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Abstract. Localizing and recognizing objects in the open-ended physi-
cal world poses a long-standing challenge within the domain of machine
perception. Recent methods have endeavored to address the issue by em-
ploying a class-agnostic mask (or box) proposal model, complemented by
an open-vocabulary classifier (e.g ., CLIP) using pre-extracted text em-
beddings. However, it is worth noting that these open-vocabulary recog-
nition models still exhibit limitations in practical applications. On one
hand, they rely on the provision of class names during testing, where the
recognition performance heavily depends on this predefined set of se-
mantic classes by users. On the other hand, when training with multiple
datasets, human intervention is required to alleviate the label definition
conflict between them. In this paper, we introduce the OmniScient Model
(OSM), a novel Large Language Model (LLM) based mask classifier, as a
straightforward and effective solution to the aforementioned challenges.
Specifically, OSM predicts class labels in a generative manner, thus re-
moving the supply of class names during both training and testing. It
also enables cross-dataset training without any human interference, ex-
hibiting robust generalization capabilities due to the world knowledge
acquired from the LLM. By combining OSM with an off-the-shelf mask
proposal model, we present promising results on various benchmarks, and
demonstrate its effectiveness in handling novel concepts. Code and mod-
els are available at https://github.com/bytedance/OmniScient-Model.

1 Introduction

A persistent challenge in the realm of machine perception involves the accu-
rate localization [5, 6, 24, 28, 49] and recognition [17, 29, 37] of objects in real-
world settings. While considerable progress has been made on various standard
benchmarks [32, 55, 67, 77], existing methods continue to grapple with the com-
plexities of real-life scenarios where novel out-of-training dataset concepts fre-
quently arise. To address this issue and enhance the practical utility of models,
a common strategy is to decompose the problem into two components: class-
agnostic mask/box proposal and mask/box classification, as highlighted in pre-
vious works [3,11,65,87]. It has been observed that mask/box proposal models,
when trained on a dataset such as COCO [44], can still effectively generalize to
previously unseen concepts [33,84]. Additionally, recent advancements, exempli-
fied by Segment Anything Model (SAM) [36], have expanded the training dataset
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Fig. 1: Illustration of open-ended recognition. The open-ended recognition task
is decomposed into two sub-tasks: class-agnostic mask proposal and open-ended mask
classification. To tackle the task, we propose OSM (OmniScient Model), an open-ended
recognition model that works hand in hand with an off-the-shelf class-agnostic mask
proposal model (e.g ., SAM). Unlike existing open-vocabulary recognition models, OSM
does not require any user-predefined vocabulary and instead directly predicts the class
of each proposal with unconstrained vocabulary in a generative manner. As a result,
OSM shows a great generalization ability. For example, we observe emergent part
predictions such as tail and ear, while OSM has never seen such masks or labels
during training (i.e., we do not use any part segmentation datasets during training).
Moreover, by obtaining masks from a class-agnostic segmenter, we can take advantage
of it and take a wide range of prompt types including point, box, and mask.

to an extensive scale, encompassing 1.1 billion class-agnostic masks from 11 mil-
lion images. This has yielded a mask proposal model characterized by robust
zero-shot segmentation capabilities, generalizing to novel images and concepts.
These developments present a promising avenue toward a solution to the first
issue regarding class-agnostic object proposals.

Despite the remarkable achievements in the development of general pro-
posal models, addressing the challenge of classifying novel concepts in real-world
scenarios remains an unsolved issue. Many of the existing approaches leverage
vision-language models (VLMs), such as CLIP [55] and ALIGN [32], which have
been pretrained on extensive Internet datasets and have demonstrated outstand-
ing performance in aligning images and text within a shared embedding space.
Specifically, these techniques [19, 20, 23, 43, 69, 72–74, 78, 84] aim to train open-
vocabulary classifiers that rely on the precomputed text embeddings derived
from VLMs, as opposed to learning label embeddings directly from the training
dataset. The dependency on VLM text embeddings highlights the inherent power
and generalization capabilities of VLMs, which, to a certain extent, ensure the
classifier’s ability to generalize to novel concepts.

Nevertheless, it is important to acknowledge that while these methods have
shown promise, they are still confronted with several challenges that impede their
practical application. Firstly, these models typically operate under the assump-
tion that class names are predefined during testing, a condition seldom met in
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real-life scenarios. Furthermore, when utilizing multiple diverse datasets, compli-
cations arise when different label definitions or label space conflicts exist among
them. Consequently, many current multi-dataset frameworks address this issue
by training on each dataset with an individual decoder or classifier [26, 83, 85],
or merge the label space manually [38], adding complexity to the process.

