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Fig. 1: We introduce a novel LCM-based lookhead mechanism to apply image-
space losses to personalization encoder training. These are coupled with consis-
tent data generation and attention sharing techniques to tune existing backbones
and improve identity preservation and prompt alignment.

Abstract. Recent advancements in diffusion models have introduced
fast sampling methods that can effectively produce high-quality images
in just one or a few denoising steps. Interestingly, when these are distilled
from existing diffusion models, they often maintain alignment with the
original model, retaining similar outputs for similar prompts and seeds.
These properties present opportunities to leverage fast sampling meth-
ods as a shortcut-mechanism, using them to create a preview of denoised
outputs through which we can backpropagate image-space losses. In this
work, we explore the potential of using such shortcut-mechanisms to
guide the personalization of text-to-image models to specific facial identi-
ties. We focus on encoder-based personalization approaches, and demon-
strate that by augmenting their training with a lookahead identity loss,
we can achieve higher identity fidelity, without sacrificing layout diversity
or prompt alignment. Code at https://lcm-lookahead.github.io/.

https://lcm-lookahead.github.io/
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1 Introduction

Text-to-image personalization [18,55] methods enable users to tailor pretrained
generative models to their own, personal data. Commonly, such methods focus
on human data [19,67,70,81,77,56], where users aim to create novel images of
specific individuals which were unseen by the pretrained model. Early works
proposed to tackle this task by teaching a model new words that describe the
user-provided subjects. They do so by optimizing novel word-embeddings [18,68],
or by fine-tuning the generative model itself [55,57]. However, such approaches
require significant per-subject optimization, leading to lengthy personalization
times and large compute requirements. More recent lines of work propose to
personalize the model using an encoder – a neural network trained to condition
the generative model on user-provided images [19,73,61,79]. While these meth-
ods can enable inference-time personalization, they often struggle to maintain a
subject’s identity, or face difficulties in adapting it to novel styles.

One manner in which encoder-based methods try to bridge these gaps is by
leveraging a pretrained face recognition network as a feature extraction back-
bone. The intuition here is that the pretraining objective of such networks drives
them to encode fine identity details which can later be exploited by the encoder.
However, this approach overlooks the training loss itself, which is still driven by
only an L2 noise-prediction objective. In the realm of Generative Adversarial
Networks (GANs, [21]), it was shown that inversion [1,76] can be significantly
improved by incorporating additional losses that better align with human per-
ception [53,45], e.g ., an identity loss. Applying such image-space losses to the
personalization process could be beneficial here as well. However, the diffusion
training process works on noisy image samples from intermediate diffusion time
steps, and it is not clear how these should be passed into a perceptual loss which
expects clean, realistic images.

Here, we present a method for tackling this question by building on recent
advancements in fast sampling methods [63,59,22], and specifically latent con-
sistency models (LCM, [41,42]). To do so, we leverage an intriguing property
of generative models: fine-tuning alignment, where a child model fine-tuned
from a pretrained parent tends to preserve the semantics of the parent’s la-
tent space [75,20]. In fig. 2, we show a particular manifestation of this alignment
in LCM models, where we compare a single-step LCM output to the DDPM
single-step approximations at intermediate steps of the denoising process. The
LCM results are not only sharper, but they maintain a high degree of similar-
ity with the final DDPM prediction. This property also holds for personalized
models (right, dog). We find this alignment holds particularly well in consistency
models, likely by virtue of the consistency training loss itself.

We propose to leverage this alignment during the training of personaliza-
tion encoders, where we can create a high-quality preview of the denoiser’s final
output by doing a single LCM step on the noisy latents, guided by the same
personalization encoder. This preview can then be used to calculate image-space
losses, such as those derived from an identity detection network. Under this
approach, the LCM-model provides a “shortcut” through which gradients can
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Fig. 2: LCM output alignment. We first denoise an image partway using
DDPM [25] sampling with a baseline SDXL model [47]. We then complete sam-
pling in two manners: (top) By performing a single LCM step. (bottom) By
approximating the clean image using DDPM. Even at early steps, LCM outputs
provide a good approximation of the final DDPM prediction. This also holds for
personalized models (e.g ., LoRA trained on the DreamBooth [55] dog, right).

back-propagate to earlier diffusion timesteps, without relying on low-quality ap-
proximations. In practice, we find that näıve applications of the shortcut loss
can break the alignment between the baseline and LCM models. Hence, we in-
vestigate mechanisms for preserving alignment, and show that these can improve
downstream performance.

