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1 Further Experiments

We further compare MixDQ’s performance with other quantization techniques
for W8A8 in Tab. 1. The experiments are conducted on a subset of COCO anno-
tations, with all other experimental settings maintained as described in Section
4.1 of the main paper.
For PTQD [1], we conduct linear regression to determine K. However, we ob-
serve a relatively lower linear correlation (0.59) compared to the original pa-
per. In the case of 1-step generation, the sampling process is deterministic, the
"uncorrelated noise correction" inapplicable, and only the "correlated noise cor-
rection" is adopted. Despite being effective for multi-step quantization, we ob-
serve that PTQD causes notable quality degradation for the challenging 1-step
quantization. EDA-DM [4] improves upon the quantization parameter tuning
in Q-Diffusion [3] with layer-wise reconstruction. However, only a marginal im-
provement is witnessed. The term "MP-only" refers to "mixed precision only"
with the SQNR-based method [11], where due to suboptimal quantization sensi-
tivity analysis, a significant performance degradation is still evident. The "Non-
uniform" refers to the use of the FP8 (Floating-point 8-bit) format [7], which
introduces exponential bits to handle a larger dynamic range of data distribution.
While this notably improves performance, it still falls short of the FP16 baseline.
In contrast, MixDQ achieves W8A8 quantization without any performance loss.

2 Application example of MixDQ

As discussed in the Section 3.3 and the Section 4 of the main paper, we introduce
mixed-precision bit-width allocation methods based on integer programming.
* Equal contribution
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Table 1: Comparison with other quantization techniques for W8A8 on
COCO annotations subset. The “CLIP” and “IR” denotes CLIP Score and Im-
ageReward metric. The metrics are evaluated with the first 1024 prompts in COCO
annotations. The “MP-only” represents adopting the mixed precision only.

Model Method FID(↓) CLIP(↑) IR(↑)

SDXL-turbo
(1 step)

FP16 84.51 0.26 0.84

Naive PTQ 165.92 (+81.4) 0.15 (-0.11) -1.72 (-2.56)
PTQD [1] 340.74 (+256.2) 0.12 (-0.14) -2.28 (-3.12)

Q-Diffusion [3] 149.15 (+64.6) 0.16 (-0.10) -1.69 (-2.53)
EDA-DM [4] 137.98 (+53.5) 0.16 (-0.10) -1.71 (-2.55)
MP-only [11] 114.70 (+30.2) 0.15 (-0.11) -0.61 (-1.45)

Non-Uniform (FP8) [7] 101.73 (+17.2) 0.24 (-0.01) 0.16 (-1.45)

MixDQ 83.39 (-1.12) 0.27 (+0.01) 0.84 (+0.00)

This approach proves effective in obtaining points on the Pareto frontier. In this
section, we further provide a detailed description of an application case: “How to
determine the optimal bit-width configuration given a certain memory
budget”?

We provide a detailed description for MixDQ in this application in Algo-
rithm 1. For simplicity, the algorithm only describes the bit-width allocation for
weights, a similar process could be applied for activation bit-width allocation.
Firstly, we perform sensitivity analysis after BOS-aware quantization (discussed
in the main paper Sec. 3.1). Following the idea of “metric-decouple”, we cat-
egorize all layers of the model into content-related layers and quality-related
layers. Specifically, the content-related layers include cross-attention layers and
feed-forward networks (FFNs), while the quality-related layers encompass self-
attention layers, convolutions, and other remaining layers (further discussed in
Sec. 5). Then we calculate the sensitivity separately for content/quality-related
layers weight/activation, generating 4 groups of layer-wise relative sensitivities
(Scontent and Squality in Algorithm 1).

Subsequently, we allocate the bit-width under budget constraints based on
the acquired sensitivity. Specifically, we describe the budget with averaged bit-
width (e.g., W5A8) multiplied by the number of parameters for weight and
activation, respectively (the Ball). We linearly scan through M nearby bud-
gets Bj within range [Ball − ∆B,Ball] to ensure we get the optimal result.
Then, we introduce a hyperparameter K (we choose linear space from 0.45 to
1,36 for weights, and 0.94 to 1.09 for activation) to describe the ratio between
budgets assigned for the content-related and quality-related groups. It satisfies:
Bj,all = Bj,K

quality + Bj,K

content. After acquiring the budget for content or quality-
related layers, integer programming could be used to get the mixed precision
configuration: {bj,K

l,content}, which is a layer-wise choice of candidate bit-width
2,4,8, the l indexes the layers. The aforementioned process is iterated for each
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Bj,model and K, and the optimal configurations are determined through a rapid
evaluation of the generated images.

