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A Experimental Results with Higher Imbalance Ratio

In this section, we provide the performance of the proposed method compared to
other baselines on long-tailed CIFAR and mini-ImageNet datasets with an imbal-
ance ratio of 0.01 in Tabs. 1 and 2. The performances of other methods were taken
from [8]. For methods not reported in [8], we reproduced their performances.
For all experimental setups, the proposed DaSC consistently outperforms other
baseline methods. Specifically, on CIFAR-10 with symmetric noise of 0.4, DaSC
achieves 2.37% and 8.01% better performance over SFA and TABASCO, re-
spectively. Similarly, for CIFAR-10 with asymmetric noise of 0.2, DaSC outper-
forms SFA and TABASCO by 4.93% and 10.58%, respectively. For CIFAR-10N
with human annotations, DaSC achieves significant performance improvements
of 6.97% and 6.07% over SFA and TABASCO, respectively. These results demon-
strate the effectiveness and robustness of DaSC against extremely noisy labels
and long-tailed distributions.

B Ablation Study on Hyperparameters

In Figs. 1 and 2, we present experimental results for the confidence threshold τc,
temperature parameter for temperature scaling τt, and memory bank size |M | on
the long-tailed CIFAR-10 dataset with asymmetric noise of 0.2 and symmetric
noise of 0.4, respectively. Additionally, Figs. 3 and 4 provide experimental results
with other hyperparameters, including the temperature parameter τs for SBCL,
the temperature parameter τm for MIDL, the coefficient λSBCL for SBCL, and
the coefficient λMIDL for MIDL. These results show that DaSC maintains robust
performance across various hyperparameter changes.
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Table 1: Performance of the proposed method compared to baseline methods on the
long-tailed version of CIFAR datasets with (a) symmetric noise and (b) asymmetric
noise. The best results are shown in bold.

Dataset CIFAR-10 CIFAR-100
Imbalance Ratio 0.01
Noise Ratio 0.4 0.6 0.4 0.6
Baseline CE 47.81 28.04 21.99 15.51

LT

LA [9] 42.63 36.37 21.54 13.14
LDAM [2] 45.52 35.29 18.81 12.65
IB [10] 49.07 32.54 20.34 12.10
BBN [13] 45.22 31.63 17.31 12.83

NL
DivideMix [7] 32.42 34.73 36.20 26.29
UNICON [5] 61.23 54.69 32.09 24.82
TCL [4] 56.13 45.88 33.29 24.39

NL-LT

MW-Net [11] 46.62 39.33 19.65 13.72
RoLT [12] 60.11 44.23 23.51 16.61
HAR [1] 51.54 38.28 20.21 14.89
ULC [3] 45.22 50.56 33.41 25.69
SFA [6] 67.98 54.70 37.69 30.02
TABASCO [8] 62.34 55.76 36.91 26.25
DaSC 70.35 58.49 41.12 33.65

(a) Symmetric noise

Dataset CIFAR-10 CIFAR-100
Imbalance Ratio 0.01
Noise Ratio 0.2 0.4 0.2 0.4
Baseline CE 56.56 44.64 25.35 17.89

LT

LA [9] 58.78 43.37 32.16 22.67
LDAM [2] 61.25 40.85 29.22 18.65
IB [10] 56.28 42.96 31.15 23.40
BBN [13] 54.51 51.15 25.19 21.68

NL
DivideMix [7] 41.12 42.79 38.46 29.69
UNICON [5] 53.53 34.05 34.14 30.72
TCL [4] 60.58 49.66 40.18 30.54

NL-LT

MW-Net [11] 62.19 45.21 27.56 20.40
RoLT [12] 54.81 50.26 32.96 -
HAR [1] 62.42 51.97 27.90 20.03
ULC [3] 41.14 22.73 34.07 25.04
SFA [6] 68.63 52.16 41.89 33.33
TABASCO [8] 62.98 54.04 40.35 33.15
DaSC 73.56 58.45 43.52 35.12

(b) Asymmetric noise

Table 2: Performance of the proposed method compared to baseline methods on the
long-tailed version of CIFAR with human annotations and Red mini-ImageNet dataset.
The best results are shown in bold.

Dataset Red 10N 100N
Imbalance Ratio ≈ 0.01 0.01
Noise Ratio 0.2 0.4 ≈ 0.4
Baseline CE 30.88 31.46 49.31 25.28

LT

LA [9] 10.32 9.56 50.09 26.39
LDAM [2] 14.30 15.64 50.36 30.17
IB [10] 16.72 16.34 56.41 31.55
BBN [13] 30.92 30.30 52.98 25.06

NL
DivideMix [7] 33.00 34.72 30.67 31.34
UNICON [5] 31.86 31.12 59.47 37.06
TCL [4] 37.24 35.70 61.70 39.56

NL-LT

MW-Net [11] 30.74 31.12 54.95 31.80
RoLT [12] 15.78 16.90 61.23 33.48
HAR [1] 32.60 31.30 56.84 32.34
ULC [3] 34.24 34.84 43.89 35.71
SFA [6] 36.70 35.52 63.64 40.83
TABASCO [8] 37.20 37.12 64.54 39.30
DaSC 40.26 39.72 70.61 44.59



DaSC 3

(a) Confidence threshold τc (b) Temperature parameter τT (c) Memory bank size |M |

Fig. 1: Performance comparison with various hyperparameter configurations. The per-
formance was evaluated on long-tailed CIFAR-10 with asymmetric noise of 0.2.