In addition to the shortcut mechanism, we further explore an additional
architectural modification inspired by recent video models and image editing
works [74,11,33,50,10,43,24]. There, it has been shown that extending the self-
attention mechanism, such that a generated image can also observe self-attention
keys and values of a real, source image, can allow for zero-shot appearance trans-
fer from the source to the new image [2,65]. Hence, we propose to augment the
encoder with an additional path where the input image is noised, passed through
a copy of the diffusion U-Net, and its self-attention keys and values are extracted
and appended to the forward pass of the newly generated image.

Finally, we train our encoder by leveraging existing backbones [51,79] and
tune it on newly generated data. To create our dataset, we leverage SDXL
Turbo [59], a model distilled for single-step sampling from the vanilla SDXL
using score distillation sampling [48] and adversarial training [21]. Notably, we
observe that this distillation process causes a significant collapse of diversity,
such that a sufficiently detailed prompt will generate the same identity regard-
less of the input seed. We leverage this property to generate a dataset of images
with repeated identities and differing styles. Importantly, the use of generated
data allows us to avoid the need to collect sensitive personal data, and ensures
that our dataset contains proper representation for minority classes that are
typically under-represented in real datasets.

We validate our approach through comparisons to a range of recent baselines,
and through a large set of ablation scenarios. These demonstrate that our ap-
proach can achieve higher identity fidelity and prompt alignment, and highlight
the benefit of integrating image-space losses during model tuning.
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2 Related work

Text-to-image Personalization. In the task of text-to-image personaliza-
tion [18,55], the goal is to adapt a pretrained model to better represent a user-
given concept which was unseen during the original training. Initial efforts show
that this can be achieved by either optimizing a new text-embedding [18] or by
further tuning the denoising network itself [55]. This has spurred a variety of dif-
ferent approaches that try to extend the optimized embedding space [4,68,17], re-
strict the tuned part of the denoising network [57,35,64,8,23], or optimize for spe-
cific target prompts [7]. A joint limitation of all these different approaches is that
they require a per-subject optimization process which can be time-consuming.

Encoder-Based Personalization. To overcome the limitations of optimization-
based approaches, more recent work proposes that pretrained encoders can
be used to initialize the optimization process, significantly shortening tuning
times [19,56,6,36]. Others tried to completely avoid any optimization, at the
cost of accuracy [73,12,61,79,30].

Recently the problem of face personalization gained focus, with a range of
works specifically tackling this domain with the goal of improving identity preser-
vation across prompts [19,67,70,81,77,56]. In PhotoMaker [37] the features of a
CLIP-model [51] are modulated using a dedicated ID-oriented dataset. Face0 [67]
proposed to replace the CLIP encoder with an identity recognition network. IP-
Adapter [79] introduced similar ideas in later variants, with identity network
features being used either instead of, or on top of the CLIP image embedding.
FaceStudio [78] follows a similar mechanism but also uses a prior model to bet-
ter adhere to the original prompt. The concurrent InsantID paper builds on
IP-Adapter and extends it with a landmark-conditioned ControlNet [82] to pre-
serve pose and simplify identity preservation.

Common to all these methods is that their training signal is based solely on
the standard diffusion training loss. This is in contrast with the common practice
in GAN-Based encoder methods [53,5,3,66,71,16], which demonstrated improved
results by integrating perceptual losses, such as an identity loss. This gap can
be attributed to the challenge of applying pixel-based losses during diffusion
training. The concurrent PortraitBooth [46] proposes to apply an identity loss
only to images sampled with low noise levels, where one can well approximate
the clean image. However, this limits the effectiveness of the loss.

Our work is a similar tuning-free face-identity encoder, but we propose to
integrate an identity loss into to the model training by using an LCM-based
shortcut mechanism.

Fast Diffusion Sampling. Standard diffusion models [25] and their text-to-
image variants [54,44,52] are trained to denoise an image over a 1, 000 steps. This
span can be significantly shortened by leveraging ordinary differential equation
solvers to navigate the diffusion flow in fewer steps [62,39,40,38,31].

