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1 Natural image experiments

1.1 Inpainting

To the best of our knowledge, our method is the first attempt that addresses
challenges related to architecture, overfitting and runtime simultaneously.

To compare with prior DIP methods, we 1) first employ the network configu-
rations that work best in their respective settings [3l[13], i.e., the architectures
used are different in different methods, as shown in Fig. [[]and Fig. 2] we then
2) use an underperforming architecture for all competing methods, as shown in

Fig.

Fig. 1: Qualitative comparisons with previous DIP methods on inpainting.


https://orcid.org/0000-0002-2540-1295
https://orcid.org/0000-0003-2798-337X
https://orcid.org/0009-0003-6259-4932
https://orcid.org/0000-0001-6183-2693
https://orcid.org/0000-0003-1489-2102

Liu et al.

Corrupted Image (21.69 / 0.967) DIP (29.38 / 0.963) Shi et al. (28.02 / 0.855)

Corrupted Image (12.43 / 0.786) UNet w. deconv. (16.27 / 0.784) ResNet (14.59/0.818) Ground Truth (PSNR / 0.SSIM)

Fig. 3: When unsuitable architectures are used, e.g., UNet w. deconvolutions,
ResNet w/o. upsampling, SGLD fails to perform restoration. This confirms the
importance of architectural decisions in DIP, and that previous methods do not address
the architecture-related challenges. Note that deconvolutions have been reported to be

not suitable for DIPs

layers .

0]. Similarly for ResNet, which does not have any upsampling
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SGLD (30.39/0.742) Ours (30.10 /0.731) GT (PSNR / SSIM)

Noisy (20.47 / 0.299)

Fig. 4: Qualitative comparisons with previous DIP methods on denoising. Ours trades
off the metrics for sharpness.

Noisy (27.69 / 0.640) Aszss (23.57/0.678) A, + SGLD (27.69/0.640) A, 56 +Ours (30.40 / 0.792) GT (PSNR / SSIM)

Fig. 5: Denoising results. The base network used in each competing method is replaced
by an underperforming architecture, i.e., A2 _256.

1.2 Denoising

We first show the results when each method operates in its original setting
(Fig. E[), and then evaluate them when an unsuitable architecture is used (Fig. [5)).

Transformer. Besides CNN, we show here the result on Swin U-Net , which
consists of only Swin Transformer blocks and skip connections, i.e., no upsampling
is involved. As noted in a recent study [10], the unlearnt upsampling is the driving

(a) Qualitative Results (b) PSNR Curves
Noisy Swin-UNet w. Ours (ks=7, 0=10) Ground Truth
(20.38/0.465) (21.42/0.497) (29.67/0.879) (PSNR/SSIM)
P e — | — -
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© — w.Ours (ks=7, sigma=10)
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Fig. 6: Qualitative denoising results of a transformer . Our method substantially
alleviates the overfitting and enhances the peak PSNR.
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force behind the spectral bias of DIP, and such transformers are more difficult
to perform denoising. This finding assumes the white noise as the input. Here,
we show that constraining the bandwidth of the noise input enables long-lasting
denoising even in such models.

2 Influences of hyperparameters

As our methods contain several hyperparameters, we visualize their influences on
the frequency control and hence the regularization effects over the output image
in Fig. [7

s and o are associated with the Gaussian blur kernel applied on the noise
input. The larger the s and/or o is, the more high frequencies are removed from
the noise input (i.e., the smoother the output is). M and f are for adjusting the
attenuation extents of the Kaiser-based upsamplers. The higher the M and/or 8
is, the larger the attenuation of the high-frequency replica (i.e., the smoother the
output is).

s=15,0 = 25, s =150 = 15, s=15,0=35, s=3,0=2,
M =15,8=25 M=158=15 M=15=5 M=5p=

Fig. 7: Visualizations of the frequency control with our methods in denoising experi-
ments.

3 Comparisons with early-stopping

To complement Table 5 in the main text, here we visualize in Fig. [8| that early
stopping, even though prevents further performance decay, cannot fundamentally
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Brain

Fig. 8: Comparisons with self-validation-based early stopping. Although early
stopping alleviates overfitting, it cannot fundamentally improve the underperforming
architectures. Our methods can improve their peak performance while also mitigating
overfitting.

improve the underperforming architectures. In other words, early stopping
could not cope with ill-designed architectures.

4 Architectural influences

To better inform our method design, we 1) investigate the architectural influences
in the context of MRI reconstruction, and also 2) validate our findings on image
inpainting and denoising. Our results confirm that the reconstruction outcome is
sensitive to basic architectural properties.

4.1 Crucial Architectural Elements

We first pinpointed the core architecture elements that have a critical impact on
the performance.

Experimental setup i. Since a decoder is the minimum requirement for
reconstruction, we experimented with two types of 7-layered decoder-only archi-
tectures, i.e., ConvDecoder |5] and Deep Decoder [6]. Experiments were performed
on the 4x under-sampled multi-coil knee MRI from fastMRI database [9].