Algorithm 1: MixDQ Bit-width Allocation Algorithm
Input: Sensitivity of content-related layers: Scontent, Sensitivity of quality-related lay-
ers: Squality, Parameter size of content-related layers : Pcontent, Parameter size of
quality-related layers : Pquality, The target budget of the whole model, content and
quality-related layers: Ball, Bquality,Bcontent, The candidate budgets: {Bj} ∈ [Ball −
∆B,Ball] of length M , The candidate ratios: {ki} of length N , The FP model M, the
quantized model with bit-width configuration {bl}: M{bl}

q Output: The mixed preci-
sion configuration {bl}.
for j = 1 to M do

for k = k0 to kN−1 do
// Split the budgets for content and quality-related layers.
Bj,k

content,B
j,k
quality = SplitBudget(Bj,all,Pcontent,Pquality, k);

// perform integer programming respectively
{bu,kl,content} = IntegerProgramming(Bu,k

content, Scontent,Pcontent);
{bu,kl,quality} = IntegerProgramming(Bu,k

quality, Squality,Pquality);
// get the mixed precision configuration for the whole model
{bu,kl,all} = {bu,kl,quality, b

u,k
l,content};

// infer with the quantized model

imgs = MQ
{bu,k

l,all}(prompts);
// evaluate the generated images
scoreu,k = eval(imgs);

// choose the optimal configuration with best score
{bl} = argmax

{bu,k
l,all}

(scoreu,k);

return {bl}

3 Description of Challenges for Few-step Diffusion
Quantization

As mentioned in the main paper Sec. 1 and Fig. 1, Fig. 2, the few-step diffusion
model quantization faces the challenges of (1) The few-step diffusion models are
more sensitive to quantization than multi-step ones. (2) The quantization’s effect
on image content causes degradation in image-text alignment. In this section,
we provide a detailed discussion of these two challenges.

3.1 Few-step Diffusion Models are More Sensitive to Quantization

As depicted in Figure 1 of the main paper and discussed in Section 1, “the 2-
step model exhibits significantly less degradation compared to the SDXL-turbo
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1-step model”. We delve into the reasons behind this phenomenon. Examining
the challenge in Fig. 1, we contrast the generation processes of the 2-step and
1-step models.

In the 2-step generation, the second step incorporates an image with both
Gaussian noise and quantization noise as input. Recent literature on diffusion-
based image editing, as highlighted in [6, 9], indicates that diffusion models can
effectively recover content from partially disrupted image input (image inpaint-
ing). Consequently, the additional denoising steps (2nd or more) facili-
tate the reconstruction of quantization errors, resulting in improved image
quality.

In contrast, the 1-step diffusion model lacks this recovery phase, making it
more “vulnerable” to quantization noise.

Existing Quantization Method witness
Image-text Alignment Loss for both Multi-step and Few-step models

” A black Honda motorcycle 
parked in front of a garage..”

” A room with blue walls and a 
white sink and door.”

FP16
SDXL-turbo (1 step)

Q-diff W8A8
SDXL-turbo (1 step)

Q-Diff W8A8
SDXL (30 steps)

MixDQW8A8
SDXL-turbo (1 step)

Lacks “Honda Motorcycle”

Lacks “Blue Walls”

Lacks “in front of garage”

Lacks “Blue Walls” ✅

✅

1-step Generation

2-step Generation

U-Net (t=1)

U-Net (t=2)

Input with Gaussian
& Quant Noise

The 2nd denoising step could recover the quant error

Do not have the recover phase, harder to quantize

U-Net (t=1)

(FP16)
SDXL-turbo
(1-step)

“A bicycle replica with a clock as the front wheel.”

Q-Diffusion
(W8A8)

SDXL-turbo
(2-steps)

Q-Diffusion
(W8A8)

SDXL-turbo
(1-step1)

Notably Better Quality

>

Fig. 1: The illustration of the few-step diffusion model is comparatively
harder to quantize. Left: the 2-step SDXL-turbo quantized model exhibits notably
better image quality than the 1-step one. Right: the explanation of why the 1-step
model is harder to quantize.

3.2 Quantized Diffusion Models Lose Image-text Alignment

As outlined in Section 1 of the main paper, prior research predominantly con-
centrates on preserving image quality. Nevertheless, it’s crucial to recognize that
quantization affects not just the image quality but also the content itself. The
alteration in content can result in the degradation of image-text alignment. In
Fig. 2, we provide additional examples of alignment degradation, illustrating that
such deterioration occurs not only in few-step models but also in less challenging
multi-step diffusion models.