More recently, several methods were proposed to distill diffusion models into
versions that can be sampled from in fewer steps [58]. The idea there is to teach
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the network to predict points farther along the diffusion flow, either by directly
predicting a baseline model’s output after multiple steps [58], through consis-
tency modeling techniques [63,42,41,34], by leveraging adverserial training [21]
and score sampling [48] methods [59] or by matching distributions between two
diffusion models [80]. Of these, LCM-Lora [42] has shown that the consistency
modeling approach can be applied through a low-rank adaptation [27] of the
model weights.

Our work leverages such models, and LCM-LoRA in particular, in order to
introduce image-space losses into personalization encoder training.

3 Preliminaries

3.1 Text-to-image Personalization

Text-to-image personalization methods introduce new, user-provided concepts to
a pretrained T2I diffusion model, typically by tuning novel word-embeddings, pa-
rameters of the denoising network itself, or mixture of both. Such optimization-
based methods use a small (typically 3-5) image set depicting the concept, and
tune the relevant parameters using the standard diffusion training loss [25]:

LDiffusion := Ez,y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, y)∥22

]
, (1)

where ϵ is an unscaled noise sample, ϵθ is the denoising network, t is the time
step, zt is an image or latent noised to time t, and y is some conditioning prompt
containing a placeholder token which is used to describe the new concept.

To speed up the personalization process, prior work suggested the use of
encoders — neural networks trained to take images of the subject, and map
them to some conditioning code that can guide the pretrained diffusion network
to generate an image of the subject. A common approach [73,30] popularized by
IP-Adapter [79] is to do so by extending the diffusion denoiser with additional
cross-attention layers, which receive tokens derived from some external encoder
module (e.g. a frozen CLIP-backbone [51] with a small projection head). The
novel cross-attention heads and the encoder module are then trained using the
loss of , where images are drawn from large-scale datasets depicting an array of
subjects, commonly from a single domain (e.g. human faces).

In this case, the diffusion loss can be rewritten as:

LDiffusion := Ezr,y,Ic,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zr,t, t, y, E(Ic))∥22

]
, (2)

where Ic is a conditioning image sampled from the training set, zr is the image
latent of a reconstruction target showing the same subject as Ic, and E(Ic) is a
conditioning code derived from the encoder.

Our work builds on a pretrained IP-Adapter, augments it with additional self-
attention-based features, and tunes it to improve identity and prompt alignment.
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Fig. 3: (left) Encoder architecture: Our encoder has two branches: One is the
standard IP-Adapter [79] that provides conditions through a new cross-attention
head. The second branch is a copy of the SDXL U-net from which we extract self-
attention keys and values, which we concatenate with those of the main denoising
branch. (right) Training setup: The two encoder paths are provided with a
conditioning image (and its noisy latent), and their outputs are used to condition
the denoising of a different image of the same subject. We denoise the image
with both the baseline SDXL [47] model and an LCM-model [42]. The baseline
model’s output is used for calculating the standard diffusion loss (eq. (2)). The
LCM output is used to calculate the lookhead identity loss (eq. (4)). We portray
latents as images for visual clarity.

4 Method

Our goal is to improve encoder-based methods so that we can concurrently
achieve identity preservation, and prompt alignment. For identity preservation,
we introduce an LCM-based identity lookahead loss, and a self-attention-sharing
based architectural modification for existing encoder pipelines. To improve prompt
alignment, we utilize a synthetic dataset which contains consistent characters
generated in an array of prompts and styles. fig. 3 provides a high-level outline
of our encoder architecture (left) and training process (right). In the following
section, we provide additional details on each of these components.

4.1 LCM-Lookahead loss

We begin with the goal of achieving high identity fidelity. Here, we would like
to draw on core ideas from existing GAN inversion literature, and particularly
the use of identity networks as a loss during encoder training [53,45]. In the
GAN-based literature, applying such a loss is trivial since the GAN can pro-
duce a clean image in a single forward pass. In the case of diffusion models, the
standard training process involves sampling random intermediate diffusion time
steps, and performing a single denoising step. These single-step predictions are
typically noisy or blurry, and feeding them into a downstream image embed-
ding network has previously been shown to be sub-optimal [15,69]. These prior
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works showed that one can improve the quality of guidance by training feature
extractors on noisy images, or by performing multiple forward steps to create a
clean image, and back-propagating through the entire diffusion chain. However,
the first approach is expensive, and the second is impractical in training sce-
narios: both because such training is typically already memory constrained, and
because end-to-end sampling increases iteration times by a factor of ∼ 100, mak-
ing training infeasible. Instead, we propose to utilize a pretrained LCM-LoRA
model [42], tuned from the same baseline SDXL [47] backbone, to create higher-
quality previews of the fully-denoised images using a single diffusion step. This
preview can be fed into the downstream feature extractor, in our case a face
recognition network [14], and gradients can be backpropagated to the encoder
through this LCM-path. We focus on the LoRA variant of the LCM model as it
best preserves the alignment with the baseline model.

