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A More Details on Model Architecture

(a) View Transformer (b) Ray Transformer

Fig. 1: A more detailed representation of the DLM blocks in the View and Ray trans-
former of GAURA

In Figure 1, we elaborate on our approach, GAURA. As mentioned in the
main paper, specifically, within the View Transformer, we substitute the conven-
tional query, key, and value Multi-Layer Perceptrons (MLPs) with the Degra-
dation Latent Module. This substitution is crucial as the inputs to these MLPs
are degradation-dependent, necessitating specific degradation priors for effective
restoration. However, in the ray transformer, we only tailor the value matrix to
be degradation-specific, as the query-key attention mechanism inherently cap-
tures depth-information while lacking detailed appearance features crucial for
restoration. Additionally, it is noteworthy that in the View Transformer, sub-
traction attention is employed due to computational constraints, whereas in the
ray transformer, dot-product attention is utilized, as mentioned in [7].

B Synthetic Data Generation.

In this section, we provide a comprehensive overview of the generation process
utilized to synthetically introduce corruption to clean images. For the Low-Light
task, we implement the methodology outlined in [4]. Initially, the RGB image
is converted to a Linear RGB scale, and all subsequent manipulations are per-
formed within this color space. Subsequently, the image is appropriately down-
scaled, followed by the addition of Heteroscedastic noise. We vary the scaling
factor within the range of 8 to 30 to encompass a broad spectrum of low-light sce-
narios. For the generation of Haze, we employ the straightforward Koschmieder
model [3], which mimics image degradation caused by scattering and ambient
light. The equation governing this model is provided as follows:

I(i) = J(i)TB(i) + (1− TB(i))A (1)
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Table 1: Quantitative results on scenes containing real-world degradations - specif-
ically low-light enhancement, motion blur removal, and dehazing. All the baselines
compared against are all-in-one baselines which generalise both to scene and corrup-
tion. The best scores and second best scores are highlighted.

Models Generalize to Low-Light Motion Blur Haze

Scene Corr. PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GNT–(Airnet) ✗ ✗ 17.73 0.577 0.367 20.73 0.612 0.406 15.70 0.590 0.351
GNT–(PromptIR) ✗ ✗ 17.90 0.573 0.354 19.33 0.552 0.398 16.10 0.632 0.293
GNT–(DA-CLIP) ✓ ✗ 14.28 0.615 0.424 20.88 0.632 0.410 16.68 0.729 0.300
GNT–(AutoDIR) ✓ ✓ 11.64 0.570 0.436 20.20 0.601 0.404 14.29 0.678 0.316
Ours ✓ ✓ 19.91 0.736 0.352 22.12 0.712 0.346 16.82 0.759 0.288

In the equation, J , TB , and A represent the scene radiance, backscatter transmis-
sion map, and global background light, respectively. We employ this equation for
its simplicity, facilitating faster inference. Beta and global background light are
set within the ranges of 1 to 5 and 125 to 200, respectively. To simulate motion
blur and defocus blur, we utilize basic OpenCV functions. For Motion Blurring,
we adjust the kernel size to modulate the intensity of blur while simultaneously
varying the direction of blur to simulate motion in different directions. Accord-
ingly, we set kernel values ranging from 2 to 6 and angles for direction ranging
from 0 to 180 degrees. In Defocus Blur, we manipulate kernel values from 5 to
11 and randomly apply defocusing to either the foreground or background. It
is important to note that we follow a similar approach as outlined in [5], which
introduces varying degrees of blur in each captured image.

For simulating Rain, we adopt a similar methodology and utilize OpenCV to
generate rain particles. Three key parameters are varied during the rain genera-
tion process: the intensity of rain, the size of the rain streaks, and the direction
of rain. In the case of Snow generation, we utilize the imgaug library to in-
troduce snowflakes onto the image. Unlike rain particles, we adjust a range of
parameters including the direction of fall, density of the snowflakes, size of the
snowflakes, and speed of the snowflakes. For all these corruptions, these param-
eters are carefully selected to encompass a wide range of variations, enhancing
the transferability of synthetic data to real-world multi-view scenarios. We pro-
vide visualizations demonstrating the different intensities utilized in our training
data across all corruption types in Figure 6.

