
Supplementary Materials for
“ConGeo: Robust Cross-view Geo-localization

across Ground View Variations”

Li Mi1∗ , Chang Xu2,1∗† , Javiera Castillo-Navarro1 , Syrielle Montariol1 ,
Wen Yang2 , Antoine Bosselut1 , and Devis Tuia1

1 EPFL
2 Wuhan University

https://eceo-epfl.github.io/ConGeo/

The supplementary materials contain the following information:

– Dataset details (Section S1).
– Implementation details (Section S2).
– Detailed method description (Section S3).
– Hyper-parameters analysis: about the training FoV angle, loss weights, and

the learning rate (Section S4).
– Additional experiments: architecture analysis (CNN-based and ViT-based

encoders), transfer experiments, polar transformation, different paradigms
of aligning modalities (Section S5).

– Supplementary results to the main paper: full tables (Section S6).
– Visualization: additional samples and failure case analysis (Section S7).
– Discussions: limitations and future works (Section S8).

S1 Dataset Details

CVUSA. The CVUSA dataset [20] contains 35,532 ground-aerial view pairs for
training and 8,884 pairs for evaluation. The satellite images are with the size of
750 × 750 and street-view images are with the size of 224 × 1232. Both types
of images are North-aligned to ensure that the geographical North is located in
the upper center of the satellite image and the center of the street view images.
CVACT. The CVACT dataset [8] is split into training, validation, and test sets,
where training and validation sets are of the same size as CVUSA while the test
set has 92,802 image pairs, which is around 10 times larger than the validation
set. The image size is larger than the CVUSA dataset, with 1200 × 1200 for
satellite images and 832× 1664 for ground views.
VIGOR. The VIGOR dataset [24] contains 90,618 aerial-view images and 105,214
ground-view images from four cities: New York, Seattle, San Francisco, and
Chicago. The raw image sizes for aerial view and ground view are 640 × 640 and
2048 × 1024, respectively. Different from the one-to-one matching in CVUSA
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Method Metric Learning Loss Architecture Optimizer Weight-sharing Zero-padding
Sample4Geo-CNN [2] InfoNCE CNN AdamW [11] ! %

Sample4Geo-ViT [2] InfoNCE ViT AdamW [11] % !

TransGeo [23] Soft-triplet ViT ASAM [7] % !

SAIG-D [25] Soft-triplet CNN & Attention AdamW [11] % !

Table S1: A comparison of the basic settings in different base models.

and CVACT datasets, each query image in VIGOR can be paired with multi-
ple reference images and vice versa. There are two subsets in VIGOR datasets:
same-area and cross-area. In the paper, we use the cross-area subset to evalu-
ate the model’s robustness across locations. In the training set, the cross-area
setting contains 44,055 aerial view images with 51,520 ground view images from
New York and Seattle. The cross-area test set is sampled from San Francisco
and Chicago, with 46,563 aerial view images and 53,694 ground view images.
University-1652. The University-1652 dataset [22] contains different types of
cross-view images, including satellite images, unmanned aerial vehicle (UAV)
images, and ground view images. In our experiments, we train and evaluate
models based on street-satellite matching to demonstrate the robustness of the
model on real-world limited FoV images. For street-to-satellite matching, there
are 2,579 street images and 951 satellite images. For satellite-to-street matching,
there are 701 satellite images and 2,921 street images. The image size is 512×512.