To address these challenges, we introduce the OmniScient Model (OSM),
a novel generative framework towards open-ended recognition tasks. Instead
of training the model to “select” correct classes from a predefined vocabulary,
our approach focuses on training it to generate the desired class names. This
paradigm shift means that the model no longer requires the prior knowledge
of all possible class names provided by users, eliminating the necessity for a
well-defined vocabulary during both training and testing phases. Consequently,
this approach naturally accommodates the training and testing on datasets with
varying label spaces, obviating the need for human intervention to harmonize the
differences. Additionally, by building upon a pre-trained Large Language Model
(LLM) [12, 63], OSM leverages the implicitly learned world knowledge [30, 59]
encoded within the LLM, enhancing its ability to effectively generalize to novel
concepts, further bolstering its utility and reliability.

We conduct meticulous experiments to validate the appropriateness of em-
ploying a generative model for discriminative tasks. Our investigation includes
assessing the generative model’s ability to effectively capture and adapt to the
characteristics of a given training dataset and its associated vocabulary. We
compare its performance to that of a discriminative model, primarily focusing
on classification accuracy. Additionally, we introduce a Mode Query mechanism,
which empowers the model to make predictions within a predefined vocabu-
lary (referred to as vocabulary-specific predictions), or to provide open-ended
predictions without vocabulary constraints (referred to as vocabulary-agnostic
predictions). Finally, we integrate OSM with various off-the-shelf segmentors
(i.e., mask proposal models), such as kMaX-DeepLab [79] and SAM [36], and
validate its effectiveness across several benchmarks.

2 Related Work

Open-Vocabulary Recognition Recently, exemplified by CLIP [55] and
ALIGN [32], open-vocabulary recognition methods have demonstrated promis-
ing outcomes. These methods involve the pre-training of dual-encoder models
(for image and text) using contrastive objectives on extensive collections of
noisy image-text pairs. This pre-training process yields feature representations
that possess cross-model capabilities, showcasing robust performance in zero-
shot downstream tasks. Drawing inspiration from these advances, the field of
open-vocabulary detection and segmentation [23, 51, 68, 78] has also witnessed
remarkable breakthroughs, where class names provided during testing may not
have been encountered during the training phase. A majority of these state-of-
the-art techniques [20,23,43,69,78,84] approach the problem by disentangling it
into class-agnostic proposals, along with open-vocabulary proposal classification
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by leveraging a pre-trained CLIP model. However, despite the impressive accom-
plishments of these open-vocabulary methods in recognizing unseen classes be-
yond the training dataset, they hinge on a strong yet brittle assumption that the
semantic classes (i.e., vocabulary) are known in advance and remain static, an
assumption that can easily be disrupted in practical applications. In parallel with
our research efforts, vocabulary-free image classification [14] and zero-guidance
semantic segmentation [58] seek to address this challenge by dynamically gener-
ating vocabularies through processes such as parsing captions [39,40] or retriev-
ing them from external databases [60], and subsequently conducting predictions
within this generated vocabulary in a discriminative manner. By contrast, our
approach offers a straightforward solution by reformulating the open-ended clas-
sification problem as text generation [2, 18, 56, 61], naturally eliminating the
need for a user-predefined vocabulary. Furthermore, while our method primarily
focuses on object-level recognition, the works presented in [14] and [58] concen-
trates on image-level classification and semantic segmentation, respectively.

Large Language Models In recent years, research community has wit-
nessed a remarkable surge in the development of Large Language Models (LLMs) [2,
52, 57, 62, 63]. These models have demonstrated impressive emergent capabili-
ties, including in-context learning [2], instruction following [13, 70], and chain-
of-thought reasoning [71]. However, a significant limitation of these LLMs is
their inherent “blindness” to other modalities, such as visual inputs. More re-
cently, the excitement surrounding multi-modal LLMs has surged, particularly
with the introduction of GPT-4V [52]. Pioneering research [1,4,39,45,46,66,86]
has illustrated a promising avenue for bridging the gap between language and
vision modalities. This approach involves constructing modular models that typ-
ically consist of a frozen CLIP vision encoder, a trainable bridging module (e.g .,
Perceiver Resampler in [1], Q-Former in [39], or a simple linear/MLP layer
in [45, 46]), and a frozen LLM. Furthermore, [4, 53, 66, 75, 80, 81] add referring
or grounding ability to the multi-modal LLM through taking bounding-box as
inputs or outputs. The proposed OSM can be categorized as a modular multi-
modal LLMs with referring capability. However, previous endeavors primarily
aim to enhance multi-modal LLMs with bounding-box (as bounding-box can be
naturally represented in text by referring to its coordinates) for conversation ap-
plications, which also require providing vocabulary in the input prompt [66,80].
Our perspective underscores the value of enabling multi-modal LLMs to recog-
nize segmentation masks and serve as standalone tools.

