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Abstract. Few-step diffusion models, which enable high-quality text-
to-image generation with only a few denoising steps, have substantially
reduced inference time. However, considerable memory consumption (5-
10GB) still poses limitations for practical deployment on mobile devices.
Post-Training Quantization (PTQ) proves to be an effective method for
enhancing efficiency in both memory and operational complexity. How-
ever, when applied to few-step diffusion models, existing methods de-
signed for multi-step diffusion face challenges in preserving both visual
quality and text alignment. In this paper, we discover that the quan-
tization is bottlenecked by highly sensitive layers. Consequently, we in-
troduce a mixed-precision quantization method: MixDQ. Firstly, we
identify some highly sensitive layers are caused by outliers in text em-
beddings, and design a specialized Begin-Of-Sentence (BOS)-aware quan-
tization to address this issue. Subsequently, we investigate the drawback
of existing sensitivity metrics, and introduce metric-decoupled sensitiv-
ity analysis to accurately estimate sensitivity for both image quality and
content. Finally, we develop an integer-programming-based method to
obtain the optimal mixed-precision configuration. In the challenging 1-
step Stable Diffusion XL text-to-image task, current quantization meth-
ods fall short at W8AS&. Remarkably, MixD(Q achieves W3.66A16 and
W4A8 quantization with negligible degradation in both visual quality
and text alignment. Compared with FP16, it achieves 3-4x reduction in
model size and memory costs, along with a 1.5x latency speedup. The
project URL is |https://a-suozhang.xyz/mixdq.github.io/ .
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Fig. 1: The effectiveness of MixDQ. Left: MixDQ preserves both image quality
and image-text alignment. Right: The efficiency improvements of MixDQ.

1 Introduction

Text-to-image diffusion models attract substantial attention for their
ability to generate high-quality images from textual prompts. However, their
high computational and memory demands present challenges for real-time ap-
plication and deployment on mobile devices . Recent efforts on few-step
diffusion models have significantly alleviated the computational bur-
den, which require only 1-8 steps to generate high-fidelity images compared to the
10-100 steps in previous approaches . However, their memory cost remains
excessive [28}[39]. For example, running a Stable Diffusion XL-turbo model
in the 16-bit floating-point (FP16) format with a batch size of 1 consumes a
peak memory of 9.7GB, which exceeds the capacity of many mobile devices and
even some desktop GPUs (e.g., an RTX 4070 has 8GB GPU memory).

Model quantization @II, compressing high bit-width floating-point parameters
and activations into lower bit-width integers, proves to be an effective strategy
for reducing both memory and computational cost. Many prior researches
explore quantization for diffusion models. However, we observe that few-step
diffusion models are more sensitive to quantization than multi-step
ones. As depicted in Fig. [T} the quantized SDXL 30-step model and SDXL-
turbo 2-step model have notably less degradation compared with the SDXL-
turbo 1-step model. Prior research Q-diffusion performs well on multi-step
models but encounters challenges with W8AS8 quantization for one-step SDXL-
turbo . The resulting image appears blurred and contains numerous artifacts.
We conjecture this might be due to the absence of the iterative denoising process,
which could compensate for the quantization error.

Additionally, prior research primarily focuses on preserving the image quality
for quantized models. However, as illustrated in Fig. [1| and Fig. 2| quantization
impacts not only image quality but also content. The altered content may lead to
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Fig. 2: Insightful findings for few-step text-to-image diffusion quantization.
Left: The layer-sensitivity distribution has a “long-tail” characteristic. Right: Quanti-
zation affects both image quality and content.

Layer_ID (sorted)

degradation in image-text alignment, which refers to how well the generated
image aligns with the given text instruction. For instance, in Fig. [T} the image
generated by Q-diffusion depicts a polar bear, which contradicts the prompt
mentioning “goats”. Similarly, the middle image in Fig. [2]loses the content “clock”.