S2 Implementation Details

Data Preprocessing. We followed the data preprocessing methods used in
the base models. For example, when we use Sample4Geo [2] as our base model,
we resize the ground view images to 140 × 768, and the aerial view images to
384×384 for CVUSA and CVACT. For the VIGOR dataset, we resize the ground
view to 384×768 and the satellite image to 384×384. As for the University-1652
dataset, all images are resized from 512×512 to 384×384. Note that for models
utilizing TransGeo, SAIG-D, and Sample4Geo[ViT] architectures, we employ
zero-padding in the area after FoV cropping for both training and testing inputs,
enabling the learnable positional encoding to adapt to inputs with varying FoVs.
Unless specified, we retain the corresponding data augmentation in different base
models [2, 23, 25] for fair comparisons. For those using Sample4Geo as the base
model, the data augmentation includes dropout, color jitter, flipping on both
ground and aerial views, rotation of satellite images, and the corresponding shift
on the ground view images.
Model and Training Details. As described in the paper, for different base
models, we follow their default settings respectively, including model architec-
ture, weight-sharing operations, and basic loss etc. to ensure a fair comparison.
A comparison of the detailed settings in different base models is shown in Ta-
ble. S1. For instance, for experiments based on Sample4Geo[CNN], the weights
of the ground view encoder and the aerial view encoder are shared, while for
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others (Sample4Geo[ViT] and other base models), the weights are not shared
between the two encoders. For Sample4Geo[CNN], instead of a batch size of 128
on multiple GPUs, we set the batch size as 16 on a single GPU, which is much
smaller. Accordingly, we set the starting learning rate as 0.0001 instead of 0.001
in the default settings.
Experimental Environment. The code was developed using Python version
3.8, PyTorch version 2.0.1, Timm version 0.9.7, and OpenCV-Python version
4.8.1.78. A single NVIDIA GeForce RTX 4090 is utilized for computation.

S3 Detailed Method Description

S3.1 Pseudo Code

The core pseudo code of ConGeo’s training process is provided in Alg. 1 in a
Pytorch style. Here we use the CNN-based Sample4Geo as an example.
Training Phase: In each mini-batch, we take paired ground-aerial images (IQ,
IR) as input, and perform defined transformations Tq (i.e., random shift, FoV
cropping) to each ground view image Iq (Iq ∈ IQ), obtaining the transformed
ground image Iq

∗ = Tq(Iq|θ, α). We also perform augmentations in the base
model to IR (described in the data preprocessing of Section S2), obtaining IR

∗.
Then, the image batchs IQ, IQ∗, IR and IR

∗ are encoded by two encoders, a
query encoder Eq for encoding IQ, IQ∗, and a reference encoder Er for encoding
IR, IR∗, with output feature embeddings Q, Q∗, R, and R∗ respectively. The
optimization goal contains four targets, two single-view contrastive objectives,
one for aligning the feature space between Q and Q∗ while another for aligning
the feature space between R and R∗, a cross-view contrastive objective aligning
the feature space between R and Q∗, and a vanilla contrastive objective aligning
the feature space between R and Q. The total loss is a weighted summation of
the four loss functions, where the ablation of weights will be studied in the next
section.
Testing Phase: Depending on different evaluation settings, the query image is
transformed accordingly. We use the original full-view ground images and the
transformed ground view images for the North-aligned setting and the other
two challenging settings (unknown orientation and limited FoV settings), re-
spectively. For each query input and a set of reference aerial images, the trained
Eq and Er are used for feature representation, and then the reference images are
ranked as the retrieval results based on the cosine similarity between the query
feature and reference features.

S3.2 Training on the University-1652 Dataset

Street images in the University-1652 dataset are ground view images with un-
known orientations and limited FoVs. In order to adapt ConGeo to street images
without collecting a full-view panorama, we provide an alternative way of build-
ing the ground view single-view contrastive objective (Eq. (1) in the paper). In-
stead of enforcing the representations of ground view variants to be closer to the
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Method(α) FoV=360◦ FoV=180◦ FoV=90◦ FoV=70◦ Avg.
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1

Sample4Geo+DA 84.1 95.0 96.9 99.4 63.6 84.6 90.1 98.2 32.2 55.1 64.5 87.4 21.5 42.0 51.6 79.9 50.4
ConGeo(90) 81.4 93.0 95.3 98.6 92.2 98.1 98.9 99.7 55.5 75.4 81.5 93.9 35.5 54.8 61.9 81.0 66.2
ConGeo(180) 85.2 95.1 96.9 98.9 92.3 97.9 98.7 99.7 55.9 73.2 79.0 90.9 37.1 55.7 62.8 81.4 67.6
ConGeo(360) 96.6 98.9 99.2 99.7 83.8 94.2 96.1 98.8 38.2 58.2 65.2 82.0 19.5 35.9 43.8 66.5 59.5

ConGeo(0-360) 63.5 80.0 85.4 95.5 82.8 94.1 96.3 99.3 55.2 77.3 83.0 94.7 46.4 67.1 75.2 91.6 62.0

Table S2: Analysis of training ConGeo with different FoV angle α: 90◦, 180◦, 360◦,
and random angles between 0◦-360◦, on the CVUSA dataset. Sample4Geo+DA means
training Sample4Geo with targeted data augmentation (random shift and random FoVs
70◦-360◦).