3 Method

In this section, we commence by detailing how we transform the conventional
classification task into a text generation task, aligning with the principles out-
lined in [2, 56] (Sec. 3.1). Subsequently, we elucidate the construction of OSM
(OmniScient Model), which follows the footsteps of previous modular vision-
language models [16, 39, 46, 86] (Sec. 3.2). We also provide a comprehensive
overview of our training and evaluation protocols (Sec. 3.3).
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Fig. 2: Recognition scheme comparisons. (a) In the closed-vocabulary recogni-
tion setting, the sets of semantic classes are fixed during both training and testing.
A learnable predictor (e.g ., 1 × 1 convolution layer) is used for each training dataset.
(b) In the open-vocabulary recognition setting, the sets of semantic classes can be dif-
ferent during training and testing, allowing detection of novel concepts during testing
by leveraging a pretrained CLIP backbone. The text-based predictor (i.e., the text
embeddings of the predefined set of semantic classes) is different for each dataset. (c)
In the open-ended recognition setting, the model directly predicts the class names in a
generative manner, removing the need to predefine the semantic classes during training
and testing. Additionally, it enables the cross-dataset training in an easier way (e.g .,
no need to involve humans to resolve the label definition conflicts between datasets).

3.1 Problem Formulation of Classification

Without loss of generality, we focus our discussion on mask classification. Given
an input image I ∈ RH×W×3 and a collection of M segmentation masks M ∈
RH×W×M (from an off-the-shelf segmenter, e.g ., SAM [36]), our objective is to
predict a semantic class for each of these masks:

{yi}Mi=1 = {(mi, ci)}Mi=1, (1)

where mi is the i-th mask from M and ci is its predicted class, belonging to the
set of predefined semantic classes C, which is assumed to be known during both
training and testing phases. In a closed-vocabulary setting, models focus solely
on the target classes, implying that the set of predefined semantic classes are
identical during both training and testing (i.e., Ctrain = Ctest, where the sub-
script denotes the training or testing phase). By contrast, in an open-vocabulary
setting, this assumption is relaxed by allowing for the possibility that Ctest may
include novel categories that were not seen during training (i.e., Ctest ̸= Ctrain).
Nevertheless, in both cases, it is essential to have access to the category names
of Ctrain and Ctest during both the training and testing stages. As a result, the
recognition performance heavily hinges on the careful design of Ctrain and Ctest

(called prompt engineering in the literature [23,78]).
The aforementioned assumption (i.e., the access to Ctrain and Ctest) plays

a pivotal role in contemporary recognition frameworks, whether operating in a
closed-vocabulary or open-vocabulary context. These frameworks typically rely
on computing similarity logits across semantic class candidates and selecting the
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candidate with the highest probability as the final prediction. While these meth-
ods have demonstrated effectiveness and success across various tasks and bench-
marks over the past decades, they are not without critical limitations. Firstly,
it is practically impossible to predefine and encompass all potential semantic
classes present in the real world. This limitation poses a significant challenge
in open-vocabulary recognition since it necessitates the prior definition of novel
concepts within the vocabulary. Furthermore, many of these methods are con-
structed around a handcrafted and meticulously designed label space, with the
expectation of covering common concepts that should ideally have unambiguous
definitions. However, the manual curation of label spaces may not be scalable,
particularly when researchers aim to expand their models to encompass all avail-
able datasets from various sources. This process may require labor-intensive tasks
such as meticulous manual merging [38] or conducting separate training [26,83].

To address those challenges, we depart from the conventional approach in vi-
sual recognition and propose a novel paradigm named open-ended visual recog-
nition. In this paradigm, we make the bold assumption that the vocabulary C
remains unknown during both training and testing. We note that during train-
ing we only need to access the target class for each mask, without the need to
know the existence of all the other possible classes in C, which is required for ex-
isting methods relying on softmax-based prediction. This shift in perspective is
illustrated in Fig. 2 for a holistic comparison of the different paradigms. Rather
than selecting a prediction class from a predefined vocabulary, our approach in-
volves directly predicting the class name of the target object. Essentially, this
reformulates the recognition task as a text generation problem. Mathematically,
we frame open-ended recognition as an endeavor to maximize the conditional
likelihood of the class name under a forward autoregressive factorization:

p(ci) =

N∏
j=0

p(ci,j |ci,0, · · · , ci,j−1), (2)

where ci,j corresponds to the j-th text token within the class names for ci.

