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Fig. 1: System illustration: during a penalty kick, the drone can autonomously track
and swiftly orbit around the athlete, offering diverse observation angles for reconstruct-
ing and rendering the entire sports scene.

1 Comparison with Other Dynamic Reconstruction
Methods

We tested other methods in the scope of general 4D scene reconstruction and
found that they exhibit performance degradation on our AerialRecon dataset, to
be specific, having difficulties in accurately modeling fast-moving and changing
human motions. We reported novel view rendering metrics in Table. 1. Note that
all methods use the same training data from Drone No.1, and test on the same
views from Drone No.2. For fair comparison, all methods use the same camera
parameters from our calibration module.

NeRF-based methods which simply condition NeRF on a time variable or
employ a deformation field fail to handle the dramatic action variations, and
the rendered human could be mostly incomplete. Also, without special design
on unbounded scene like [1, 24], it is hard for most of them to model the
large-scale outdoor scenes in our datasets, resulting in blurring rendering on
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the background. Monocular 4D Gaussian splatting based methods[21, 23] im-
prove the unbounded scene rendering quality by a large margin, achieving bet-
ter perfromance in metrics. However, all of them are struggling with fast, in-
tricate, complex human motion in real-world outdoor sports. Blurring due to
dramatic scene changes such as human motions remain unsolved for the SOTA
methods[3, 4, 6, 17, 18, 20, 21, 22, 23].

Table 1: Comparison of monocular dynamic reconstruction methods on AerialRecon

Climb Jogging Kungfu Football
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D2-NeRF[22] 17.51 0.553 0.472 16.80 0.509 0.440 18.03 0.598 0.353 16.98 0.516 0.466
Nerfies[17] 15.63 0.406 0.576 16.77 0.455 0.542 16.72 0.460 0.533 17.55 0.434 0.487

HyperNeRF[18] 16.39 0.448 0.545 17.52 0.461 0.469 17.40 0.445 0.515 18.03 0.549 0.357
NeRF-Player 16.74 0.437 0.511 16.46 0.439 0.564 17.83 0.502 0.439 17.28 0.431 0.514
K-Planes[4] 15.50 0.383 0.586 16.03 0.451 0.556 15.38 0.379 0.590 16.35 0.457 0.560
TiNeuVox[3] 17.42 0.473 0.479 16.90 0.462 0.519 18.29 0.579 0.383 18.50 0.617 0.332
FFDNeRF[6] 17.58 0.491 0.462 18.28 0.587 0.348 18.15 0.556 0.391 17.74 0.523 0.425

Deformable-3DGS[23] 19.23 0.642 0.338 19.54 0.653 0.324 19.75 0.628 0.326 19.28 0.635 0.314
4D-GS[21] 18.92 0.613 0.372 19.61 0.628 0.310 19.32 0.643 0.335 18.95 0.642 0.309

Ours 24.24 0.891 0.203 22.94 0.841 0.243 23.29 0.874 0.237 22.41 0.793 0.268

2 Implementation Details

We choose NeRF-T[10], NeuMan[8] and HOSNeRF[12] for comparison on three
datasets: the dataset from NeuMan[8], the dataset from HOSNeRF[12], and our
AerialRecon dataset. We also test several SOTA method[3, 4, 6, 17, 18, 20, 21,
22, 23] in the scope of general 4D reconstruction on our AerialRecon dataset.
The implementation details are as follows:

HyperNeRF We set the learning rate which starts from 1e-3 and exponentially
decays to 1e-4. Following [18], our implementation involves a deformable slicing
surface modeled as a MLP with a depth of 6 and width of 64, incorporating a
skip connection at the 5th layer. While leveraging the official implementation of
[18], we enhance training by including densely sampled frames from the videos.
We adopt a sampling rate of 256 points per ray for input resolution of 1920×1080
and conduct training on four NVIDIA GeForce RTX 3090 GPUs, iterating for
approximately 1.2 million steps to achieve convergence on our dataset.

NeRF-T Utilizing a learning rate of 0.0005 as suggested in [10], we employ
a sampling rate of 128 points per ray for input resolution of 1920×1080. Our
model training occurs across four NVIDIA GeForce RTX 3090 GPUs, requiring
approximately 3 days for each scene within our dataset.