Loss weights North-aligned FoV=90◦

w1 w2 w3 R@1 R@10 R@1% R@1 R@10 R@1%
0.25 0.25 98.7 99.7 99.9 51.7 75.9 89.6
0.25 0.5 98.5 99.7 99.9 54.0 78.2 90.9
0.5 0.25 98.3 99.7 99.9 55.9 79.0 90.9
0.5 0.5 98.4 99.7 99.8 55.0 77.9 90.3

Table S3: Analysis of loss weights of
single- and cross-view contrastive objec-
tives on the CVUSA dataset.

LR
North-aligned FoV=90◦

R@1 R@10 R@1% R@1 R@10 R@1%
0.001 97.6 99.5 99.8 41.4 66.8 83.8
0.0001 98.3 99.7 99.9 55.9 79.0 90.9
0.00001 95.6 99.4 99.8 28.8 59.2 89.4

Table S4: Analysis of the starting learn-
ing rate on the CVUSA dataset.

original ones, we construct the single-view contrastive objective by emphasizing
the proximity between street images obtained from the same geographic loca-
tions but depicting different perspectives or angles. Since the street-to-satellite
retrieval is a many-to-one matching, there is more than one street view image
located in the region of satellite images. Therefore, for each street view sample,
we randomly select another street image with the same location to construct the
single-view contrastive objective for training.

S4 Hyper-parameter Analysis

S4.1 Training FoV Angle α

In order to achieve robustness across ground view variations, ConGeo applies a
set of transformations on ground view images during training. The transforma-
tion includes shifting the ground view images with a random orientation angle θ
and cropping the shifted images with a FoV angle α. In the main experiments,
we empirically set α to 180◦. Here, we provide detailed results by using differ-
ent training FoV angles. Results are shown in Table S2. In the table, we report
models trained with FoV images from 90◦, 180◦, 360◦, and random FoV from 0◦
to 360◦ on the unknown orientation and FoV settings. It can be seen that Con-
Geo’s performance is robust under different training FoVs, which consistently
surpasses the baseline with targeted data augmentation by a large margin.
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S4.2 Loss Weights w1, w2 and w3

We investigate the effect of loss weights on the retrieval performance. In Ta-
ble S3, model performance with different loss weights on North-aligned setting
and FoV=90◦ are reported. Results suggest that different loss weights may lead
to slight performance waves. Specifically, when we gradually increase the w1, w2,
and w3, the performance of R@1 under the North-aligned setting will slightly
decrease within 1 point, meanwhile, the limited FoV performance will be im-
proved. When the single-view loss weight w1 and w2 value are set higher, there
is a significant improvement on FoV=90◦ with around 4 points on R@1.

S4.3 Learning Rate

We also study the effects of the starting learning rate on training results. In
Table S4, we take the CVUSA dataset for example, and verify the training
performance under 0.001, 0.0001, and 0.00001, respectively. Results show that
the best performance is obtained under a learning rate of 0.0001. Moreover, we
can observe that the performance under the North-aligned setting is robust to
learning rates while the limited FoV setting is sensitive to learning rates.

S5 Supplementary Experiments

S5.1 Architecture Analysis

In the main paper, we demonstrate that ConGeo, as a learning objective, can
be plugged into different base models, including the CNN-based model [2] and
ViT-based model [23]. To better compare those two mainstream architectures for
cross-view geo-localization, we use Sample4Geo as the base model and switch the
backbone between CNN and ViT in Table S5 to test the corresponding perfor-
mance on the North-aligned settings and FoV=90◦. In other words, the only dif-
ference between these two base models is the encoder architecture: Sample4Geo-
CNN is with ConvNeXt [10] and Sample4Geo-ViT is with Swin Transformer [9].
From the results, we can see that ConGeo brings considerable improvement to
both architectures, between them, the improvement with the CNN-based back-
bone is larger. We also compare the effect of training FoV angle (α) on different
architectures. The results indicate that CNN-based architecture yields the best
overall performance when setting α to 180◦. The ViT-based architecture, al-
though shows less competitive performance compared to the CNN-based one,
seems to be more robust with different training angles α. Here, we present pre-
liminary findings regarding the analysis of different architectures under unknown
orientations and limited FoV settings. A more comprehensive investigation into
this direction could serve as an intriguing topic for future research.