3.2 Model Architecture

The architectural overview of OSM is presented in Fig. 3. In alignment with the
established modular vision-language models [39, 46, 86], OSM comprises three
principal components: a frozen CLIP-ViT, a trainable MaskQ-Former, and a
frozen Large Language Model (LLM). Our approach incorporates specialized
design enhancements aimed at optimizing the model for object-level recognition,
which we detail in the following paragraphs:

High-Resolution Feature Extraction with Frozen CLIP-ViT A frozen
vision transformer backbone, pre-trained in the CLIP style, has become the stan-
dard choice in existing multi-modal LLM designs. The appeal of CLIP-ViT lies
in its dual advantages: it provides a robust and adaptable feature representation
for input images, and its feature space is well-suited for seamless conversion into
language tokens, which the LLM can comprehend as inputs.
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Fig. 3: An overview of the proposed OSM, consisting of a frozen CLIP-ViT
that extracts high-resolution features in a sliding-window manner, a trainable MaskQ-
Former that resamples pixel features in a mask-aware manner, and a frozen LLM, which
predicts a semantic class for each corresponding mask in a generative manner without
a predefined vocabulary. OSM can be combined with any off-she-shelf segmenter, e.g .,
SAM [36] and kMaX-DeepLab [79]. The proposed MaskQ-Former takes as input (1)
Mask Queries, (2) Context Queries, and (3) Mode Query. The Mask Queries focus on
the mask regions proposed by the off-the-shelf segmenter, while the Context Queries
attend to a broader region derived from the mask. The Mode Query consists of two
modes: vocabulary-specific and vocabulary-agnostic, allowing the model to perform
with dataset-specific and dataset-agnostic vocabularies, respectively. Note that we have
two separate Model Query for MaskQ-Former and LLM respectively, and only the Mask
Queries from MaskQ-Former are fed into LLM.

Nonetheless, the usage of CLIP-ViT, while successful in many multi-modal
LLM applications such as image captioning [9, 54] and visual question answer-
ing [25,31], has its limitations. It was originally pre-trained on lower resolutions,
typically at resolution 224 × 224. This lower resolution can hinder its perfor-
mance, especially when tasked with object-level recognition. Moreover, previous
research [78] has observed that a frozen ViT exhibits weak generalization capa-
bilities across varying input resolutions.

Despite the widespread use of frozen ViT backbones in multi-modal LLM
models, it is evident that a 224×224 input resolution falls short, particularly for
object-level recognition. Typical adaptations, such as windowed attention [47] as
seen in ViTDet [42], may not be applicable to a completely frozen ViT backbone.
To address this limitation, we propose a straightforward strategy to extract more
effective features using a frozen ViT at a higher resolution, for example, 896×896.
Specifically, we employ a sliding-window feature extraction approach at the input
level, where each window size matches that of the ViT’s pre-trained image size.
Afterwards, a global positional embedding is added to compensate the missing
location information across windows. In our experiments, we empirically prove
that this seemingly simple strategy is surprisingly effective, yielding significantly
improved performance in feature extraction from high-resolution inputs.

MaskQ-Former We employ a visual resampler, such as Q-Former [39] or
Perceiver Resampler [1], to bridge the gap between the encoded image features
and inputs suitable for the LLM. This visual resampler typically consists of a
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stack of transformer decoders [64] that transform image tokens into a reduced
set of query tokens, which are usually far fewer in number compared to image
tokens. However, existing visual resamplers like those used in [1, 39], employ a
set of queries that globally attend to image features without considering the
segmentation mask priors.

In response to this limitation, we introduce a novel variant called MaskQ-
Former. The MaskQ-Former takes a segmentation mask as input and performs
masked cross-attention [10], as depicted in Fig. 4. It consists of two sets of
learnable queries: mask queries and context queries. The mask queries execute
masked cross-attention, restricting their focus to the mask region, while the
context queries attend to a broader region derived from the mask, such as the
bounding box region, to provide complementary contextual information. This
contextual information is essential for precise and unbiased recognition [7,8,76].

The MaskQ-Former effectively summarizes the mask region while retaining
access to essential contextual content. Information exchange between the mask
queries and context queries is facilitated through the self-attention layer. No-
tably, all parameters are shared between the mask and context queries, except
for the learnable query initialization, resulting in negligible additional costs. In
the end, we retain only the mask queries as inputs to the LLM, ensuring com-
putational efficiency.

Mode Query While our primary objective is to enable OSM to perform
effectively in an open-ended setting, where it can make predictions without prior
knowledge of any vocabulary, we acknowledge the importance of versatility. OSM
has the capability to perform accurately when required to align with a specific
vocabulary. To achieve this, we introduce Mode Query, consisting of vocabulary-
specific and vocabulary-agnostic queries, drawing inspiration from prefix tuning
techniques [41]. These queries leverage the strong instruction-following capabil-
ities of the LLM, enhancing the model’s adaptability across diverse scenarios.
Concretely, we propose appending a dedicated learnable query for each vocabu-
lary to both the MaskQ-Former and LLM inputs. During training, when utilizing
datasets from various sources, the corresponding vocabulary-specific query for
each dataset is activated, allowing the model to effectively “memorize” the associ-
ated vocabulary of each dataset, thereby improving alignment during prediction.
Additionally, we include a general vocabulary-agnostic query that is activated
during training on any dataset to keep the open-ended recognition ability.