Upsampling (interpolation filter). Fig. @(a) suggests an interesting result:
removing the unlearnt upsampling, e.g., bilinear, leads to either failure or unstable
results (see gray curves). Unlike transposed convolution, the unlearnt upsampler is
essentially a fized low-pass interpolation filter that attenuates the introduced high-
frequency replica and also the signal. Frequency response of bilinear interpolation
filter decays more rapidly than that of nearest neighbor as the frequency increases
(Fig.[9] (b)), suggesting stronger attenuation and smoothing effects. Hence, bilinear
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(a) Deep Decoder (1 x 1) Conv-Decoder (3 x 3) ) Frequency Response
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Fig. 9: Influences of architectural elements. Results averaged across three different
widths.

upsampling typically biases the network towards generating smoother outputs,
as prevalent in generative models [12|. Transposed convolutions, however, are
not guaranteed to be low-passed as they are learnable. Due to the spectral bias
of network layers, they may be low-passed during early training to still enable
reconstruction, but the results could be unstable ( ).

Convolutional layers. When the unlearnt upsampling operations are absent,
ConvDecoder (3 x 3) still enables reconstruction while Deep Decoder (1 x 1)
fails completely (Fig. [[a)). A similar phenomenon is also reported in image
denoising [2[10]. This again be attributed to CNN’s inherent spectral bias and
suggests that the size of the kernel also matters, further corroborated in Tab.

Discusstion. Results of this pilot experiment suggest that the spatial kernels
with low-pass characteristics, either learnable or unlearnt, are crucial to the
success of untrained network priors. In particular, bilinear upsampling with a
fixed low-pass filter produces more stable and better results (blue curves).

4.2 Depth, Width and Skip Connections

Here, we demonstrate that insights gained about the unlearnt upsampling can
aid in understanding the connection between architectural characteristics and
the reconstruction task.

Experimental setup ii. For this large-scale validation, we experimented
with an isotropic encoder-decoder architecture used in the original DIP, i.e., equal
width and kernel size for all layers throughout the network. Design choices are
detailed in Tab. [1} Experiments were performed on the publicly available 4x
under-sampled multi-coil knee MRI from fastMRI database [8].

Table 1: Test bed for studying the architectural influences of an encoder-decoder
untrained networks.

Archi. Type Depth (d) # of Skips (s) Width (w) Kernel Size (k)
Adswae {2L, 3-L, 4L, 5-L, 8L} {zero, half, full} {32, 64, 128, 256} {3 x 3,5 x 5}
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Table 2: Influences of typical architectural design choices in knee reconstruc-
tion. Deeper and/or Narrower architectures tend to perform better; skip connections
influence the deep architectures more; larger kernels perform slightly better. Ag_sun_s2_3

performs the best (in ); A2_fuli-256-3 performs the worst (in red).
Width (1)

| Archi.  PSNR SSIM | Archi. PSNRSSIM| Archi.  PSNR SSIM | Archi.  PSNR SSIM|
Az _fun-256-3 26.67 0.530 Az fun-12s-s3 27.12 0.543| Az fun-ea-s 27.70 0.583 Az funs2s 28.47 0.641
As_fun-256-3 28.22 0.590 As_fun-12s-3 28.59 0.605|As_fun-ea-s 28.55 0.616 As funs2s 29.25 0.660
Depth Asfun-2s6-3 28.68 0.617 A fun-12s-s 28.95 0.622|Asfun-ea-s 28.87 0.624 A4 funszs 29.70 0.671
epth (1) As_fun-256-3 28.61 0.613 As_gun-128-3 28.87 0.615|As_fun-sa-s 29.33 0.648 As_fun-s2-s 29.81 0.680
Asg_ful-256-3 28.98 0.625 Asg_fun-128-3 29.33 0.637|As_fun_ea-s 29.45 0.651 Ag_fun-s2-s 30.04 0.695

Skip Connections (—) Kernel Size (1)
Az hair-256-3 26.91 0.535 Az _sero-256-3 26.83 0.535]Az_fun-256-3 26.67 0.530 Az _fun_2s56-5 26.98 0.550
A4 hair-256-3 28.55 0.621 A4 zero-256-3 27.54 0.697 |As_fun-256-3 28.61 0.613 As_fun-2s6-5 28.82 0.624
Asg_hair-256-3 29.12 0.669 Ag_zero-256-3 28.51 0.609 |Ag_fun-256-3 28.98 0.625 Asg_run-2s6-5 29.12 0.634

What do deeper and narrower architectures produce? (Tab. . Theo-
retically, as the number of layers (depth) or channels (width) increases, the ability
of the network to learn arbitrarily high frequencies (details, noise) is typically
increased . While this is true for width, we have found that the effect on depth
turns out to be attenuated by unlearnt upsampling. As evidenced in Fig.
deeper architectures typically generate smoother images, exhibiting a stronger
preference for low-frequency information, whereas shallower counterparts, even
though they have fewer parameters, are more susceptible to noise and overfit-
ting (red arrows). This is more evident when comparing the same architectures
with just different upsamplers, where the architectures with bilinear upsampling
(stronger attenuation) are less prone to overfitting than the ones using nearest
neighbor (NN) upsampling (cyan vs. blue). Hence, it is not merely the number
of parameters but the architectural characteristics promoting low frequencies
that seem to be the primary reason for the high performance. Note that all these
results are only achievable when unlearnt upsampling is involved (gray dashed
curves).