S5.2 Polar Transformation Analysis

As we reviewed in the Related Works section in the main paper, polar transforma-
tion is commonly used to improve the models’ performance on the North-aligned
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Method North-aligned FoV=90◦

R@1 R@10 R@1% R@1 R@10 R@1%
Sample4Geo-CNN 98.7 99.8 99.9 2.5 9.8 26.7
ConGeo-CNN[180] 98.3 99.7 99.9 55.9 79.0 90.9

ConGeo-CNN[Random] 98.1 99.6 99.8 31.0 58.0 77.2
Sample4Geo-ViT 97.6 99.6 99.9 1.7 6.5 20.8
ConGeo-ViT[180] 96.5 99.3 99.8 51.0 77.8 91.9

ConGeo-ViT[Random] 96.9 99.3 99.8 48.4 74.9 90.7

Table S5: Architecture analysis. The
comparison of the base model and Con-
Geo (training FoV angle α set to 180 and
random, respectively) with different back-
bones: CNN-based and ViT-based.

Method
North-aligned FoV=90◦

R@1 R@10 R@1% R@1 R@10 R@1%

Sample4Geo w/o Polar 98.7 99.8 99.9 2.5 9.8 26.7

ConGeo w/o Polar 98.3 99.7 99.9 55.9 79.0 90.9

Sample4Geo w/ Polar 98.8 99.7 99.8 3.9 12.0 27.4

ConGeo w/ Polar 98.4 99.6 99.8 39.0 67.7 86.6

Table S6: Comparison between ConGeo
and the base model when the aerial im-
ages are with or without polar transfor-
mation.

Method
CVUSA→CVACT CVACT→CVUSA

FoV=360◦ FoV=90◦ FoV=360◦ FoV=90◦

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%
Sample4Geo 3.4 6.4 8.1 17.6 0.2 0.8 1.5 7.6 3.1 5.7 7.0 14.5 0.3 0.9 1.7 7.7
ConGeo 4.2 9.8 13.3 33.6 1.0 3.4 5.2 19.8 5.7 12.2 17.1 39.6 2.2 5.3 8.1 24.9

Table S7: Transfer results between CVUSA dataset and CVACT dataset on the un-
known orientation setting and limited FoV setting.

setting [14,23]. Polar transformation transfers the aerial images to the polar co-
ordinates and narrows the view gap between aerial images and ground images.
We compare the performance between the base model and ConGeo with the orig-
inal satellite images or with the polar transformed satellite images in Table S6.
Results indicate ConGeo can consistently improve the robustness, whether the
aerial images are polar-transformed or not. Note that polar transformation en-
hances the spatial correspondences in the model. Therefore, compared with Con-
Geo without polar transformation, ConGeo with polar transformation is more
likely to maintain strong performance in the North-aligned setting, while being
less competitive in the limited FoV settings.

S5.3 Transfer between CVUSA and CVACT Datasets

The transfer analysis between CVUSA and CVACT datasets is often reported
to show the generalization ability of the model on different datasets. We also
report the transfer results of the base model and ConGeo on the unknown orien-
tation setting and limited FoV setting in Table S7. Results suggest ConGeo can
significantly improve the robustness of the base model (R@1% gains on average
20.6% on FoV=360◦ over the two settings).

S5.4 Different Paradigms of Aligning Modalities

ConGeo requires the alignment of different modalities. Besides contrastive learn-
ing (CL), other methods, e.g., direct feature alignment (FA), and redundancy
reduction (RR), can also be used to align modalities. To investigate this, we also
compare different paradigms of alignment modalities using InfoNCE [12] (CL),
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Paradigm Method North-Aligned FoV=90◦

R@1 R@1% R@1 R@1%
FA Cosine Similarity 86.6 99.6 31.2 81.9
RR Barlow Twins [19] 85.1 99.2 41.4 82.1

CL [ConGeo] InfoNCE [12] 98.3 99.9 55.9 90.9

Table S8: Comparison of different paradigms of aligning modalities. “FA”, “RR” and
“CL” denote direct alignment, redundancy reduction and contrastive learning, respec-
tively.