This approach provides flexibility during testing. We can activate a vocabulary-
specific query to ensure that the model’s predictions align better with the desired
vocabulary, or we can activate the vocabulary-agnostic query to facilitate open-
ended predictions. This adaptability enhances OSM’s utility across a spectrum
of real-world scenarios, making it a versatile tool for a wide range of applications.

3.3 Training and Evaluation Protocols

Datasets To create a robust training and evaluation framework, we ensem-
ble six publicly available segmentation datasets, encompassing diverse image
distributions, domains, and segmentation tasks. These datasets include COCO
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Fig. 4: An overview of MaskQ-Former. The parameters of Masked Cross Attention
layer and Context Cross Attention layer are shared. We append the Mode Query to
Context Queries. Moreover, Mask Queries only attend to the mask region in cross-
attention layer, while Context Queries may attend to a larger region derived from the
mask. All queries/tokens will communicate with each other in the self-attention layer.

panoptic segmentation [44], ADE20K panoptic segmentation [82], Cityscapes
panoptic segmentation [15], LVIS instance segmentation [27], ADE-847 seman-
tic segmentation [82], and PC-459 semantic segmentation [21].

Training Protocols During training, we adopt an instruction tuning ap-
proach [13,46,70] to seamlessly integrate training with the LLM. For each train-
ing iteration, we randomly select an image and its corresponding ground-truth
mask from a dataset. We randomly choose an instruction template and insert the
actual class name. This approach enables training the model using a straight-
forward next-token prediction loss without the need for intricate designs. We
default to the template What is in the segmentation mask? and greedy search
decoding for testing.

OSM is jointly trained on various datasets, with each batch comprising 32,
64, 16, 8, 16, and 8 samples from COCO, LVIS, ADE-847, PC-459, ADE-20K,
and Cityscapes, respectively. In each training batch, half of the data activate
vocabulary-specific queries corresponding to their respective datasets, while the
other half activate vocabulary-agnostic queries. We use AdamW optimizer [34,50]
with learning rate 4 × 10−5 and weight decay 0.05. The learning rate follows a
cosine decay schedule. Training continues until the model has processed a total
of 6 million masks.

Evaluation Protocols Our model is evaluated on the validation set of
each dataset, using two types of masks: ground-truth masks or masks produced
by an off-the-shelf segmenter. When using ground-truth masks as inputs, we
purely assess mask classification accuracy. Specifically, a prediction is consid-
ered correct only when the predicted class name exactly matches the class
name in the ground-truth annotation. To enhance the reliability of this metric,
we augment the ground-truth class names with synonyms sourced from [23,78].
Additionally, we consider plural and singular formats of class names. It is impor-
tant to note that these synonyms are not used during model training, as they
may not always be semantically aligned (e.g ., “person”, “man”, and “woman” are
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synonyms in COCO and LVIS). As a result, we report two metrics: Accuracy
(Acc) and Not-in-Vocabulary (NIV), which represent the percentage of predic-
tions correctly match ground-truth classes, or the predictions do not fall into the
dataset’s vocabulary, respectively. The metric Acc directly evaluates the model’s
classification capacity, while NIV reflects the model’s generalizability or degrees
of overfitting to the trained datasets.

Additionally, we consider a more practical application where OSM is con-
nected to an off-the-shelf mask proposal model, such as kMaX-DeepLab [79] or
SAM [36]. We directly evaluate the model’s performance on the established aca-
demic benchmarks, including panoptic segmentation and semantic segmentation,
using panoptic quality (PQ) [35] and mIoU [21], respectively.

4 Experimental Results

In this section, we first provide the settings used for the ablation studies and
our final model. We then evaluate OSM with ground-truth masks along with
ablation studies in Sec. 4.1, followed by the setting using an off-the-shelf mask
proposal model in Sec. 4.2.

Default Settings for Ablations Unless otherwise specified, we use the
default setting below for ablation studies: We resize both the image and mask
during training until the longer side reaches a length of 896 pixels, and then
pad the shorter side to match this length. We apply minimal data augmen-
tation, limited to random flipping. The context queries in MaskQ-Former at-
tend to the whole image. We initialize OSM with InstructBLIP [16] pre-trained
weight, which uses EVA-ViT-g/224 [22] as vision encoder, and Vicuna-7B [12]
as LLM. We use 32 mask queries, 32 context queries, and 1 mode query which
is randomly selected between vocab-agnostic query (shared across datasets) and
vocab-specific query (one per dataset).