Skip connections. Deep architectures with zero skip connection converge
more slowly and may lead to over-smoothing as shown in Fig. [10| (red curves). Skip
connections greatly alleviate this issue and introduce more details (cyan curves),
which we speculate could be due to the "reduced effective up-sampling rate".
Yet, excessive skip connections make a deep architecture behave similarly as a

Acquired meas. (Unmasked) Unacquired meas. (Masked) Deep w/o. Skips Deep w. Skips
-

Shallow w. Skips

@ w0 w0 om0 m0 %0 ® om0 eo  mo oA
et toratons.

-256chns (NN) hns (NN) 256chns (Bilinear)  256¢hns (Bilinear.) 256chns
- .. 2levels-2skips — .- Slevels-8skips- (wlo. Upsamp.)
~64chns (NN) 64chns (NN)

Fig. 10: Generalizability of different architectures on the masked regions.
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shallower one, generating more noise (Fig. [L0|right). Overall, they exert a greater
influence on deeper architectures (Ag_zero < Ag_funl < Ag_nair) compared to
shallower ones (Az_fun &~ A2_zero)-

4.3 Validations on image denoising and inpainting.

We reaffirmed our observations above on image denoising and inpainting, as
shown in Fig. [T1] Fig. [[3] Fig. [I4] and Fig. [I2]

We argue that the understanding of the up-
sampling and its interactions with other archi-
tectural elements can help explain why deeper Inpining
networks with fewer skip connections converge
more slowly, generate smoother outputs and
are less prone to overfitting. Concretely, the ny
upsampling operation inserted in-between the g
decoder layer slows down the generation of :
high frequencies required for transforming the
lower-resolution feature maps into the higher-
resolution target image, primarily due to its
role as a fixed low-pass filter. As the network
depth increases, the degree of smoothness in-
creases (Fig. . Skip connections notably
accelerate the convergence (Fig. and ameliorate the over-smoothing issue,
likely due to the reduced "effective" upsampling rate. All these observations are
consistent with our MRI experiments in Sec. [2|

Fig. 12: Deep architectures with
zero skip connection converge more
SIOWIYa i-e~7 AS—zero—256

Deep Decoder (1x1) ConvDecoder (3x3)
Y

0 e TR N

PSNR (dB)
PSNR (dB)
4

e g’m

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iterations Iterations.

Noisy (baseline) ——— 5 Layers w. Transposed Conv. 5 Layers w. Bilinear Up.

5 Layers w/o. Upsampling 4 Layers w/o. Upsampling 3 Layers w/o. Upsampling

Fig.11: Denoising experiments. (Left) In non-convolutional networks, removing
the upsampling hampers the denoising capability, which cannot be compensated by
merely adjusting the network to be more under-parameterized. Transposed convolutions
result in a more rapid decline in performance than bilinear upsampling. (Right)
Convolutional layers alone exhibit certain denoising effects but necessitate early stopping.
The showcased image is from the classic dataset Set9 .
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Deep w/o. Skip Connections

Shallow w/o. Skip Connections

Ground Truth

Fig. 13: Denoising experiments. Deeper architectures with few or no skip connections
tend to generate smoother outputs compared to the shallower ones.

Corrupted Shallow w. Skip Connections  Shallow w/o0. Skip Connections

g ———

Fig. 14: Inpainting experiments. Deeper architectures with few or no skip connections
tend to generate smoother predictions for the masked regions than the shallower archi-
tectures. Skip connections make deep architectures perform similarly as the shallower

ones.

5 Comparisons with ZS-SSL-UNet

In the main paper, we have included the results of the ResNet version of ZS-SSL
. Here, we constructed a UNet variant of it, dubbed ZS-SSL-UNet. As shown
in Tab. [3] the architecture type impacts not only DIP but also deep unrolling
networks, and potentially a broader area, which worth future investigations.

Table 3: Quantitative evaluations. Runtime: mean + std mins per slice.

fastMRI Brain

fastMRI Knee Stanford FSE Runtime

PSNR SSIM PSNR SSIM PSNR SSIM Avg
ZS-SSL-ResNet H 34.39 0.878 32.00 0.773 31.74 0.805 45.5 &+ 11.8 mins
Z3-SSL-UNet 25.70 0.670 27.79 0.703 26.73 0.674 97.5 £ 41.2 mins
Ours 33.10 0.874 32.07 0.781 31.30 0.800 4.4 £ 0.4 mins
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