To effectively quantize the few-step model while preserving the quality and
alignment in the meantime, we investigate the reasons behind the failure of exist-
ing quantization methods. We discover two insightful phenomena, as presented
in Fig. 2| Firstly, we measure each layer’s quantization sensitivity for the SDXL-
turbo model with the signal-to-quantization-noise ratio (SQNR) following prior
research [46]. As shown in Fig.[2] (a), the distribution exhibits a “long-tail” char-
acteristic. Consequently, using uniform quantization settings for all layers, as
in previous research, would result in the quantization being “bottlenecked” by
some highly sensitive layers. We look into these sensitive layers and propose: (1)
designing a specialized quantization method to “protect” the outliers in certain
layers, significantly reducing their quantization error; and (2) adopting mixed-
precision quantization to “protect” the sensitive layers with a higher bit-width,
thus achieving higher quality. Secondly, as illustrated in Fig. [2[ (b), quantization
affects both the image content and quality. We identify that the entanglement of
these two factors in evaluation will cause quantization methods to fail in preserv-
ing generation quality. Therefore, we propose “decoupling” the effects of quality
and content in the sensitivity evaluation. This will be elaborated in Sec. [3.2]

In light of above, we introduce a mixed-precision quantization method: MixDQ.
Firstly, we analyze the characteristics of highly sensitive layers and discover that
many of them are associated with the quantization of text embeddings. We fur-
ther investigate the feature distribution of text embeddings and design a special-
ized Begin-of-sentence (BOS)-aware quantization (Sec. to address the
outlier values. Secondly, we identify the shortcomings of existing quantization
sensitivity evaluation and design an improved Metric-decoupled sensitivity
analysis (Sec. based on the idea of decoupling the impact of quantization
on image content and quality. Finally, we design an integer-programming-
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based mixed precision allocation (Sec. [3.3) to acquire optimal bit-width
configuration based on the improved sensitivity analysis.
We summarize the contributions of this paper as follows:

1. We highlight the challenge of quantizing the few-step diffusion model, com-
pared to quantizing the multi-step diffusion model. Additionally, we empha-
size the often-overlooked necessity of preserving alignment when compressing
the text-to-image generative models.

2. Based on the careful investigation of the data distribution and sensitivity of
each layer, we design MixDQ, a mixed precision quantization method with
improved sensitivity evaluation and quantization techniques.

3. We evaluate MixDQ in two settings: weight-only quantization and normal
weight and activation quantization. MixDQ can achieve W4A16 and W5AS
quantization with a negligible 0.1 FID increase. Compared with the FP16
model, MixDQ can achieve W3.66A16 and W4AS8 quantization within a 0.5
FID increase, resulting in a 3xX memory cost reduction and a 1.5x latency
speedup on Nvidia GPUs.

The techniques in MixDQ could benefit future research and applications of
compression methods on other generative models and tasks. Firstly, BOS-aware
quantization addresses the issue of outlier values in text embeddings, which is an
inherent problem for transformer-based models (also recognized as the “attention
sink” |44] in language models). Secondly, we believe the explicit and decoupled
consideration of various metrics is important whenever compressing visual gen-
erative models. On one hand, from an application perspective, multiple metrics
should be considered, especially for generative tasks. On the other hand, for
better compression results, the explicit and decoupled consideration of multiple
metrics can avoid the failure of compression methods.

2 Related Work

Diffusion Models. [7/33|36] could generate high-quality images through an
iterative denoising process. However, the excessive cost of repeated denoising it-
erations calls for improvements in the sampling efficiency, namely, reducing the
timesteps. Some research [14}/34}/47] focuses on designing improved numerical
solvers, and another line of research explores utilizing distillation [15,/17.30}31]
to condense the sampling trajectory into fewer steps or even a single step. These
few-step diffusion models significantly reduce the computational cost, however,
as discussed in Sec. [1} they face additional challenges for quantization.

Network Quantization. Prior research, such as PTQD [4] and Q-DM [12]
explores utilizing quantization techniques on diffusion models. Q-Diffusion [11]
extends this application to large-scale stable diffusion models. Other research 8|
32.37] continues to improve post-training quantization techniques on aspects like
calibration and temporal adjustment. However, the majority of existing diffusion
quantization methods employs uniform bit-with for layers with diverse
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Fig. 3: Framework of the proposed mixed-precision quantization method:
MixDQ. It consists of three key components, the BOS-aware quantization addresses
the highly sensitive text embedding, the metric-decoupled scheme improves sensitivity
analysis, and the integer programming acquires the optimal bit-width allocation.

sensitivity. Yang et. al. suggest preserving sensitive layers as high-precision
based on SQNR metric. However, we observe that the SQNR metric tends to pri-
oritize content change, potentially leading to quality degradation (as discussed
in Sec. . Inspired by the prior success of mixed precision , we design a
mixed precision quantization method to address the imbalanced sensitivity.