Method CVUSA CVACT Val CVACT Test
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

CVM-Net [6] 22.47 49.98 63.18 93.62 82.49 92.44 93.99 97.32 - - - -
LPN [17] 85.79 95.38 96.98 99.41 79.99 90.63 92.56 - - - - -
SAFA [13] 89.84 96.93 98.14 99.64 81.03 92.80 94.84 - - - - -
CVFT [15] 61.43 84.69 90.49 99.02 61.05 81.33 86.52 95.93 - - - -
DSM [14] 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32 - - - -
CDE [16] 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22 61.29 85.13 89.14 98.32
L2LTR [18] 94.05 98.27 98.99 99.67 84.89 94.59 95.96 98.37 60.72 85.85 89.88 96.12
SEH [4] 95.04 98.31 98.92 99.76 85.13 93.84 95.24 97.97 - - - -
TransGeo [23] 94.08 98.36 99.04 99.77 84.95 94.14 95.78 98.37 - - - -
GeoDTR [21] 95.43 98.86 99.34 99.86 86.21 95.44 96.72 98.77 64.52 88.59 91.96 98.74
SAIG-D [25] 96.34 99.10 99.50 99.86 89.06 96.11 97.08 98.89 67.49 89.39 92.30 96.80
Sample4Geo [2] 98.68 99.68 99.78 99.87 90.81 96.74 97.48 98.77 71.51 92.42 94.45 98.70
ConGeo 98.27 99.59 99.70 99.86 90.12 95.69 96.56 98.24 71.67 91.61 93.50 98.30

Table S9: The full table of comparison of ConGeo and state-of-the-art methods on
the North-aligned setting on the CVUSA and CVACT.

Barlow Twins [19] (RR) and Consine similarity (FA) to represent each paradigm
respectively. The results shown in Table S8 suggest that aligning modalities helps
to improve robustness, but due to the huge cross-modal view gap and single-view
information asymmetry, FA fails to reduce the feature distance, RR struggles to
find the shared features, while CL excels in learning by comparing.

S6 Supplementary Results

S6.1 Full Table of the North-aligned Setting

We provide the full comparison of the North-aligned setting on CVUSA and
CVACT datasets in Table S9. Among all the methods, ConGeo achieves com-
petitive performance on the North-aligned setting on both datasets meanwhile
maintaining robustness across different challenging settings. The results indicate
the effectiveness and versatility of the proposed contrastive objectives.

S6.2 Full Tables of Ablation Studies

We provide the results of component ablations and the comparison with different
data augmentation methods in Table S10 and Table S11, respectively.

As shown in Table S10, through the full results provided, we can further
confirm the individual effectiveness of each component in the proposed ConGeo.
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Lsingle-r
Lsingle-q Lcross FoV=360◦ FoV=180◦ FoV=90◦ FoV=70◦

Shift FoV Shift FoV R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%
16.3 26.1 31.4 51.7 4.1 8.4 11.3 30.4 2.5 6.7 9.8 26.7 1.5 4.6 6.7 20.4

✓ 30.1 48.4 57.1 79.1 15.7 28.2 34.7 60.0 7.7 16.2 21.5 43.3 5.8 12.9 17.4 38.9
✓ ✓ 89.7 96.9 97.9 99.5 44.1 70.3 78.9 93.4 17.8 35.8 44.8 73.0 12.0 26.5 33.7 56.3
✓ ✓ ✓ 28.6 45.9 54.8 83.3 37.9 56.1 62.4 81.2 20.5 34.9 40.8 59.9 14.2 26.3 32.3 53.4
✓ ✓ ✓ 73.8 88.6 91.9 97.3 91.5 97.8 98.8 99.7 40.2 69.6 75.7 89.0 29.6 48.3 55.9 76.0
✓ ✓ ✓ 96.5 98.9 99.4 99.7 81.7 93.4 95.7 98.8 35.8 56.2 63.5 81.6 20.3 37.0 44.3 67.6
✓ ✓ ✓ ✓ ✓ 85.2 95.1 96.9 98.9 92.3 97.9 98.7 99.7 55.9 73.2 79.0 90.9 37.1 55.7 62.8 81.4

Table S10: The full table of ablation studies on FoV=70◦, 90◦, 180◦, and 360◦ on
the CVUSA dataset. “Shift” and “FoV” mean cyclic shift and FoV cropping. “Single”
and “Cross” denote single-view contrastive objective cross-view contrastive objective,
respectively.