In the case of the prompt "A black Honda motorcycle parked in front of a
garage," the W8A8 quantized SDXL-turbo 1-step model fails to include the "in
front of garage" in the text instruction and instead generates an image of a man
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riding a bicycle. With the multi-step SDXL model, the output deviates even
further, presenting a yellow truck instead of the specified black motorcycle.

Similarly, for the prompt "A room with blue walls and a white sink and
door," both the W8A8 quantized models generate an image of a white room while
omitting the "blue walls" component. In contrast, our MixDQ W8A8 produces
images with significantly improved image-text alignment. They fulfill all
components of the prompt, closely resembling the images generated by the FP16
model.

Existing Quantization Method witness
Image-text Alignment Loss for both Multi-step and Few-step models

” A black Honda motorcycle 
parked in front of a garage..”

” A room with blue walls and a 
white sink and door.”

FP16
SDXL-turbo (1 step)

Q-diff W8A8
SDXL-turbo (1 step)

Q-Diff W8A8
SDXL (30 steps)

MixDQW8A8
SDXL-turbo (1 step)

Lacks “Honda Motorcycle”

Lacks “Blue Walls”

Lacks “in front of garage”

Lacks “Blue Walls” ✅

✅

1-step Generation

2-step Generation

U-Net (t=1)

U-Net (t=2)

Input with Gaussian
& Quant Noise

The 2nd denoising step could recover the quant error

Do not have the recover phase, harder to quantize

U-Net (t=1)

(FP16)
SDXL-turbo
(1-step)

“A bicycle replica with a clock as the front wheel.”

Q-Diffusion
(W8A8)

SDXL-turbo
(2-steps)

Q-Diffusion
(W8A8)

SDXL-turbo
(1-step1)

Notably Better Quality

>

Fig. 2: The illustration of the “Image-text Alignment loss” challenge for dif-
fusion quantization. The Q-diffusion witnesses alignment loss (lacking of components
described in the text instruction) for both the multi-step and few-step models.

4 Detailed Analysis of Hardware Experiments

In this section, we provide a detailed analysis of the hardware resource savings
for different bit-width configurations and conclude our findings as follows:

(1) Illustrated in Figure 7b of the main paper Sec. 4.3, the W8A8 bar
displays an almost negligible red segment, corresponding to the "1% most
sensitive activation layers retained from FP16" as discussed in Sec. 4.2 of the
main paper. This component introduces minimal overhead while significantly
contributing to the preservation of image quality.

(2) Observing the table in Figure 7 of the main paper Sec. 4.3, we note
that W4A16 quantization solely achieves memory savings, while the
latency remains consistent with the FP16 baseline. The reduction in
memory primarily stems from the decreased size of the model parameters, which
are transferred to the GPU and serve as the "static memory cost." However, the
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W4A16 model continues to utilize FP16 computation, thus maintaining similar
latency.

(3) Observing the table in Figure 7 of the main paper Sec. 4.3, W4A16
and W4A8 exhibit similar memory optimization. The key distinction lies
in the fact that W4A8 quantizes the activations, thereby reducing the mem-
ory cost through saved activations, primarily affecting the shortcut feature for
U-Net. However, we discover that the occupied size by these activations is rela-
tively small, amounting to less than 100MB compared to the model size of 6GB.
Consequently, the additional savings attributed to activation quantization are
not evident.

(4) Observing the table in Figure 7 of the main paper Sec. 4.3, both W4A8
and W8A8 demonstrate a noteworthy 1.52× latency speedup com-
pared to the FP16 baseline. This acceleration is attributed to the utilization
of INT8 GPU kernels. It’s worth noting that we haven’t implemented the INT4
operators, making W4A8 and W8A8 quite similar in terms of latency improve-
ment. However, W4A8 has the potential to achieve even higher latency speedup.

5 Justification of Layer Grouping in Metric Decouple

As mentioned in the main paper Sec. 3.2, we split the layers into two groups based
on their effect on image content and quality. Specifically, the cross-attention and
feed-forward layers are regarded as the “content-related layers”, and the convo-
lution and self-attention layers as the “quality-related layers”. In this section,
we present experimental results to demonstrate the rationale of the layer
grouping.

Firstly, we summarize 5 layer types for the text-to-image diffusion model:
cross-attention layers, feed-forward neural networks (FFNs), convolutions, self-
attention layers, and other miscellaneous layers. We independently quantize the
weight and activation into 8-bit for each layer type, and compute their effects
on the SSIM score. As seen in Fig. 3, the cross-attention and feed-forward layers
have a significantly larger influence (0.8 and 0.05) on the image content compared
with other layer types (less than 0.01). Therefore, we choose them as the “content-
related layers”, and the rest as “quality-related” layers.