Evaluation Metrics. The currently widely used metrics for evaluating text-
to-image generation can be summarized into two major aspects: image fidelity
(quality) and image-text alignment. To estimate image fidelity, metrics such
as FID |§|| and IS are commonly used. These metrics measure the feature
space distance between generated images and reference images. For image-text
alignment, CLIP Score |5| is often utilized to calculate the similarity of the image
and the text embeddings. To align the statistical scores and human preference,
ImageReward and HPS collect user preference and train the model to
predict generated image scoring, considering both fidelity and alignment. While
previous methods solely discuss preserving the image quality, we investigate
quantization’s effect on both image fidelity and alignment.

3 Methods

Fig. [3] presents our mixed precision quantization method MixDQ consisting of
three consecutive steps. Firstly, we identify the highly sensitive layers and exam-
ine their distinctive properties. Based on these properties, we devise specialized
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Fig. 4: Illustration of BOS-aware Quantization. Left: the first token has a signif-
icantly larger value than the others. Right: Since BOS token features remain the same
for different prompts, we skip quantizing them and pre-compute them offline.

quantization techniques tailored for them (Sec. [3.1)). Secondly, in Sec. we
introduce a metric-decoupled analysis that measures the quantization’s effects
on image content and quality separately. Finally, based on the sensitivity, we

employ integer programming to determine the optimal mixed precision configu-
ration under a given budget (Sec. [3.3).

3.1 BOS-aware Text Embedding Quantization

Fig. [2] shows that the diffusion model quantization is “bottlenecked” by some
highly sensitive layers. Upon going through the highly sensitive layers depicted
in the “long-tail”; we find that a substantial portion of them corresponds to the
“to_k” and “to_ v” linear layers in the cross-attention. All of these layers take
the text embedding, which is the output of the CLIP encoder , as their input.
Fig. EI (Left) shows the maximum magnitude of the text embedding of each token
(average across 8 sentences). We observe that the 1st token has a significantly
larger magnitude (823.5) compared to the rest of the tokens (10-15). Quantizing
this tensor with such an outlier value to 8-bit would lead to the majority of
values being close to 0, resulting in the loss of crucial textual information. This
observation could potentially explain why current quantization methods struggle
to maintain text-image alignment in Fig. [1| (Left).

As shown in Fig. Ié-_ll (Right), the first outlier token in the CLIP output cor-
responds to the “Begin Of Sentence (BOS)” in the tokenizer output. Actually,
the feature of this BOS token remains the same across different prompts. There-
fore, we can skip the quantization and computation for the “to_k/v” layers for
this token. Concretely, we pre-compute the floating-point output feature of the
“to_k/v” layers for the BOS token and then concatenate it with the dequan-
tized features of other tokens. In this way, the quantization error of the CLIP
embedding is significantly reduced as the outlier is removed. Additionally, only
640-1280 (the channel number of BOS features) elements need to be stored for
each “to_k/v” layer, introducing only negligible overhead.
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3.2 Metric-Decoupled Sensitivity Analysis

Preliminary Experiment and Analysis. We start by designing preliminary
experiments. As discussed in Sec.[I] we measure the sensitivity with SQNR. It is
computed as the ratio of the L2 norm of feature values to the quantization noise.
The quantization noise is estimated by evaluating the impact on the network’s
output logits with each layer quantized. We observe the “long-tailed” character-
istics of sensitivity distribution in Fig. 2| (a). An intuitive solution is to allocate
higher bit-widths for highly sensitive layers and lower bit-widths for less sensitive
ones. We implement a straightforward bit-width allocation method based on this
principle to achieve an average of W8AS8. However, as seen in Fig. [5| (Left), the
generated image faces severe quality degradation, suggesting that the current
sensitivity evaluation relying solely on SQNR may require refinement.

We look into this issue and observe the following phenomena in Fig. [5[ (Right):
(1) Both changes in image content and quality impact the SQNR. In particular,
compared with the 30.03dB image, the SQNR decline of an image with changed
contents but high quality (-3.51dB) is much more significant than that of an
image with similar contents but unacceptable quality (-0.26dB). This means
that when evaluating images with varying content and quality, SQNR tends to
underestimate the performance degradation resulting from decreased image qual-
ity. (2) Image quality and content are mainly affected by different layer types.
Specifically, quantizing the cross-attention layers causes content changes, but
the quality remains good. This aligns with the intuition that text supervision
predominantly interacts with cross-attention layers, which control the image
content. Conversely, when quantizing convolutions, the quality degrades and the
content is preserved. Further details of the correlation between layer types and
their impact on content or quality are provided in the supplementary.