NeuMan We have directly utilized the official implementation of NeuMan [8]
and conducted testing on our dataset. Training the model on four NVIDIA
GeForce RTX 3090 GPUs required approximately 7 days for each scene in our
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dataset. Initially, during the training’s first stage, the closest point-finding oper-
ation relied on the RANSAC algorithm. However, challenges arose when working
with datasets like Rock Climbing or grassland due to potential multiple contact
points between humans and the scene. The instability of the RANSAC algorithm
resulted in significant errors across different instances, leading to failures in our
dataset. To address this issue, we introduced benchmark scales calculated by a
calibration board for scenes like football and rock climbing. Despite these ad-
justments, NeuMan’s limitation in considering unbounded scene reconstruction
design led to rendering issues such as noticeable blurring in the background and
ghosting effects in large-scale outdoor settings when compared to the original
NeRF outputs.

HOSNeRF Based on the official implementation of HOSNeRF [12], we follow
the three-stage training procedure outlined in their codebase. Training the model
on eight NVIDIA GeForce RTX 3090 GPUs took approximately 6 days to com-
plete. In our utilization of the AerialRecon dataset, we leveraged the scale factor
determined by the calibration board positioned within the scene. This approach
enhances the precision and robustness of coordinate system alignment, ensur-
ing accurate human-scene alignment. Notably, this calibration information is
readily available across all methods within the AerialRecon dataset, facilitating
alignment adjustments as needed.

Monocular 4D Gaussian Splatting We use the point cloud attained in
our calibration model for gaussian in [21, 23] as initialization. To be specific,
we combine the first-frame human point could converted by SMPL[13] and the
background point cloud attained during our calibration process for point cloud
initialization. Then we use the official implementation from [21, 23].

Nerfies We directly adopt the official implementation of Nerfies[17] by em-
ploying the Adam optimizer with a learning rate that exponentially decays by
a factor of 0.1 until reaching the maximum number of iterations. The training
cost eight NVIDIA GeForce RTX 3090 GPUs for 24hours.

NeRFPlayer We use the nerfstudio version code for test. We select the version
using Instant-NGP[16] as backbone. The method utilizing the TensoRF back-
bone is not documented due to the excessive GPU memory demands during
training.

K-Planes The official implementation using hybrid version with modules like
proposal sampling are used in experiments. It is important to note that im-
portance sampling is not applicable to monocular videos or datasets involving
moving cameras.
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TiNeuVox We use the official PyTorch implementation of TiNeuVox-B. We
initialize the neural voxels with zero-values and double the voxel resolution after
4K and 8k iterations, respectively.

FFDNeRF We implement the method according to the paper[6]. The average
splatting and coarse-to-fine training strategy are utilized. We train the model on
each scene using one NVIDIA GeForce RTX 3090 GPU for around 30 hours.

Our Method Our comprehensive joint training process takes approximately 3
days, involving the simultaneous training of our complete model, which encom-
passes both the scene model Ψs and the human model Ψh, across four NVIDIA
RTX 3090 GPUs. Before that, the preprocessing stage, which includes tasks
like COLMAP and MoCap, requires around 3 hours when processing input im-
ages of roughly 600 frames. When applying our method to other datasets such
as NeuMan and HOSNeRF, we adhere to their implementations as detailed in
[8, 12], manually calculating scales and aligning scenes accordingly. Notably, we
utilize Mip-NeRF360 as the backbone for our scenes. Transitioning to a faster
background backbone like the Gaussian-Splatting-based method [9] holds the
potential to significantly expedite training processes.

3 Dataset and Future Work

Our proposed AerialRecon dataset features 25 real sports scenes captured using
4 synchronized drone cameras. Comprising 400 clips of drone videos and over
120,000 images, it includes multi-view images accurately aligned within the same
point cloud under a unified world coordinate system for each specific scene. This
dataset paves a road for future research endeavors.

Dynamic Objects Reconstructing dynamic objects from a monocular RGB
video captured in real-world settings remains as a challenge. The inherent am-
biguity in monocular depth estimation complicates tasks such as monocular 3D
object tracking and 6DOF pose estimation, especially in unpredictable environ-
ments. Leveraging multi-view data from 4 timely-synchronized drones in Aerial-
Recon could be helpful in those tasks.