Augmentation FoV=360◦ FoV=180◦ FoV=90◦ FoV=70◦

Shift FoV Rotate R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%
16.3 26.1 31.4 51.7 4.1 8.4 11.3 30.4 2.5 6.7 9.8 26.7 1.5 4.6 6.7 20.4

✓ 9.6 17.6 22.5 46.8 6.0 10.8 13.7 29.8 3.4 6.8 9.5 24.7 2.6 5.6 7.1 21.1
✓ 93.1 97.6 98.2 99.1 73.8 88.0 90.9 95.8 35.1 54.2 61.2 77.6 18.9 34.0 41.5 62.5
✓ ✓ 84.1 95.0 96.9 99.4 63.6 84.6 90.1 98.2 32.2 55.1 64.5 87.4 21.5 42.0 51.6 79.9
✓ ✓ ✓ 89.0 96.1 97.3 98.9 71.8 87.9 91.3 97.2 39.3 59.9 67.9 85.7 29.8 50.0 58.0 79.3

ConGeo 85.2 95.1 96.9 98.9 92.3 97.9 98.7 99.7 55.9 73.2 79.0 90.9 37.1 55.7 62.8 81.4

Table S11: The full table of comparison with different data augmentation methods on
FoV=70◦, 90◦, 180◦, and 360◦ on the CVUSA dataset. “Shift” applies random cyclical
shift, “FoV” means applying random FoV cropping (from 70◦ to 360◦) to ground images
as data augmentation for training, ‘Rotate” randomly rotating aerial images with an
angle in {90◦, 180◦, 270◦} as data augmentation.

Moreover, the combination of single-view and cross-view contrastive objectives
can further boost the model performance indicating that they can complement
each other’s alignment. Besides, we can see from the results that merely applying
“Shift” transformations (FoV=360◦) to the ground view images in single-view
and cross-view contrastive objectives achieves the best performance, showing
that the model performance on specific FoVs can be further improved by using
the evaluation FoV for training like in previous methods.

Experimental results in Table S11 confirm the superiority of contrastive ob-
jectives over data augmentation methods. Although data augmentation meth-
ods can improve the model performance in specific settings, they struggle to
obtain robustness across various settings. For example, when randomly shift-
ing the panorama image as data augmentation, the retrieval performance under
FoV=360◦ can be marginally better than ConGeo, while it trails ConGeo by
about 20 points at other settings.

S7 Visualization Results

S7.1 Retrieval Results

More visualization results of the North-aligned setting and FoV=90◦ on the
CVUSA dataset are provided in Fig. S1. We make two main observations:

1) Compared to ConGeo, the top candidates retrieved by the baseline method
are of similar geometric structure (e.g. road direction). When provided with full-
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view panoramas, both the baseline and the proposed ConGeo can find the target
aerial images. When using the limited FoV setting, the spatial correspondence
between the ground view images and the paired aerial images is partially bro-
ken, which brings difficulties to the models. As shown in the second and third
examples, the baseline model’s results are fairly limited to similar road structures
(North-south direction), however, with the contrastive objective, the top retrieval
candidates exhibit more diverse structures (arbitrarily orientated roads).

2) Compared to the baseline, the top candidates retrieved by ConGeo are
of distinguishable similar content. It indicates that, besides the geometric infor-
mation, ConGeo also focuses on the consistent semantic content shared by both
views. This is particularly noticeable when the FoV is limited. For example, in
the first example, ConGeo notices the buildings in the ground views are with
the same roof color and returns results that are consistent with that. However,
even given color clues in the query image, the baselines’ retrieval results are with
different roof colors. The second and third examples show that ConGeo can re-
trieve images with the distinguishable semantic cues in images (e.g., water and
building), while the baseline fails to capture them.

For better understanding, we plot the rank of ground truth reference images
in the retrieval results of the base model and of ConGeo on the left part of Fig. S2,
when FoV=90◦. For example, rank = 0 means the reference image is correctly
retrieved by the corresponding model. Compared with the baseline model, the
distribution of ConGeo is gathered on the head and is much sparser in the tail,
which demonstrates that ConGeo not only achieves better performance among
metrics but also improves the feature representation of hard examples.

