
LCM-Lookahead for Encoder-based
Text-to-Image Personalization - Supplementary

Materials

1 Additional comparisons

1.1 Celebrity Comparisons

In fig. 1 we show additional comparisons against the baseline methods, using
celebrity inputs. Most baselines succeed in preserving the identities of all celebri-
ties. The baseline IP-Adapter [17] variants still struggle with stylization prompts,
and show background leak (though the latter can be fixed through appropriate
background masking). Our results show good identity preservation while provid-
ing high editability.

1.2 Comparisons on InstantID paper results

In fig. 2 we expand Fig. 5 of the InstantID paper [16] with the results of Pho-
toMaker [5] and our own method. Here too, our method shows improvement
over the prior art, and particularly the IP-Adapter variations on which it is
based. While we were unable to verify this due to the LAION [11] dataset being
withdrawn, a search through https://haveibeentrained.com/ indicates that
some of these individuals (e.g., Yann Lecun) may be included dozens of times
in InstantID’s reported training set. IP-Adapter did not report their training
set for their FaceID versions. However, their diminished performance on these
individuals hints that they did not observe them.

2 Maintaining model alignment

In the core paper, we note that applying the LCM-lookhead loss naively over
extended training leads to a breaking of the alignment between the LCM [7] and
non-LCM models. To avoid this, we investigated three options for preserving
model alignment: (1) Applying a score distillation sampling (SDS) loss [9] to the
LCM-model outputs, while using the non-LCM model to estimate the score func-
tion. (2) Adding the standard Consistency Model [13] loss to the objective of the
LCM-path’s outputs, and (3) scaling the LCM-LoRA weights during training.
Finally, we also investigate the results when avoiding any alignment-preserving
mechanism.

The results are provided in Tab. 1. Notably, without using any alignment-
preserving objective, our method shows only mild improvement over not using
an identity loss at all. Introducing the SDS objective improves matters, but

https://haveibeentrained.com/
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Fig. 1: Comparisons against prior and concurrent face-personalization encoders on
celebrity data. IP-A (1.0) and (0.5) represent the IP-Adapter results with a scale of 1.0
and 0.5, respectively. IP-A (1.0) serves as the backbone which we fine-tune.

still under-performs the alternatives, including simply passing the identity loss
through the single-step DDPM [2] approximation. Finally, using a consistency
loss or the LoRA scaling approach leads to the best alignment preservation and
hence the best downstream performance. Of the two, we settled with LoRA
scaling because it provides improved results, is much simpler to implement in
practice, and has negligible impact on compute requirements.

3 Choice of synthetic data

Here we report evaluation results for models trained on different datasets or syn-
thetic data generation options. Specifically, we consider: (1) Synthetic identities
created by leveraging SDXL Turbo’s [10] mode collapse. (2) Celebrities created
using SDXL’s [8] prior knowledge. (3) ConsiStory [15], a training-free consistent
subject generation method built on SDXL, and (4) the CelebA dataset [6]. The
results on FFHQ [4] and Unsplash-50 are shown in Tab. 2.
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Fig. 2: We expand Fig. 5 of the InstantID [16] paper with PhotoMaker [5] and our
own results. Here, we keep the column terminology employed by the original InstantID
paper. Hence, IP-A refers to IP-Adapter-SDXL, IP-A FaceID* is the experimental
version of IP-Adapter-SDXL-FaceID. IP-A FaceID is the IP-Adapter-SD1.5-FaceID
model, and IP-A FaceID Plus is the IP-Adapter-SD1.5-FaceID-Plus model. Note that
the last two models are based on SD1.5 and not on SDXL.

Notably, the CelebA dataset and the ConsiStory results contain only photo-
realistic images (the latter because of its limitation in changing styles across the
batch). This leads to diminished prompt-alignment, showing the importance of
training on data for which the encoder is not pushed to adhere to a fixed output
style.

4 Stylistic Diversity

While encoder-based personalization methods have achieved pleasing results,
they still may under-perform optimization-based approaches on the diversity
of styles that they can achieve. In fig. 3 we investigate how well our approach
performs under more difficult style changes. As can be seen, our approach can
successfully handle non photo-realistic renders and harder texture changes that
are reflected in the structure of the image, such as mosaics or origami styles.
However, our approach may struggle with styles that require large shape changes,
such as the Minecraft style or PS1 style renders.



4

Table 1: Comparison of different align-
ment preservation approaches.