More concretely, let (Ic, Ir) be a conditioning image and reconstruction-
target pair, let zr,t be the image latent zr, noised to an intermediary time step
t, and let ϵLCM be the LCM denoising network. The preview image is given by:

ẑr,0 =
1√
α̃t

(
zr,t −

√
β̃t · ϵLCM (zr,t, y, t, E(Ic))

)
, (3)

where y and E(Ic) are the prompt and encoder conditioning codes respectively,
αt and βt are defined by the diffusion schedule. The lookahead loss is then:

LLH = D (DV AE(ẑr,0), Ic) , (4)

where D is some image-space distance metric (e.g . an identity loss) and DV AE

is the VAE decoder which maps the latents back to image space.

4.2 Maintaining alignment

In initial experiments, we found that applying the lookahead loss of eq. (4)
can improve identities over short-training runs. However, over time, this loss
causes the LCM pathway to focus solely on the loss-metric at the expense of
its prior output, breaking the alignment with the baseline model. We investi-
gated a series of options for improving alignment preservation, including the use
of existing distribution matching options like Score Distillation Sampling [48],
or appending the standard Consistency Model loss [62] to the LCM-path. Full
details and results from this investigation are presented in the supplementary.
In practice, the best downstream performance was achieved using a model in-
terpolation approach. There, for half of our training iterations, we randomly
re-scale the LoRA component of the LCM-LoRA using αLoRA ∈ [0.1, 1.0]. We
hypothesize that applying the loss through the continuously interpolated model
makes it more difficult for the encoder to converge to a solution which works
differently for the LCM- and non-LCM paths. Moreover, this serves as a form
of augmentation which makes adversarial solutions less likely. Lower values of
αLoRA can still act as a preview for intermediate (but not overly noisy) outputs,
which can still provide a signal through the image-space model.
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Finally, similarly to Wallace et al . [69], we find it useful to focus on early
(noisy) diffusion time steps. Here, we do so by applying annealing to the train-
ing time step sampling. We use the importance-weighting function of Huang et
al . [29]: f(t) = 1

T (1 − α cos πt
T ), where f(t) is the probability to sample time

step t, T is the total number of diffusion time steps (i.e. 1, 000) and α is a
hyperparameter which we empirically set to 0.2.

4.3 Extended self-attention features

As a second component for improving identity fidelity, we propose to leverage
recent ideas in video-based modeling [74,11] and appearance transfer [2,24,10].
In these works, it was shown that expanding the self-attention mechanism such
that a generated image can attend to the keys and values derived from a source
image, can lead to a significant increase in visual similarity between the generated
image and the source. Here, we use a similar idea to transfer identity features
from the conditioning image to the generated output. These are applied on top
of the baseline encoder from which we start.

Specifically, we create a copy of the denoising U-Net which we call a “KV
encoder”. We pass a noisy version of our conditioning image through this U-
Net, and cache the self-attention keys and values derived from this pass. Then,
when performing the diffusion denoising pass, we append these keys and values
to those derived from the denoised image at each self-attention layer: Kl :=
Kl

zr,t ⊙Kl
zc,t , V

′l
zr,t := V l⊙V l

zc,t , where l is the layer index and zr,t, zc,t subscripts
denote attention features coming from the reconstruction target latent and the
conditioning image latent respectively. This mechanism is illustrated in fig. 3.

Directly applying this approach with a pretrained U-net as our encoder can
lead to excessive appearance transfer and loss of editing. Hence, we do not keep
the encoder frozen, but rather tune it using LoRA [27]. As our training set
(detailed below) contains target images which differ in style from the source,
this draws the network towards discarding appearance properties that are related
to the style and not to the content, greatly improving prompt alignment. We
note that a similar attention-expansion idea was used for personalization in the
concurrent work of Purushwalkam et al . [49]. However, their target images are
all photo-realistic, and their results do indeed suffer from reduced editability.