As a result, during the bit-width allocation process, since SQNR tends to
overemphasize content changes, the content-related layers are retained at very
high bit-widths. Consequently, the bit-width for quality-related layers is de-
creased. This “unfair competition” between quality- and content-related layers
explains the severe degradation of the image quality observed in Fig. [5| (Left)
when the bit-width allocation is solely based on SQNR.
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Method Design. Inspired by these findings, we improve the sensitivity analysis
by decoupling metrics and layers to separate the quantization’s effect on quality
and content. Therefore, we separate the layers into two groups: the content-
related layers, i.e., the cross-attention layers and feed forward networks (FFNs),
and the quality-related layers, i.e., self-attention layers and convolutions. Then,
we conduct sensitivity analysis for each group separately with distinct metrics.
When performing the sensitivity analysis for the content-related layers, we
adopt the Structural Similarity Index Measure (SSIM) [42] to assess image con-
tent change. Given a generated image x and reference image y, The SSIM metric
combines the three components, luminance (1), contrast (¢) and structure (s):

20,0y

2 Ox
Wz, y) = 5——5.c(x,y) = 525, s(x,y) = —=,
Ry 02+ o2 020y (1)

SSIM(z,y) = l(x,y)“ - c(:v,y)ﬁ -s(x,y)7,

where y o represent the mean and variance of pixel values; and o, 3, v are weights
(set to 1) that control three components. We use the full image size as the window
size for SSIM. Unlike Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR) that measure absolute errors, SSIM is adept at perceiving changes in
structural information, making it well-suited for measuring content change.

When conducting sensitivity analysis for the quality-related layers, we utilize
the SQNR metric. Given that quantizing only the quality-related layers does
not significantly alter the image content, SQNR serves as a suitable metric for
assessing the degree of image quality degradation in this scenario.

3.3 Integer Programming Bit-width Allocation

Having obtained the layer sensitivity, we can determine the mixed precision
configuration by assigning higher bit-widths to more sensitive layers. Enlightened
by prior research [10], we formulate the bit-width allocation into an integer
programming problem: Given the resource budget B, and candidate bit-widths
b € {2,4,8}, we aim to determine the bit-width choices ¢ (a one-hot indicator for

each layer) that maximizes the sum of sensitivity S = Zivzl D beoasCibp - Sip:

N
argmax Z Z i Sip
b i=1b=2,4,8
N (2)
s.t. Z Cip = 1, Z Z Cib 'M“) < B,
b=2,4,8 i=1b=2,4,8

Cib € {0, 1}, Vi € {1, e ,N},Vb € {2,4,8},

where N is the number of layers in the model; ¢; , = 1 indicates that the i-th
layer will be quantized to b-bit, and S, is the corresponding sensitivity score
(higher SQNR or SSIM is better). M, ; denotes the resource cost of the i-th
layer when it is quantized to b-bit.
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We conduct the above integer programming separately for activation quan-
tization and weight quantization, as well as for each of the two layer groups,
i.e., the content-related cross-attention and FFN layers, and the quality-related
self-attention and convolution layers.

4 Experiments

4.1 Experimental Settings

Quantization Scheme. We adopt the simplest and easily deployable asymmet-
ric min-max quantization scheme similar to [1922]. The quantization parameters
(i.e., scaling factor, zero point) are shared within each tensor for the activation
or within each output channel for the weight. The shortcut-splitting quantiza-
tion technique [11] is applied to all methods in Tab. [l We randomly sampled
1024 prompts from COCO [13] as our calibration dataset.