Settings for Final Models Based on the findings in the ablation studies
(we detail the results later), for our final model, we increase the image resolution
to 1120 and the context queries attend to the bounding box region that is 0.5×
larger than the box-constrained mask region. We also use random scale jittering
in the range of [0.5, 1.5].

4.1 Mask Classification with Ground-Truth Masks

Generative Model for Discriminative Tasks In Tab. 1, we demonstrate
that a generative model can effectively capture the training dataset, yielding pre-
dictions well-aligned with the training vocabulary. Specifically, as shown in the
top few rows of the table (“single dataset”), we first train OSM separately on each
of the six segmentation datasets, and evaluate its mask classification accuracy
using ground-truth masks. Remarkably, the model, although tasked with unre-
stricted generation of class names, consistently delivers predictions well within
the vocabulary of its respective dataset. This is evident by the high percentage
of accurate predictions (i.e., high Acc scores) and the very low percentage of
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Table 1: Mask classification accuracy across the six segmentation datasets,
using ground-truth masks. Note that OSM (vocab-agnostic) and OSM (vocab-
specific) are obtained from the same model and weights, but activate vocabulary-
agnostic or vocabulary-specific queries during inference, respectively. NIV: Not-in-
Vocabulary. †: Our final model setting.

COCO LVIS ADE20K Cityscapes ADE-847 PC-459 Avg
methods Acc NIV Acc NIV Acc NIV Acc NIV Acc NIV Acc NIV Acc NIV

single dataset

Train on Each Dataset 85.5 5.3e−5 68.3 2.4e−3 82.3 4.3e−4 79.4 4.9e−4 76.9 3.3e−3 80.9 6.9e−3 78.9 2.3e−3

multiple datasets

Learnable Embed 84.3 0.00 67.3 0.00 82.3 0.00 81.0 0.00 76.0 0.00 82.5 0.00 78.9 0.00

Text Embed 83.4 0.00 65.4 0.00 81.5 0.00 81.6 0.00 75.1 0.00 81.7 0.00 78.1 0.00

OSM
vocab-agnostic 74.9 11.1 56.8 10.0 80.6 2.31 81.1 0.01 75.6 0.60 77.8 5.69 74.5 4.95

vocab-specific 84.7 0.10 67.0 0.62 82.1 0.55 81.1 7.0e−5 76.4 0.49 80.8 1.90 78.7 0.61

OSM † vocab-agnostic 79.5 8.75 64.6 8.22 83.8 2.11 88.7 0.01 76.6 0.81 80.6 3.74 79.0 3.94

vocab-specific 87.0 0.11 72.7 0.94 85.2 0.31 88.6 0.01 78.1 0.49 83.0 0.55 82.4 0.40

predictions falling outside the vocabulary (i.e., low NIV scores), showcasing the
generative model’s capacity to operate for a discriminative task.

Next, we explore the more interesting setting, where all six datasets are
used for training (“multiple datasets” in the table), where OSM still maintains
a high accuracy for each individual dataset, even in the presence of potential
label conflicts. Specifically, the proposed Mode Query scheme effectively allevi-
ates the label conflicts between datasets, where the vocabulary-specific queries
(“vocab-specific” in the table) better learns the associated vocabulary for each
dataset, while the vocabulary-agnostic (“vocab-agnostic”) maintains the open-
ended recognition ability (indicated by higher NIV scores). Notably, this achieve-
ment is non-trivial and underscores the value of the proposed Mode Query.

Additionally, we establish two discriminative baselines for comparisons. The
first one (denoted as “Learnable Embed”) replaces the frozen LLM with six learn-
able linear layers, each tailored to a specific dataset. The second one (named
“Text Embed”) initializes the classification layer with pre-extracted text embed-
dings and applies it individually to each dataset, approximating the approach
presented in [26,83]. As shown in the table, our generative model OSM performs
comparably to the strong baseline “Learnable Embed” on the average (78.7% vs.
78.9% Acc) and outperforms the “Text Embed” baseline. Our findings highlight
that the generative model can perform on par with the discriminative models,
even in discriminative tasks, underscoring its versatility and effectiveness.

Finally, in the last two rows of the table (denoted as OSM †), using our
final model setting (e.g ., larger input size) can further significantly improve the
performance for both vocabulary-agnostic and vocabulary-specific settings.