Finally, this pathway requires us to slightly modify the standard classifier-free
guidance [26] equation. See the supplementary for more details.

4.4 Consistent data generation

Having introduced components to improve identity preservation, we now turn to
improving prompt alignment. Here, we hypothesize that the limited editability in
current encoder-based methods is largely grounded in their training set, which
typically focuses on reconstructing real images. Moreover, existing large-scale
sets are either closed and proprietary or use the withdrawn LAION dataset [60].
They also commonly contain biases, which may result in models whose perfor-
mance deteriorates on minority classes.
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Fig. 4: Consistent Data. Consistent data generated using SDXL-Turbo with
the description “old man with curly hair and a moustache” incorporated into
different prompts (e.g. “as an oil painting”, “as a wanted poster”)

Instead of relying on such data, we propose to generate a novel consistent
dataset in which we generated the same synthetic subjects across a wide range
of prompts. These can then serve as training data for our encoder, where the
encoder itself is provided with one image of a given identity, and the denoising
goal considers another image portraying the same subject. Such cross-image
training has already been shown to be beneficial with real data [30,37]. Here,
the use of the generated data allows us to take the idea a step further, and
ensure our reconstruction targets also contain stylized images. These can in turn
prevent the encoder from focusing on photo-realism.

To create our data, we investigate multiple approaches for consistent gener-
ation, including: (1) generating celebrities, which the model is already familiar
with and can consistently generate across various prompts, (2) ConsiStory [65],
a recently introduced approach that aligns identities through attention feature
sharing, and (3) using SDXL-Turbo [59].

While SDXL-Turbo is designed for fast sampling and not for consistent image
generation, its adversarial training leads to mode-collapse. We find that, as a
consequence, conditioning it on sufficiently detailed subject prompts will lead to
a fixed identity across seeds and styles, as shown in fig. 4. We find this approach
to achieve the best trade-off between generation time, identity consistency, and
ability to change styles across the generated images. Hence, we use it to generate
500k images spanning roughly 100k identities. In practice, we trained for less
than an epoch (40k identities in total). Further experiments and comparisons on
consistent data generation can be found in the supplementary.

4.5 Implementation Details

We initialize our IP-Adapter backbone using the CLIP-based Face-ID model, and
tune the same parameters as the original IP Adapter using a learning rate of
1e−5. The encoder and denoiser U-Nets are initialized from a pretrained SDXL
model. We tune the encoder U-Net using LoRA with rank 4 and a learning rate of
5e−6. The decoder is kept frozen. For our LCM-Lookahead we use TinyVAE [9]
to decode the latents. This lighter model reduces our memory consumption and
also improves gradient flow during backpropagation. We tune the models over
5, 000 iterations with a total batch size of 8 split across 2 NVIDIA A100 GPUs.
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Fig. 5: LCM-Lookahead Guidance. Results of classifier guidance when using
different classifiers on top of our LCM-Lookahead, or standard x̂0 approximation.
Each classifier preserves different attributes of the guiding image. x̂0 guidance
may result in reduced quality or visible artifacts. Identity similarity values (↑,
measured using [28]) are shown at the bottom.

5 Experiments

5.1 Classifer guidance with LCM-Lookahead

We begin with an exploration of the LCM-Lookahead mechanism using a toy
experiment, where we investigate its application to classifier guidance. Although
this training-free method is less effective compared to encoder-based approaches,
it serves as a simple use-case in which we can analyze the lookahead mechanism
and discern its potential. Specifically, we follow [69] and apply repeated guidance
iterations on an early diffusion time step (t = 44 out of 50 DDIM [62] steps). At
each iteration, we denoise the current latents using SDXL-LCM, decode them to
an image, apply our pixel-space loss, and backpropagate to modify the latents.
Final results are generated by continuing unguided-DDIM sampling for the re-
maining diffusion steps. fig. 5 shows several outputs of such guidance, using a
perceptual LPIPS loss [83], CLIP loss [51] and an identity loss [14]. Each loss
preserves different attributes of the guiding image. LPIPS preserves the seman-
tic structure of the image, CLIP preserves semantic attributes such as facial
hair, and the identity loss explicitly improves facial similarity. When applying
the same guidance to the single-step DDIM-approximations (x̂0 in fig. 5) we ob-
serve artifacts or reduced performance, attributed to the fact that x̂0 is typically
blurry and discolored in early timesteps. The identity loss is particularly robust
to blur, but its performance still improves by using a lookhead loss.