Gaussian Splatting Existing datasets of dynamic scene reconstruction are
either synthetic or contain limited human movements. There is an urgent need for
a dataset collected in real-world scenarios to fill the gap. AerialRecon is a dataset
consists of real-world outdoor dynamic scenarios. It will facilitate research in 4D
reconstruction, especially in the emerging field of 4D Gaussian Splatting.
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Drone Formations In AerialRecon, each sports scene aligns images from four
distinct viewpoints to a unified world coordinate during calibration. This align-
ment sets the stage for developing multi-view systems using the AerialRecon
dataset. Subsequent research could harness the synchronized data from the four
drones to devise algorithms centered around drone formations.

4 Layered Representation

Following [7, 19], a neural layered representation is utilized in joint training 4.3
and compositional volume rendering4.2.

4.1 Layered Ray Sampling Strategy

In Fig. 2, we illustrate the partitioning of 3D space into two regions using a
3D bounding box. During human motion capture, we acquire per-frame human
SMPL meshes [13] in the 3D world coordinate system, accompanied by their
respective 3D bounding boxes. This 3D bounding box serves as a reference point
for segmenting the 3D scene into interior and exterior spaces.

Fig. 2: 3D Bounding from SMPL[13] for 3D parsing scenes

Subsequently, we implement a layered ray sampling method shown in Fig.
3. More specifically, when a camera ray intersects with the human, we select
points within the bounding box for training our human model Ψh and points
outside the bounding box for training our background model Ψs. In cases where
the ray does not pass through the bounding box, all sampled points are utilized
for training the background model Ψs.
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Fig. 3: Layered Ray Sampling Strategy

4.2 Compositional Volume Rendering

Vanilla-NeRF [15] uses conventional Volume Rendering Equations by Max’s in-
sights on the quadrature rule of volume rendering [14].

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci (1)

Ti = exp

−
i−1∑
j=1

σjδj

 (2)

Utilizing the layered Ray Sampling Strategy, we individually query Ψh and
Ψs to obtain the composited rendering output. Here, Ch(r) represents the accu-
mulated color from samples within the 3D bounding box, while Cs(r) denotes
the accumulated color from samples outside the 3D bounding box. The rendered
color of a pixel Ĉ(r) can be calculated as follows:

Ĉ(r) = Ch(r) +
(
1− αh(r)

)
Cs(r) (3)

Here the αh is the alpha values of the human layer

αh
i = 1− exp

(
−σh

i δ
h
i

)
(4)

4.3 Joint Training without segmentation mask

NeRF[15] uses L2-norm as a loss function for supervised training:

L =
∑
r∈R

(∥∥∥C(r)− Ĉ(r)
∥∥∥2
2

)
(5)
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A conventional approach involves utilizing a 2D human segmentation mask
to partition input images into distinct sections for separate network processing,
leading to seperate training of the human and scene models. However, these
methods typically necessitate a post-processing step involving α-composition
during rendering, which can introduce significant artifacts in the final output.
In contrast to these approaches, our method directly segments the scene using
a 3D bounding box, eliminating the requirement for a 2D segmentation mask to
differentiate between human and background pixels during training.

5 3D Pose Visualization

We also visualize the per-frame human 3D vertices onto the 3D background pro-
duced by MVS dense reconstruction [5].
Consecutive 3D pose estimation: The visualization result, as shown in Fig.
4, helps us to validate the temporal consistency of the estimated positions of
the performer in the 3D space. In the illustration, varying colors on the human
body signify the athlete’s positions at different instances during a penalty kick.
The results demonstrate that the estimated human motion maintains a plausi-
ble spatial alignment in 3D space while exhibiting temporal consistency across
frames.

Fig. 4: Visualization of consecutive SMPL vertices on MVS dense point cloud, different
color refers to the different moments in a kicking motion

6 Human Pose Alignment

We perform a quantitative evaluation of human pose estimation comparing drone
and handheld methods. The metrics AP, AP50, and AP75 are defined in the
COCO 2017 dataset [11]. While our SMPL estimation uses a 25-point keypoint
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model from OpenPose [2], our quantitative analysis of 2D keypoints uniformly
uses the 17-point model specified by COCO 2017 [11], as illustrated in Fig. 5. It
is worth noting that 25-point keypoint can be converted into the 17-point model,
as all the 17 points can be found in 25-point result.

Fig. 5: 2D keypoints alignment between OpenPose[2] and COCO[11]
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