Adaptation to Higher Input Resolution In contrast to many multi-
modal Large Language Models (LLM) approaches that directly employ the frozen
CLIP-ViT, we emphasize the critical importance of higher input resolution for
achieving accurate object-level recognition. However, we recognize that frozen
Vision Transformers (ViTs) often exhibit inferior performance when adapting
to larger input resolutions compared to their pre-training resolutions, as doc-
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Table 2: Ablation studies on OSM design choices. The ablated design choices
include (a) image input resolution, (b) the sliding-window stride of the CLIP-ViT
backbone to extract high-resolution image features, (c) employment of Mode Query,
and (d) the box region size attended by the context queries in MaskQ-Former.

input res. 224 448 672 896 1120 1344 1568

Avg Acc 57.3 70.1 75.2 78.7 79.9 76.6 75.9

Avg NIV 0.89 0.84 1.01 0.61 0.74 3.5 3.5

(a) Input Resolution

sliding stride Global 224 168 112

Avg Acc 71.5 78.7 79.5 79.6

Avg NIV 0.68 0.61 0.59 0.56

(b) Sliding-Window Stride

vocab queries None Vocab-Agnostic Vocab-Specific
Avg Acc 74.8 74.5 78.7

Avg NIV 4.45 4.95 0.61

(c) Mode Query

ratio Global 0.0× 0.1× 0.2× 0.3× 0.4× 0.5× 0.6×
Avg Acc 78.7 79.5 80.5 80.6 80.9 80.9 81.3 81.0

Avg NIV 0.61 0.51 0.43 0.50 0.62 0.56 0.47 0.50

(d) Context Enlargement Ratio

umented in [78]. To address this limitation, we introduce a simple yet highly
effective sliding-window approach for obtaining enhanced features from a frozen
ViT when processing higher-resolution inputs.

As illustrated in Tab. 2a, our experiments consistently demonstrate perfor-
mance gains as input resolution increases, particularly from 224×224 to 448×448,
reflecting an impressive improvement of (+12.8%). This underscores the pivotal
role of a larger input resolution in achieving superior object-level recognition
performance. The benefits persist until the input resolution reaches 1120×1120,
while larger input resolution leads to a performance drop, potentially because
each sliding-window fails to capture semantic meaningful feature. Notably, the
“Avg NIV” metric remains relatively stable across all experiments, indicating
that the performance boost primarily stems from improved mask classification
rather than a better overfitting with the respective vocabulary.

Sliding-Window Stride We validate our sliding-window design in Tab. 2b,
where direct application of the frozen ViT with high-resolution inputs (“Global”)
results in significantly inferior performance (−7.2%), consistent with the obser-
vations in [78]. Moreover, our findings reveal that employing the sliding-window
approach with overlapping windows further enhances results, although the in-
cremental benefit diminishes as the overlap increases. Considering the significant
additional computational costs coming from overlapping window, we do not use
it in our final setting.

Effect of Mode Query It is evident from our experiments that the in-
clusion of Mode Query plays a pivotal role in the effectiveness of OSM. As
demonstrated in Tab. 2c, training OSM across multiple datasets without these
queries may result in better generalization capabilities but compromised align-
ment to specific datasets. This is evident through a lower “Avg Acc” and a higher
“Avg NIV”. However, with the integration of the proposed Mode Query, OSM
exhibits the ability to operate in both “closed-ended” mode (vocab-specific) and
“open-ended” mode (vocab-agnostic). This allows the model to strike a balance
between generalization and alignment, preserving both essential capabilities.

Context is Important for Recognition We investigate the critical role
of context, as detailed in Tab. 2d. Here, “Global” signifies that the context at-
tention may encompass the entire image, whereas “0.0×” refers to a tightly
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Table 3: Comparisons with other discriminative models. OSM uses mask pro-
posals from [79]. We mainly compare with the generalist models (LMSeg and DaTaSeg)
and list Mask2Former as the specialist model for reference. Note that DaTaSeg [26] uses
ADE20K-semantic training data instead of ADE20K-panoptic (thus mark in gray).

proposal network COCO ADE20K Cityscapes
methods backbone PQ PQ mIoU PQ mIoU

specialist models (one model per dataset)

Mask2Former [10] ResNet50 [29] 51.9 39.7 46.1 62.1 77.5
Mask2Former [10] Swin-L [47] 57.8 48.1 54.5 66.6 82.9

generalist models (one model for all datasets)

LMSeg [83] ResNet50 [29] 38.6 35.4 45.2 54.8 80.9
DaTaSeg [26] ResNet50 [29] 49.0 29.8 48.1 - -
DaTaSeg [26] ViTDet-L [42] 53.5 33.4 54.0 - -

OSM ResNet50 [29] 53.3 43.8 50.0 59.5 77.0
OSM ConvNeXt-L [48] 56.1 49.7 55.2 64.7 80.2

constrained bounding box that encircles the segmentation mask closely. The no-
tation “k×” indicates the expansion of the bounding box by a factor of “k×” on
each side. The results in the table underscore the significance of context. Even a
tightly defined bounding box offers a noteworthy improvement over global con-
text (+0.8%). Notably, the benefits become more pronounced as we progressively
transition to a looser bounding box, with the most substantial gain occurring
at “0.5×” (+2.6%) compared to the global context configuration. This under-
lines the importance of context for accurate recognition, with an optimal balance
between tight and loose bounding boxes yielding superior results.