S7.2 Visualization of Activation Maps

We provide more cases of activation map visualization in Fig. S3 and Fig. S4.
As mentioned in the paper, we use Grad-CAM [3] to visualize input regions
that contribute the most to the model’s predictions, on the CVUSA dataset.
The feature maps are extracted from the ConvNeXt blocks of the model and
superimposed with the images.

In Fig. S3, we compare the activation maps of different orientations of the
panorama. Since the shifted image shares same content with its prototype, the
activation areas of a robust model are supposed to be similar across different
orientations. We find that the base model’s focus is vulnerable to orientations,
while ConGeo’s attention is more robust. For example, in the first example (the
left of the first row), ConGeo’s activation areas are distributed in similar regions
of the buildings, while the baseline fails to keep consistent across the North-
aligned and unknown orientation settings. In the last example (the right of the
last row), the ground view variations make the base model’s attention drift to
the sky which might not carry geospatial information, while ConGeo consistently
highlights the road trees.

In Fig. S4, there are comparisons between the baseline and the proposed
ConGeo on the North-aligned setting and the limited FoV setting. Compared
with the baseline, the activation areas of ConGeo focus more on the coherent
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semantic objects across views. For example, in the first example (the first two
rows), the activation areas of ConGeo (the second row) are mostly on the build-
ing along the road while for the baseline model (the first row), the attention is
misleading (on the sky). This problem will be severe when FoV=90◦, the acti-
vation areas of the baseline model are distributed on the sky. In addition, we
observe that ConGeo alleviates the model’s over-reliance on spatial correspon-
dence. For example, from the third example, we can see that the baseline model
mostly relies on the road structure to match the full-view panorama with the
aerial view image. When the spatial correspondence is broken as in the FoV
images, the model fails to find the cues merely based on the learned geometric
structure. However, for ConGeo, with the help of semantic content, the model
learns to retrieve the aerial image with the incomplete geometric structure. The
activation map analysis further confirms that ConGeo is more robust to view
variations.

S7.3 Failure Cases: What Kind of Samples Are More Sensitive?

Our method may fail when very limited information is provided in the query
image. The first case is that the query image is of a very small FoV. As can
be seen from Table 1 of the main paper, the retrieval performance under very
limited FoV (e.g. 70◦) is significantly lower than other settings. The second case is
that the query image contains merely single and common layouts. Some samples
exhibit greater sensitivity to the robustness test, making it more challenging for
the model to uphold its robustness on such samples. The model will struggle
to distinguish the corresponding aerial image from similar counterparts given
common layouts.

We show the examples on the right part of Fig. S2 when the rank of ground
truth annotations are 14,000, and 8,000. In general, when the query image only
contains grass or trees, the similarity score of the ground truth aerial image
may be drowned in other similar candidates. Analysing the sensitivity of differ-
ent samples can also help improve model robustness and can be an interesting
direction for future research.

S8 Discussion

In this work, we propose ConGeo to boost the base models’ robustness across
ground view variations. Without specialized training, ConGeo outperforms state-
of-the-art methods on unknown orientation and limited FoV benchmarks and
demonstrates adaptability to three different base models and generalizability to
various unseen ground view variations. However, as mentioned in the Limitations
section of the main paper, several aspects and challenges remain to be addressed
for future research.

First, compared to models trained specifically for the North-aligned setting,
ConGeo faces an almost unavoidable slight performance drop in this setting.
Indeed, when performing orientation-specific training, North-alignment is a key
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assumption and models often take shortcuts by using the spatial correspondence
in the data stemming from this alignment. However, ConGeo aims to relax it
and achieve robustness in more challenging settings, where such shortcuts will
reduce the model’s generality. Moreover, it is also worth noting that the North-
aligned setting is a special case of FoV=360◦, where the orientation angle is set
to 0◦. Therefore, the performance drop in the North-aligned setting is almost un-
avoidable when improving the unknown orientation setting, which also indicates
a trade-off between orientation-specific or FoV-specific spatial correspondence
and the robust semantic information across ground view variations. Despite this
slight decrement, ConGeo serves as a practical solution to real-world scenarios:
When the orientation is known, ConGeo performs comparably to the state-of-
the-art methods, while the model significantly improves the performance when
the orientation is unknown.