Mixed Precision Allocation. We conduct metric-decoupled sensitivity anal-
ysis by measuring the quantization effect on output sensitivity metrics (SQNR
and SSIM) when quantizing certain layers and preserving the remaining layers
as FP. The sensitivity is averaged over 32 randomly sampled prompts. the search
can be completed within seconds. We use the averaged bit-width weighted by
layer param size as the budget for integer programming and adopt 2, 4, 8 as
candidate bit-width choices. We do not quantize all nonlinear activation and
normalization layers, and quantize all the linear and convolution layers. In our
metric-decoupled sensitivity analysis, we iterate through all layers one by one.
For each layer, our method quantizes only that layer and preserves the remaining
layers as FP. Then, we measure two types of sensitivity metrics for this layer:
SQNR and SSIM. The sensitivity score is averaged over 32 prompts. We quan-
tize each layer to three bit-width choices: 2, 4, 8, and get their corresponding
sensitivity scores. Then, we set a budget for the average bit-width of all elements
(weights or activation) and use the layer-wise sensitivity scores to set up the in-
teger programming. We use the OR-tools |38| library for integer programming.
The efficiency of this implementation allows the bit-width allocation in seconds.
Hardware Profiling. We measure the latency and memory usage of MixDQ
on the Nvidia RTX 4080 GPU using CUDA 12.1. All profiling is conducted with
a batch size of 1. Specifically, we measure memory usage for all models using
the PyTorch Memory Management APIs [24]. The inference latency of the FP16
models is profiled with NVIDIA Nsight tools [20]. For quantized models, we
measure the latency of the quantized layers, the quantization operation, and the
unquantized layers separately, and add them up to calculate the overall latency.
We profile the FP and quantized models using stable-fast [16], a toolkit that
provides state-of-the-art inference speed for diffuser models. We use the kernels
from the Cutlass [21] library to implement the quantized layers and develop a
quantization GPU kernel to reduce the quantization overhead.
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Table 1: Performance and efficiency comparison of MixDQ and other quan-
tization methods on full COCO annotations. The “CLIP” and “IR” denotes CLIP
Score and ImageReward metric. The “Storage Opt.” and “Compute Opt.” denote equiv-
alent savings of model size and computational complexity (measured in Bit Operations
as in [22]). The bit-width “16” represents FP16 without quantization. The “weight only”
setting represents the rows with activation bit-width of FP16, and the rest are the “nor-
mal” weight-activation quantization.

Bit-width Storage Compute

Model Method (VA 7 00 DM FID (1) CLIP(1) IR(1)
FP 16/16 - - 1715 0.2722  0.8631

8/16 2% 1x  16.89 02740 0.8550

. 4/16 4x 1x 30149 0.1581 -2.2526

Naive PTQ 8/8 2% 4% 103.96 0.1478 -1.7446

4/8 4x 8x  358.804 0.1242 -2.2815

SDXL-turbo 8/16 2% 1x 1697 02735 0.8588
(1 step) ODiffusion V16 4x 1x 2258  0.2685 0.6847
- 8/8 2x 4x 7618 01772 -1.3112

4/8 4x 8x 11893 0.1662 -1.6353

4/16 4x 1x  17.23  0.2693 0.8254

3.66/16  4.4x  1x 1740 02682 0.7528

MixDQ(Ours)  8/8 2% 4x  17.03  0.2703 0.8415

5/8  32x  8x 1723  0.2697 0.8307

4/8 4x 8x  17.68 0.2698 0.7822

FP 16/16 - - 2556 0.2570  0.2122

. 8/8 2% 4x 2336 0.2548 0.0517

LCM-lora Ve PTQ g 4x 8x  87.36  0.2055 -1.6160
(4 steps) ODiffusion 5/ 2% Ax 2392 0.2561 0.1875
4/8 4x 8x 5773 0.2280 -1.1863

B 8/8 2% 4x 2254 02552 0.1573
MixDQ(Ours) g 4 8x 3348 0.2403 -0.6732

4.2 Performance and Efficiency Comparison

We conduct experiments on widely-used few-step diffusion models, SDXL-turbo,
and LCM-Lora, for text-to-image generation tasks using COCO2014 at the res-
olution of 512x512. We adopt three different metrics: FID for fidelity, CLIP
Score for image-text alignment, and ImageReward for human preference. The
metrics are calculated on all 40,504 prompts. For the baseline methods, “naive
PTQ” and “Q-diffusion,” we use a uniform bit-width for all layers. For MixDQ),
we calculated the average bit-width weighted by each layer’s parameter size. Fol-
lowing 22|, we measure the theoretical computational savings (“Compute Opt.”)
in Bit Operations (BOPs). The “Storage Opt.” represents the model size reduc-
tion. The comparison of the performance and resource consumption of MixDQ
quantization is presented in Tab. [I] and Fig. [6]