6 Qualitative Results

In this section, we provide more qualitative results to demonstrate the effec-
tiveness of our MixDQ, especially in terms of preserving the “image-text
alignment” , As can be seen from Fig. 4, even under W4A8, our method gen-
erates images with visual quality and image-text alignment similar to the FP16
model generated ones.

Fig. 5 highlights the superior text-image alignment achieved by MixDQ in
comparison to baseline quantization methods. With W8A8 quantization, the Q-
diffusion-generated images not only exhibit an "oil-painting" like blurring and
tiny artifacts but also deviate from following the text instructions. For instance,
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Fig. 3: SSIM Score when quantizing a certain group. Cross-attention
(CrossAttn) and Feed-Forward Networks (FFNs) are the two types of layers that have
the greatest impact on content.

it omits "in front of a garage" from the prompt and, instead, generates an image
of a man riding a motorcycle. It also struggles to interpret “an older man skiing”;
instead, it generates a cowboy riding a strange two-headed horse. Moreover, the
quantized model loses the capability to adhere to explicit color instructions like
"blue walls" and "gray and white kitten." In contrast, with the more challeng-
ing W4A8 setting, our MixDQ quantized model produces images with nearly
identical content compared to the FP16 baseline.

7 Analysis of Quantization Method

Takeaway Knowledge of Layer Sensitivity. We conclude key takeaways of
layer sensitivity for text-to-image diffusion models as follows: (1) The CrossAttn
& FFN affects image content while the SelfAttn & Conv affect quality. This is
illustrated in Figure 5 and Section 3.2 of the main paper. (2) The activation
for “conv_in” and weight for “conv_out” are highly sensitive compared with
other convolution layers. (3) The sensitivity of activation for “to_k/v” layers
notably decreases after BOS-aware quantization, but their weight’s sensitivity
remain high. (4) In contrast to multi-step models, time embedding is not sensitive
for few-step models. This fits intuition since distillation enables the network to
denoise from any timestep.
Properties of MixDQ Quantization. (1) Efficient Quantization: Previous
quantization methods require costly optimization of extensive AdaRound and
scaling factor parameters, which takes tens of GPU hours. This process needs to
be conducted repeatedly for different bit-width configurations. MixDQ adopts
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Fig. 4: The comparison between images generated by full precision model
and quantized one. Text-guided image generation from our W4A8 quantized SDXL-
turbo with a fixed random seed.

the naive minmax quantization without bells and whistles. After obtaining sen-
sitivity, it only requires several minutes to acquire the entire Pareto frontier. (2)
Hardware Friendly. When designing quantization schemes, we prioritize mak-
ing them hardware-friendly to minimize the hardware overhead for supporting
them. This includes employing tensor-wise scaling for activations and utilizing
output-channel-wise scaling for weights. The granularity of mixed precision is
set at the layer level, enabling the utilization of existing kernels for hardware
resource savings and avoiding the cost of implementing customized kernels. (3)
Flexibility. The framework of MixDQ is flexible and extensible, allowing it to
be combined with other quantization techniques such as efficient QAT [10].

8 Limitations and Future Directions

We introduce MixDQ, a mixed-precision quantization method that handles both
the imbalance sensitivity and alignment degradation problems for diffusion quan-
tization. We summarize the current limitations and potential future improve-
ments as follows:

– Specialized Quantization Techniques for other Sensitive Layers. In
MixDQ, we pinpoint the bottleneck in text embedding quantization and craft
BOS-aware quantization specifically tailored for it. Nevertheless, there are
other highly sensitive layers, such as "conv-in" and "conv-out," that could
also gain advantages from the design of specialized quantization techniques.
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Fig. 5: The comparison between images generated by quatized model. Our
quantization scheme better maintains the content and quality of the images.

– Combine with Improved Quantization Techniques. In MixDQ, we
employ naive min-max quantization as the quantization method. Its perfor-
mance can be enhanced by incorporating advanced quantization techniques,
such as Adaround [8], or by introducing quantization-aware training [2].

– Lower Bit-width. In MixDQ, we opt for the 2, 4, and 8 as candidate
bit-widths. When coupled with efficient lower-bit quantization methods, the
mixed-precision bit-width allocation remains compatible with lower-bit-width
combinations.

– More Hardware Supports. As discussed in Sec. 4, we only utilize the
INT8 GPU kernels for now, which restricts the performance for W4 quanti-
zation. The newest Nvidia TensorCore [5] supports INT4 computing, which
could be further utilized for better efficiency.
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