Our encoder focuses on the lookahead identity loss to improve identity preser-
vation during training.
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Input “A photo of..” “..Monet” “..Comic Book” “..Papercraft” “Pencil..”

Fig. 6: Qualitative results. Our method personalizes a model to specific face
identities at inference time, enabling both photo realistic and stylized prompts.

5.2 Encoder evaluation

fig. 6 shows a set of images synthesized using our encoder, across a range of
identities and prompts. Our method can produce both photo-realistic results
and stylized outputs, while largely preserving the subject’s identity.

To better gauge the quality of our results, we evaluate our method against a
set of prior and concurrent works on personalized face generation. Specifically,
we consider the three leading tuning-free approaches which have public SDXL
implementations: IP-Adapter [79], InstantID [70], and PhotoMaker [37]. For IP-
Adapter, we use the FaceID model that serves as our backbone, and evaluate
it using two adapter-scale settings: The ’‘official” value (1.0), and the one com-
monly used by the community (0.5) which significantly improves alignment with
the textual prompts but harms identity.

Qualitative Comparison. We first conduct a qualitative comparison. Prior
art often shows results on well-known celebrities. However, we find that it is
excessively easy to overfit on such identities (indeed, SDXL already contains to-
kens describing them, relegating an encoder’s job to simply finding these tokens).
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Fig. 7: Comparisons against prior and concurrent face-personalization encoders.
IP-A (1.0) and (0.5) represent the IP-Adapter results with a scale of 1.0 and 0.5,
respectively. Notably, IP-A (1.0) serves as the backbone which we fine-tune.

Moreover, some recent papers test on identities contained in their training set
(e.g . LAION-Faces contains images of famous researchers such as Yann Lecun).
To paint a full picture, we provide such comparisons in the supplementary. Here,
we instead collect a small set of 50 images with permissive licenses which were
uploaded to https://unsplash.com/ over the period of Feb 19th - March 4th
(2024). Our assumption is that these portray novel individuals which are less
likely to exist in any prior training set, and thus offer the ’cleanest’ benchmark.

Comparison results are shown in fig. 7. Notably, our method outperforms our
IP-Adapter backbone in editability, while matching or exceeding it on identity
preservation. InstantID achieves comparable results. However, it heavily restricts
the target’s pose to that of the conditioning image. Moreover, InstantID was
trained on significantly more data and compute (60 million images and 48 GPUs
over an undisclosed time-frame). We are hopeful that our approach could also
be applied on top of an InstantID backbone and lead to improved results.

In the supplementary, we further investigate the extent of diverse styles that
can be achieved by our approach. While it does not yet reach the expressiveness
offered by recent optimization based approaches, we observe that our method
can handle varied styles including non photo-realistic rendering or mosaicing.

https://unsplash.com/


LCM-Lookahead for Encoder-based Text-to-Image Personalization 13

Quantitative Comparison. Next, we move to quantitative evaluations. Here,
we follow prior work [19] and compare the baselines across two metrics - iden-
tity similarity and prompt alignment. Our prompts include photo-realistic re-
constructions, but also stylization and material change which prior art often
struggles with. To measure identity similarity we use CurricularFace [28], which
differs from both our loss network and from the backbones used to extract fea-
tures for the baselines. Text alignment is measured using CLIP similarity (using
the ViT-B/16 version which differs from the IP-Adapter backbone). We report
both metrics using two sets: (1) 5, 000 identities randomly sampled from the
FFHQ dataset [32] and (2) The 50 unsplash identities. The results are shown
in table 1. Our method is situated on the pareto front, providing good iden-
tity preservation and high editability. Note in particular that we outperform the
backbone IP-Adapter in its typically used setup (α = 0.5) on both metrics.