(a) Confidence threshold τc (b) Temperature parameter τT (c) Memory bank size |M |

Fig. 2: Performance comparison with various hyperparameter configurations. The per-
formance was evaluated on long-tailed CIFAR-10 with symmetric noise of 0.4.

(a) SBCL Temp. τs (b) SBCL Coef. λSBCL (c) MIDL Temp. τm (d) MIDL Coef. λMIDL

Fig. 3: Performance comparison with various hyperparameter configurations. The per-
formance was evaluated on long-tailed CIFAR-10 with asymmetric noise of 0.2.

(a) SBCL Temp. τs (b) SBCL Coef. λSBCL (c) MIDL Temp. τm (d) MIDL Coef. λMIDL

Fig. 4: Performance comparison with various hyperparameter configurations. The per-
formance was evaluated on long-tailed CIFAR-10 with symmetric noise of 0.4.
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C Performance of Different Representations and Model
Prediction for Noisy Sample Selection.

Table 3 presents the performance of DaSC using different representations and
model predictions for detecting correctly labeled samples. For representations, we
use either f(x(i)) from the backbone network or z′(i) from the MLP projector.
For model predictions in DaCC, we employ p̂c(i) from the conventional classifier
or p̂b(i) from the balanced classifier.

The results show that the DaSC using z′(i) and p̂c(i) outperforms all other
setups. Using the low-dimensional representation from the MLP projector yields
better performance than using the representation from the backbone network.
Additionally, predictions from the conventional classifier are more effective than
those from the balanced classifier. This is likely due to the early training insta-
bility of the balanced classifier, which is trained using an estimate of the data
distribution at each epoch, impacting the accurate identification of correctly
labeled samples.

Table 3: Performance of DaSC with different representation and model prediction
strategies for class centroid estimation.

Representation Model Prediction
CIFAR-10 CIFAR-100

Sym. Asym. Sym. Asym.
0.4 0.2 0.4 0.2

f(x(i)) p̂c(i) 88.90 89.10 61.16 62.85
z′(i) p̂b(i) 88.84 89.57 61.26 62.26
z′(i) p̂c(i) 89.04 89.89 61.85 63.22



DaSC 5

D Ablation Study on Subset DI

DaSC leverages samples from a specific subset DI rather than directly from the
training dataset D. This strategy enhances performance by leveraging a variety
of classes to estimate class centroid while filtering out unreliable samples due
to noisy labels and long-tailed distributions. As shown in Tab. 4, using samples
from the subset DI achieves better performance than using them directly from
the training dataset D.

Table 4: Performance comparison of using D versus DI used in DaCC.

Sample Set
CIFAR-10 CIFAR-100

Sym. Asym. Sym. Asym.
0.4 0.2 0.4 0.2

D 87.89 89.31 61.26 62.56
DI 89.04 89.89 61.85 63.22

E Effect of Temperature Scaling

The proposed DaSC employs temperature scaling to mitigate the inherent bias in
model predictions. To explore its impact, Fig. 5 presents the prediction score of
each sample relative to the distance from the closest class centroid. These results
indicate that temperature scaling assigns higher weights to reliable samples closer
to the centroid (i.e., higher prediction scores), highlighting their importance,
while giving lower weights to unreliable samples farther from the centroids.

(a) Sym. 0.4 (b) Asym. 0.2

Fig. 5: Prediction scores of each sample versus the distance to the closest class centroid.
‘TS’ denotes the temperature scaling.
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F Intuitive explanations of main components

Our method achieves the following objectives for improving sample selection: 1)
accurately obtaining the class probability for all class samples, 2) enhancing the
representation skewed by class imbalance, and 3) improving the discrimination
among low-confidence samples. We devise three methods, DaCC, SBCL, and
MIDL, to achieve these goals. Fig. 6 visually explains how each main component
works.

Fig. 6a illustrates that DaCC uses samples from all classes based on pre-
dictions rather than their noisy label to estimate class centroids, allowing the
effective use of samples from all classes. DaCC weights samples according to
predicted scores for more effective use of reliable samples. Fig. 6b demonstrates
that SBCL balances skewed representation using reliable label information from
high-confidence samples. Fig. 6c illustrates that MIDL enhances class discrim-
ination by using diverse negative keys with mixup samples in a self-supervised
manner.

(a) DaCC (b) SBCL (c) MIDL

Fig. 6: Intuitive illustration of main components in DaSC: (a) DaCC, (b) SBCL, and
(c) MIDL.
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