Table 2: Ablation

Method PSNR / SSIM / LPIPS

Simple Conditioning 21.34 / 0.689 / 0.394
ARM+DLM (Ours) 22.12 / 0.712 / 0.346
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Table 3: Effect of the number of input views for low-light enhancement. Metrics are
ordered as PSNR / SSIM / LPIPS

3D Restore GAURA

N.A. 3 views 6 views 10 views

17.64 / 0.736 / 0.415 19.18 / 0.697 / 0.387 19.48 / 0.720 / 0.364 19.91 / 0.738 / 0.352

Table 4: Quantitative results to measure view consistency. Metrics are ordered as
RMSE / LPIPS

Method Short Range Consistency↓ Long Range Consistency↓
Rain Snow Rain Snow

GNT–(All-in-one) Restore 0.138 / 0.253 0.099 / 0.211 0.249 / 0.402 0.188 / 0.312
GAURA 0.115 / 0.215 0.083 / 0.189 0.204 / 0.333 0.153 / 0.299

C Results

Real-World Data. We provide a summary of the quantitative results against
the GNT-all-in-one baselines in Table 1. In the main paper, we select the best-
performing all-in-one model and present both qualitative and quantitative results
accordingly. In this section, we delve into further details regarding the selected
best method. For the low-light enhancement task, we utilize AirNet+GNT as the
baseline. In the cases of motion deblurring and dehazing tasks, DA-CLIP+GNT
serves as the baseline for comparison. Similarly, for rain and snow removal, we
employ DA-CLIP+GNT as the comparative baseline for both qualitative and
quantitative analyses. Regarding defocus, we utilize the state-of-the-art Single
Pixel Defocus Deblur model [1]. We present a collection of results showcasing
our method’s performance on real-world data across several types of corruptions
in Fig. 3

LLFF-Corrupted. Results pertaining to LLFF-Corrupted scenes are pre-
sented in Figure 5. We compare our method against two all-in-one approaches
across the five degradations. It is evident that our method effectively restores the
appearance details of the scenes while preserving their geometry simultaneously.

D Blind Restoration

Despite our method’s current requirement for the degradation type as input, it is
feasible to extend it to achieve complete independence from the degradation type.
This form of restoration, without the need for specifying the degradation type,
is referred to as Blind Restoration. To accomplish this, we propose training a
convolutional network capable of taking degraded images as input and classifying
the type of degradation. This network can be supervised using a cross-entropy
loss function. For instance, utilizing a ResNet-18 backbone, we achieved 99.5%
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Fig. 2: We compare several restoration techniques’ multi-view consistency against
GAURA. We observe that in the rain and snow scene, the restoration from our model
results in view consistent restoration, while the baseline restores the scene inconsis-
tently.

accuracy in degradation type classification. Once trained, this network can be
utilized to predict the degradation type directly from input images, rendering
the restoration process independent of user input regarding degradation type.

E Additional Ablation Studies

E.1 Simple Conditioning vs ARM+DLM(Ours)

In Table 2, we compare our ARM+DLM module against a simpler variant that
concatenates the latent conditioning to the inputs of the cross and self-attention
blocks in the view and ray transformers respectively. Our proposed modules
outperform the baseline across all metrics.

E.2 Effect of Number of Input Source Views

In Table 3, we measure the effect of the number of input views and observe a
minimal drop in performance (< 4%) with as little as 3 views. This indicates
that our learned transformer modules are sufficiently robust to noisy epipolar
input.

F Multi-View Consistency

In Table 4, we present the short range and long range consistency evaluated
across the generated multi-views. We see that GAURA can render view-consistent
clear images from arbitrary viewing angles, superior to other baselines. Along
with quantitative result, we present qualitative results in Fig. 2 which clearly
shows the superiority of GAURA over other baselines in terms of multi-view
consistent restoration.
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Fig. 3: Below are the gallery results showcasing our method’s performance on various
corruptions on real-world data. Each row presents results of our method on a single
corruption across two scenes. The degraded image and its corresponding restored out-
put are visualized side-by-side. Additionally, renders from two other novel viewpoints
are provided on the right.

Fig. 4: Results on scenes corrupted with more than 1 degradations. We show results
on scenes corrupted with Rain+Dark and Snow+Haze on the synthetically corrupted
LLFF dataset.
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Fig. 5: Results on the Synthetic LLFF-Corrupted data are presented, comparing
against GNT-PromptIR [6] and GNT-AutoDIR [2]. Qualitative comparisons across
five corruptions are shown, illustrating our method’s consistent ability to restore the
scene across all degradation types.
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Fig. 6: We show visualisation of images degraded with varying intensities. The first
column corresponds to the clean image, and starting from the second column, the
images are degraded from low to high intensities. This approach enables us to capture
a range of randomness in the degradation of the scene, facilitating easy generalization
to real-world data.
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