Since identity metrics are highly sensitive to both the success of editing (i.e.
stylized images will have lower identity scores than failed edits), and to poses
(which InstantID copies), we also verify our results using a user-study. There,
for each question we showed users a reference image and a prompt pair, and the
outputs of two models conditioned on this pair (ours, and a random baseline).
We asked users to select the image that better preserves the reference identity
and better aligns with the prompt. In total, we collected 460 responses from
43 different users. In table 3 we report the percentage of users that preferred
our method over each baseline. The results largely align with the automatic
metrics, showing that our approach is preferred to the backbone on which we
build. InstantID still outperforms all methods, primarily on account of its much
improved editability, but the margin is less severe.

Table 1: Quantitative comparisons

FFHQ-5000 Unsplash-50
ID ↑ CLIP-T ↑ ID ↑ CLIP-T ↑

Ours 0.345 26.33 0.308 26.79
IP-A (0.5) 0.268 25.82 0.250 26.36
IP-A (1.0) 0.368 21.39 0.387 22.06
PhotoMaker 0.344 26.69 0.218 27.19

InstantID 0.631 28.58 0.612 29.06

Table 2: Ablation study

FFHQ-5000 Unsplash-50
ID ↑ CLIP-T ↑ ID ↑ CLIP-T ↑

Baseline IPA 0.368 21.39 0.387 22.06

+ Our Data 0.220 28.14 0.205 28.25
w/ ID-Loss x0 0.282 27.50 0.272 27.74
w/ ID-Loss LCM 0.301 27.31 0.281 27.74
+ KV Injection 0.345 26.33 0.308 26.79

Table 3: User study results. For each matchup, we report the fraction of users
who prefered our method, and the fraction that preferred the baseline.

PhotoMaker IP-A (1.0) IP-A (0.5) InstantID

Ours 71.18% 82.25% 57.32% 44.06%
Baseline 28.82% 17.75% 42.68% 55.94%

5.3 Ablation

We conduct an ablation study to evaluate the contribution of our suggested
components, using the following setups: (1) The baseline IP-Adapter tuned on
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our data, without extended attention or identity losses. (2) The setup of (1) +
an identity loss derived through standard x0 approximations. (3) The setup of
(1) + an identity loss derived through an LCM shortcut. (4) Our full model (the
setup of (3) + attention injection branch). For comparison, we again provide the
backbone IP Adapter results.Quantitative results are provided in table 2. The
use of our novel dataset greatly improves prompt alignment, at the cost of some
identity fidelity. We attribute this in part to our smaller training scale, and to
the fact that the identity score is impacted by stylization. Adding an identity loss
significantly increases identity preservation, while passing this loss through the
LCM shortcut provides a noticeably larger increase. Finally, injecting attention
features leads to even better identity alignment, but at the cost of editability.

Our results demonstrate that appending losses through an LCM-shortcut
mechanism can provide improvements over the direct approximation approach.
All-in-all, the combination of our components leads to a high level of both iden-
tity preservation and prompt alignment.

6 Limitations and ethic concerns

While our model can improve existing encoders, it is not free of limitations. First,
like prior tuning-free encoders, it falls short of the quality of optimization-based
methods. This is particularly noticeable when working with inputs that are no-
ticeably out-of-domain compared to standard face imagery (see supplementary).

Secondly, our model may still suffer from biases inherent in both the backbone
that we built on, as well as the diffusion model itself. Hence, it may serve to
amplify social biases. Moreover, facial editing and generation software can be
used to spread disinformation or defame individuals. Existing detection tools
can help mitigate such risks [72,13], and we hope that these continue to improve.

7 Conclusions

In this work, we presented LCM-Lookahead, a novel mechanism for applying
image-space losses to diffusion training using a fast-sampling-based shortcut
mechanism. We then build on top of this mechanism to provide better identity
signal to a personalization encoder, leading to improved identity preservation.
Our work further explores the shortcomings of current personalization encoders
and proposes two additional techniques to further improve their results. First,
we show that consistent data generation methods can greatly impact prompt-
alignment quality, and that SDXL-Turbo can serve to create such data. Indeed,
fine-tuning on such data can even restore editability to encoders which have
overfit on the photo-realistic domain. Finally, we show that the common self-
attention key-value injection mechanism can also be applied to encoder-based
personalization, improving the faithfulness of the generated results. We hope
that both our LCM-Lookahead and our improved training scheme will serve to
further push the boundaries of text-to-image personalization.
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