We experiment with two quantization settings: the “weight-only” scheme
which seeks larger compression rate of model size, and the “normal” scheme
focuses on both storage saving and latency speedup. During activation quanti-
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Fig. 6: The FID with respect to memory cost of MixDQ and baseline quanti-
zation methods, with corresponding generated images. MixDQ achieves lossless
quantization, whereas baseline methods fail to generate readable images.

zation, we observed that certain layers retain sensitivity and cannot be quantized
to 8 bits without sacrificing performance. To address this, we choose to retain 1%
of the most sensitive layers based on metric-decoupled sensitivity. Fig. [7] shows
that it introduces minimal overhead but ensures the preservation of performance.

As evident from Fig. [6] and Tab[I] for the SDXL-turbo model, the baseline
quantization methods can only maintain image quality with W8A16. The naive
PTQ’s FID increases drastically from around 17.15 to 103.96 and 301.49 for
WS8AS8 and W4A16, respectively. Q-diffusion, with the assistance of Adaround
manages to preserve performance for W4A16 but still fails at W8AS, generat-
ing images with “oil-painting™like quality degradation. For W4AS8, both PTQ
and Q-diffusion produce images that are hardly readable, exhibiting FID values
exceeding 100, negative ImageReward, and CLIP Score below 0.2. In contrast,
MixDQ generates images that are nearly identical to FP16 images, maintaining
both the image content and quality. Even with W4A8 quantization, MixDQ in-
curs a 0.5 FID increase and a 2.5e-3 CLIP Score drop. As for LCM-Lora, the
baseline methods encounter fewer failures since they involve 4 iteration steps.
Nevertheless, MixDQ consistently outperforms them for all metrics.

We conduct further experiments to compare the performance of MixDQ with
other quantization techniques under W8AS8. The results are provided in Section
1 of the supplementary material.

4.3 Hardware Resource Savings

Memory footprint reduction. Fig. El (a) shows the GPU memory usage of
MixDQ and the FP16 baseline on UNet inference. MixDQ can reduce the mem-
ory footprint from two aspects. Firstly, quantizing the model weights leads to
smaller allocated memory to store the UNet model. Secondly, quantizing the ac-
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Fig.7: The illustration of MixDQ’s hardware resource savings. Left: The
comparison of efficiency and performance under different MixD(@Q mixed precision con-
figurations. Right: (a) MixDQ’s optimization of peak memory, (b) MixDQ’s latency
breakdown under W8AS.

tivations saves allocated memory to store residual connection activations. Com-
bining the two benefits, we can effectively reduce the peak memory footprint by
1.87x, 3.03x and 3.03x under the W8A8, W4A16 and W4AS, respectively.
Speedup of model inference. Fig. El (a) shows the latency of the UNet model
inference on Nvidia RTX 4080. We use the W8AS8 scenario to showcase the
speedup. MixDQ WS8AS8 can accelerate the inference of UNet by 1.52x over the
FP16 baseline. [7| (b) gives a breakdown of the inference latency. There are three
types of layers in the model: quantizable layers, including linear and convolution
layers; non-quantizable layers, such as normalization and non-linear activation
layers; and quantization layers, that perform the FP16-to-int8 conversion. The
non-quantizable layers have the same latency in both the baseline and MixDQ.
The quantizable layers are accelerated by 1.97x, approximately the same ratio
between INT8 and FP16 hardware peak throughput on RTX4080 (2x). MixDQ
requires quantization layers for converting activations, but even with this over-
head, the end-to-end acceleration still reaches 1.52x.

CLIPScore

Random
20% Perturb Naive Sorting
Pure Random 1.00 + Ours

Sum of Sensitivity Metric (SSIM)
Sum of Sensitivity Metric (SQNR)

& e Ours
402

Fd 20% Perturb
Pure Random

3 4 5 6 7 3 a 5 6 7 8 a H 6 7
Avg Bitwidth (Act) Avg Bitwidth (Weight) Avg Bitwidth (Act)

(a) (b) ()

Fig. 8: The Pareto frontier of mixed precision configurations. The x-axis rep-
resents the averaged bit-width, the y-axis of Subfigures (a), (b), (c) presents the sensi-
tivity metrics (SQNR & SSIM), and the final evaluation metric (CLIPScore).
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5 Analysis

