collect the
control point by using a siamese U-Net structure. In this section, we make ex-
tensive experiments by comparing different correspondence-matching methods.
We also utilize the benchmarks of fashion landmarks to evaluate the matching
accuracy. Concretely, given a pair of landmarks on the person and garment
image, we leverage different matching methods to map the landmarks from the
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Fig. 6: Qualitative comparison for classical virtual try-on. We make
comparisons on VITON-HD [10] test split with DCI-VTON [15], LaDI-VTON [39],
KGI [32], AnyDoor [8], and StableVITON [26]. Our solution demonstrates notable
superiority in detail preservation and generation quality.

Table 1: Point embedding injection.
We compare different injection methods
and report the landmark distance.

Distupper Distdown Distcoat
None 35.65 21.13 43.34
Latent Noise 27.32 16.34 30.38
Attention q,k 24.35 15.79 27.27

Table 2: Enhancing strategies for cor-
respondence alignments are added step by
step to verify the effectiveness.

Distupper Distdown Distcoat
Base (Attention k,q) 24.35 15.79 27.27
+ Zero-init 22.65 15.33 25.56
+ Condition-dropping 18.39 12.04 20.44
+ Point-weighted loss 17.65 10.32 20.32

person image to the garment image. Then, we calculate the distance between
the mapped results with the ground truth landmarks. We observe that he pre-
trained diffusion models demonstrated superior abilities compared with other
feature extractors like CLIP [49] and DINOv2 [43]. We also include several
specific correspondence-matching methods, and our pre-trained reference U-Net.
Among them, the diffusion matcher demonstrates the best performance.

4.4 Comparisons with Existing Alternatives

In this section, we conduct intensive comparisons with existing alternatives. We
first compete for previous arts in the standard setting of virtual try-on. After-
ward, we compare interactive image editing methods that support click/drag.
Standard virtual try-on. We report the qualitative results in Tab. 3 on
VITON-HD [10] and Dresscode [40] datasets. Our model gets the best result
for the FID and KID and competitive performance for the SSIM and LPIPS.
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Fig. 7: Qualitative comparison with drag-based image editing methods. We
make comparisons with DragDiffusion [53] and DragonDiffusion [41]

Table 3: Quantitative comparisons with existing state-of-the-art try-on solutions on
VITON-HD and DressCode upper-body (D.C. Upper) datasets. Bold and underline
denote the best and the second best result, respectively.

Train / Test VITON-HD / VITON-HD D.C. Upper / D.C. Upper
Method SSIM LPIPS FID KID SSIM LPIPS FID KID
VITON-HD [21] 0.862 0.117 12.117 3.23 - - - -
HR-VITON [30] 0.878 0.1045 11.265 2.73 0.936 0.0652 13.820 2.71
LADI-VTON [39] 0.864 0.0964 9.480 1.99 0.915 0.0634 14.262 3.33
Paint-by-Example [61] 0.802 0.1428 11.939 3.85 0.897 0.0775 15.332 4.64
DCI-VTON [15] 0.880 0.0804 8.754 1.10 0.937 0.0421 11.920 1.89
GP-VTON [58] 0.884 0.0814 9.072 0.88 0.769 0.2679 20.110 8.17
AnyDoor [8] 0.821 0.099 10.846 2.46 0.899 0.119 14.834 3.05
StableVITON [26] 0.852 0.0842 8.698 0.88 0.911 0.0500 11.266 0.72
Wear-Any-Way 0.877 0.078 8.155 0.78 0.934 0.0409 11.72 0.33

Considering that the quantitative results could not perfectly align with the
real generation quality. We make qualitative comparisons with previous state-
of-the-art solutions in Fig. 6. Wear-Any-Way demonstrates obvious advantages
over other works for the generation quality and detail preservation.
Controllable generation. We prove the controllability of our model by com-
paring it with drag-based image editing methods like DragDiffusion [53] and
DragonDiffusion [41]. We illustrate the comparison results in Fig. 7. We observe
that DragDiffusion [44] could not precisely follow the instructions of drag, while
DragonDiffusion [41] usually destroys the structure of humans and garments.

4.5 Qualitative Analysis

We illustrate more examples in Fig. 8. It is demonstrated that Wear-Any-Way
supports the manipulation for various types of garments including coats, T-
shirts, pants, hoodies, etc. Besides, users could assign arbitrary numbers of
control points to get the customized generation results. As shown in the first row,
assisted by the precise point control, Wear-Any-Way can conduct “continuous”
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Unsplit Half Split Split Wide Split Wider Split

Sleeve Up Sleeve Down Pant Up Pant Down

Untuck Tuck In Half Tuck Front Tuck Side Tuck

Fig. 8: Manipulable virtual try-on with click. Wear-Any-Way supports users
to assign arbitrary numbers of control points on the garment and person image to
customize the generation, bringing diverse potentials for real-world applications.

editing for splitting the coat gradually. The high controllability of Wear-Any-Way
enables it to realize many fantastic styles of wearing, like rolled-up sleeves or
paints, and the different types of tuck.

5 Conclusion

We propose Wear-Any-Way, a novel framework for manipulable virtual try-on.
Besides reaching state-of-the-art performance on the classical setting, it enables
users to customize the style of wearing by assigning control points. To achieve
this, we introduce a sparse correspondence align module to make our model cus-
tomizable. Wear-Any-Way serves as a practical tool for e-commerce and provides
novel inspirations for the future research of virtual try-on.
Limitations and potential effect. Our methods could still generate some ar-
tifacts for fine details like human hands, especially when the hands only occupy a
small region in the full image. This could be improved by using higher resolutions
and larger diffusion models like SD-XL [47].
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