FFHQ-5000 Unsplash-50
ID ↑ CLIP-T ↑ ID ↑ CLIP-T ↑

LoRA Scaling 0.345 26.33 0.308 26.79
LCM Loss 0.324 26.63 0.280 27.05
SDS 0.267 27.03 0.232 27.16
No Alignment 0.246 27.46 0.220 27.48

Table 2: Comparison of real and synthetic
data generation options

FFHQ-5000 Unsplash-50
ID ↑ CLIP-T ↑ ID ↑ CLIP-T ↑

SDXL Turbo 0.345 26.33 0.308 26.79
Synthetic Celebs 0.334 26.37 0.299 26.81
ConsiStory 0.358 24.87 0.303 25.44
CelebA 0.345 25.81 0.294 26.14

Input Origami Mosaic PS1 Render Anime Minecraft

Fig. 3: Our method can generate more complex visual styles, but can struggle with
significant shape changes (e.g., Minecraft’s block-based style).

5 Limitations

As an encoder, our model must learn to generalize from its training data. This
places limits on its ability to adapt to concepts which were sufficiently rare (or
entirely unseen) during training, such as unusual makeup (fig. 4, right).

Additionally, our model posses unique limitations that may not be shared
by prior art. Our training data contains a higher portion of non photo-realistic
samples. Hence, the model may default to stylized results more often than the
baseline (fig. 4, middle).

Finally, the model attempts to capture non-identity data from the image,
such as accessories. Hence, providing it with a photo of a person wearing head-
phones will drive it to generate more photos with headphones. However, the
model struggles to preserve the exact details of such accessories (fig. 4, left).

6 Additional implementation details

6.1 Classifier Free Guidance details

When using the full version of the model with attention-based key and value
expansion, we find it useful to modify the classifier free guidance (CFG, [3])
formulation to:

ϵ = ϵuncond + sno−kv · (ϵno−kv − ϵuncond)

+ sfull · (ϵfull − ϵuncond) (1)
+ skv · (ϵkv − ϵuncond) ,
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Fig. 4: Limitations: (left) Our model captures accessories such as hats or headphones
as part of the character. However, it does not accurately reproduce them in novel
prompts. (middle) Our model may add stylization to output images even when not
prompted for it. (right) The model fails to preserve tail concepts, such as excessive
makeup.

where ϵno−kv is the denoiser’s prediction when the keys and values are not ex-
tended (i.e. using Kl

zr,t , V
l
zr,t), and ϵkv is the denoiser’s output when these keys

and values are used, but all other conditioning codes (text, IP-Adapter) are set
to their null value. ϵfull includes all conditioning inputs, and ϵuncond includes
null conditions for all. The scale parameters were set empirically to sno−kv = 3.0,
sfull = 2.0, skv = 2.0.

To facilitate CFG, we follow IP-Adapter and continue dropping the adapter
and text conditions in 10% of iterations. For the expanded attention path, we
draw inspiration from ConsiStory [14] and randomly drop 5% of keys and values
at every iteration.

6.2 Additional parameters

When expanding the cross attention mechanism, we follow prior art [1, 15] and
enable FreeU [12] at inference time. We use the following parameters: b1 = 1.1,
b2 = 1.1, s1 = 0.9, s2 = 0.2. Without FreeU, blur or low resolution artifacts are
more often inherited from the conditioning image.

7 Evaluation details

For all Unsplash-50 evaluations and figures in the core paper, we generated a
single image of each combination of identity and prompt. In the quantitative
evaluations, we compute the automatic metrics over the entire set. For the user
study, we randomly sampled an identity and prompt combo for each question.
For qualitative figures, here and in the core paper, we manually selected 14 of
these identities.

For FFHQ evaluations, generating images with all prompts for every identity
would take weeks. Hence, we randomly sampled one prompt from our set for
each identity, and calculated the metrics over all 5, 000 image-prompt pairs. The
same image-prompt pairs were used for all baselines and ablations.
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We used the following prompts, to ensure coverage of both background changes
and re-contextualization (which prior methods handle well), and style modifica-
tions (which they struggle with):

– “A photo of a face"
– “A pencil drawing of a face"
– “A face riding a bicycle"
– “A face as a Pixar character"
– “A face as a samurai in medieval japan"
– “An oil painting of a face"
– “A painting of a face in the style of Van Gogh"
– “A sculpture of a face"
– “A pop figure of a face"
– “A face on a billboard in times square"
– “A face in an astronaut suit"
– “A face piloting a fighter jet"
– “A face dressed as a superhero"
– “A face in papercraft style"
– “A digitial art painting of a face"
– “A cubism painting of a face"
– “A garden gnome of a face"
– “A grainy old time photo of a face"

For methods which require specific keywords in the prompt we replaced the
subject word “face" with an appropriate reference to the keyword (e.g. “face img"
for PhotoMaker).
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