5.1 Analysis of Paretor Frontier

The Pareto frontier [41] is often applied to present the accuracy-efficiency trade-
off. We present the scatter plot of three metrics with respect to averaged bit-
width for SDXL-turbo in Fig. |8 In Fig. |8 (a),(b), we examine the effectiveness
of integer planning by choosing the sensitivity metric (SQNR and SSIM) as
the y-axis. As can be seen, compared with the “Pure random” baseline that
randomly chooses bit-width, the “Ours” configuration achieves a significantly
better trade-off. Furthermore, we randomly “perturb” 20% of layers’ bit-width
in our configuration by replacing it with another bit-width and observing lower
metric scores, denoting the superiority of our bit-width allocation. Furthermore,
to demonstrate that our integer programming is non-trivial, we design a “Naive
Sorting” baseline that repeatedly lowers the bit-width of the least sensitive layer
to fit the average bit-width. We compare the final evaluation metric (CLIP Score)
of “Ours” result, “Naive Sorting,” and “Random” in Fig. [§] (c). As can be seen,
our result achieves a superior trade-off, demonstrating not only the effectiveness
of the integer programming but also the accuracy of our acquired sensitivity.

5.2 Ablation Studies

We conduct ablation studies by gradually incorporating MixDQ techniques into
the W8AS8 quantized SDXL-turbo model. As illustrated in Fig. [J]and Tab[2] the
generated images improve from severe degradation to surpassing FP ones. The
Pareto frontier in Fig.[§] could also assist in proving the effectiveness. We discuss
the effectiveness of the proposed techniques individually as follows:
Effectiveness of BOS-aware Quantization. When adopting naive W8AS
PTQ for SDXL-turbo, as shown in Fig. [0] and Tab. [2| the generated quality
degrades, and the content changes significantly. After introducing BOS-aware
quantization, the image content is recovered, and the metric values improve
significantly (FID: 103.95 — 31.65, CLIP Score: 0.1478 — 0.2652).
Effectiveness of Metric-Decoupled Sensitivity. In Fig. |§| (¢), we present the
result of the bit-width allocation based on SQNR without our metric-decoupled
scheme. It can be observed that compared with Fig. |§| (b), the quality wors-
ened (FID: 31.65 — 37.35, CLIP Score: 0.2652 — 0.2624) after applying mixed
precision. This reveals the insufficient accurate sensitivity and highlights the
importance of our metric-decoupled technique. Also, Fig. [§] (¢) helps prove the
metric-decoupled sensitivity has a high correlation with final evaluation metrics.
Effectiveness of Mixed Precision. As shown in Tab[2| and Fig. [9] (d), when
applying mixed precision with our metric-decoupled sensitivity analysis, MixDQ
achieves lossless quantization with generated images nearly identical to FP and
acquires similar metric values (FID: 17.03 vs. 17.15, CLIP Score: 0.2703 vs.
0.2722). Fig. [§] (a),(b) also illustrates that our integer programming strikes the
optimal performance-efficiency trade-off on the Pareto frontier.
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Table 2: Ablation studies on MixDQ techniques. By gradually incorporating the
proposed techniques on SDXL-turbo with W8AS8 quantization, the generated images
exhibit improvements from failure to surpassing the FP16 baseline.

BOS-aware ~ Mized-Precision ~ Metric-Decouple Bit-width(W/A) FID () CLIP (1)

- - - FP16 17.15  0.2722
B - - 8/8 103.96  0.1478
v - - 8/8 31.65  0.2652
v v - 8/8 37.35  0.2624
v v v 8/8 17.03  0.2703
. PTQ+BOS+Mixed-precision
Naive PTQ PTQ+BOS Ours(w.o. Metric-decouple) Ours FP16
FID: 103.96 FID: 31.65 FID: 37.35 FID: 17.03 FID: 17.15

@ (b) © @

Fig.9: The illustration of ablation studies on MixDQ techniques. From left
to right, as techniques are progressively added, notable improvement in both generated
image quality and alignment is witnessed.

6 Conclusions

We propose a mixed-precision quantization method: MixDQ, which consists
of three steps. Firstly, BOS-aware text embedding quantization addresses the
highly sensitive layers. Secondly, metric-decoupled sensitivity analysis is intro-
duced to consider preserving both the image quality and content. Finally, an in-
teger programming is conducted for bit-width allocation. MixDQ achieves W4A8
with negligible performance loss, and practical hardware speedup.
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