Second, in this work, we increase the models’ robustness by proposing a new
learning pipeline; however, other aspects of the model can face robustness issues
and could be discussed, such as network architecture and sample-level informa-
tion. As mentioned in Section 5.3 of the main paper and Section S5.1 in this
supplementary material, ConGeo can consistently improve the models’ robust-
ness regardless of the backbones. Future research can further study the differ-
ences between different backbones and different components in the base models
that lead the model to prefer learning shortcuts in the data over robust features.
As discussed in the previous work in image classification [5], some backbones
are more likely to rely on spurious correlations or cues inessential to the object.
Moreover, as we showed and discussed in Section S7.3 in this supplementary
material, some samples with less salient semantic information might be more
sensitive to ground view variations. This is further supported by prior research
on content-based adversarial attacks [1], which indicates that certain elements
within an image are more susceptible to variations. Thus, further research might
improve robustness across ground view variations from the data perspective.

Finally, in this work, we mainly focus on ground view orientation and reduced
FoV variations. However, we also validate the effectiveness of the model under
several unseen variations (Table 8 in the main paper), such as blur and zooming.
Expanding the robust geo-localization across a broader range of ground view
variations (e.g., nighttime or extreme weather conditions) can further widen the
applicability of this research to real-world use cases.
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Algorithm 1 ConGeo: PyTorch-like Core Pseudocode

# ==========================Operations==============================
# E_q: query encoder: backbone + proj mlp
# E_r: reference encoder: backbone + proj mlp
# T_q: transformations: random shifts + FoV cropping
# T_r: transformations: data augmentations for the aerial view
# ==========================Parameters==============================
# theta: shift angle
# alpha: training FoV angle
# w_1, w_2: loss weights
# tau: learnable temperature in the loss function
# ==========================Objectives==============================
# ctr(Q, R): vanilla contrastive objective
# ctr(Q*, Q): ground view contrastive objective
# ctr(R*, R): aerial view contrastive objective
# ctr(Q*, R): cross-view contrastive objective

for I_Q, I_R in zip(dataloader_q, dataloader_r):
# I_Q: a batch of query images {I_q}
# I_R: a batch of reference images {I_r}
I_Q* = []
I_R* = []
for I_q in I_Q:

I_q* = T_q(I_q | theta, alpha)
I_Q*.append(I_q*)
I_r* = T_r(I_r)
I_R*.append(I_r*)

Q, Q* = E_q(I_Q), E_q(I_Q*) # queries: [N, C]
R, R* = E_r(I_R), E_r(I_R*) # references: [N, C]

loss = ctr(Q, R)+w_1*ctr(Q*, Q)+w_2*ctr(R*, R)+w_3*ctr(Q*, R)
# the total loss
loss.backward()

update(E_q) # optimizer update: E_q
update(E_r) # optimizer update: E_r

# contrastive objective
def ctr(Q, R):

# Q: a batch of query features {q}
# R: a batch of reference features {r}
logits_1 = tau * mm(Q, R.t()) # [N, N] pairs
logits_2 = logits_1.t()
labels = range(N) # positives are in diagonal
loss_1 = CrossEntropyLoss(logits_1, labels)
loss_2 = CrossEntropyLoss(logits_2, labels)
loss = (loss_1+loss_2)/2
return loss

Notes: mm is matrix multiplication. R.t() is R’s transpose.
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Fig. S1: Retrieval results of the baseline method and ConGeo in the North-aligned set-
ting and FoV=90◦. Retrieval results are ranked by the similarity score. Images marked
in yellow denote the correct retrieval result.
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Fig. S2: Distribution of the rank of ground truth reference images in the retrieval
results when FoV=90◦ (left) and some examples of query images according to the
retrieval results of ConGeo (right).

Fig. S3: Additional examples of the Grad-CAM activation maps of the base model and
ConGeo on the North-aligned setting (the first row for each sample) and the unknown
orientation setting (the second row for each sample). The orange box indicates the
same area in different ground view variants.
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Fig. S4: Additional examples of the Grad-CAM activation maps of the base model
(top row) and ConGeo (bottom row) on the North-aligned setting (a) and limited FoV
setting (b) on the left. Corresponding patches from the two settings are shown on the
right.
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