4.2 Mask Classification with Off-the-shelf Mask Proposal Model

Benchmarking with Other Generalists In addition to evaluating OSM
with ground-truth masks, we also provide a practical assessment by integrating
OSM with an off-the-shelf mask proposal model. We employ mask proposals
generated by kMaX-DeepLab [79] and then apply OSM for classifying these
mask proposals. We focus on the comparisons with other generalist segmenta-
tion models that are jointly trained with multiple segmentation datasets, similar
to our setting. Specifically, we compare with text embedding-based methods like
LMSeg [83] and DaTaSeg [26] across various datasets, including COCO panop-
tic, ADE20K panoptic and semantic, Cityscapes panoptic, and semantic seg-
mentation. As outlined in Tab. 3, OSM consistently achieves higher Panoptic
Quality (PQ) or mean Intersection-over-Union (mIoU) scores in comparison to
other discriminative methods. Specifically, with ResNet50 proposal model back-
bone, OSM outperforms LMSeg [83] by +14.7, +8.4, and +4.7 PQ on COCO,
ADE20K, Cityscapes respectively. Compared to DaTaSeg [26], OSM also im-
prove the COCO PQ by +4.3, +2.6, the ADE20K mIoU by +1.9, +1.2 for
ResNet50 and Large backbone variants, respectively. OSM also shows compara-
ble performance to the specialist model Mask2Former [10].
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Table 4: Comparisons in open-vocabulary settings on ADE20K (panoptic),
ADE-847 (semantic), PC-459 (semantic) val sets. †: Methods that can only
perform semantic segmentation. ∗: Methods using geometric ensemble from another
frozen CLIP. We obtain ODISE and FC-CLIP’s non-ensemble results by running their
official code and setting α = 0, β = 0 in the Equation (7) of the FC-CLIP paper [78].

zero-shot datasets ADE20K ADE-847 PC-459
methods PQ AP mIoU mIoU mIoU
OpenSeg† [23] - - 21.1 6.3 9.0
MaskCLIP [20] 15.1 6.0 23.7 8.2 10.0
FC-CLIP [78] 17.8 11.1 20.8 4.1 11.8
ODISE [72] 19.5 10.8 23.8 6.0 9.4
OSM 21.4 12.4 26.9 8.8 19.0

OVSeg†∗ [43] - - 29.6 9.0 12.4
SAN†∗ [73] - - 33.3 13.7 15.7
ODISE∗ [72] 23.4 13.9 28.7 11.0 13.8
FC-CLIP∗ [78] 26.8 16.8 34.1 14.8 18.2
OSM ∗ 26.9 16.2 33.6 13.3 19.8

Evaluation with Open-Vocabulary Benchmarks We also evaluate OSM
aginst state-of-the-art open-vocabulary methods. To ensure an open-vocabulary
setting (i.e., the target datasets are never seen during training), we train OSM
with COCO and LVIS data only and evaluate on ADE20K, ADE-847, and PC-
459 in a zero-shot manner [20]. During testing, we use the same mask proposal
model from [78], and replace the classification head with OSM. Furthermore,
we map OSM’s prediction to target vocabulary using text embedding similar-
ity between predicted class name and target vocabulary class names. Following
prior arts [72,78], we also apply geometric ensemble to enhance the results with
the frozen CLIP predictions. We report results with and without ensemble. As
shown in Tab. 4, when not using the geometric ensemble method, OSM shows
superior scores against state-of-the-art open-vocabulary methods, indicating its
strong performance. It is noteworthy that when the geometric ensemble is ap-
plied — specifically, using an off-the-shelf CLIP for prediction ensemble, which
is not inherently synergistic with OSM’s approach of not predicting a class dis-
tribution due to the absence of a predefined set of classes — OSM continues to
show advantages.

5 Conclusion

In this study, we introduced a novel challenge in the domain of visual recog-
nition, referred to as open-ended visual recognition, and introduced OSM, a
generative framework designed to address this challenge. OSM is a mask-aware
multi-modal LLM capable of processing segmentation masks as inputs and gen-
erating semantic class predictions in a generative manner, without relying on a
predefined vocabulary. Our empirical findings demonstrate that this generative
model yields promising recognition accuracy and exhibits significant potential
for real-world applications, particularly in handling novel concepts that extend
beyond predefined vocabularies.
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