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This supplementary document provides additional details and experimental
results of our approach. The definitions of evaluation metrics are given in Sec. A.
Sec. B details loss functions employed in our method. The implementation details
are discussed in Sec. C. Sec. D shows additional qualitative and quantitative
results. Sec. E offers a complementary analysis of the efficacy of our approach.

A Evaluation Metrics

The definitions of metrics are given in Tab. S1, including accuracy (acc), com-
pleteness (comp), precision (prec), recall, F-score, normal consistency (normal
c.), chamfer L1 distance (Chamfer-L1), and peak signal-to-noise ratio (PSNR).
Lower values denote superior performance for accuracy, completeness, and cham-
fer L1 distance, whereas higher values are preferable for precision, recall, F-score,
normal consistency, and PSNR.

B Details of Loss Function

This section provides the computation for the RGB loss Lc, the depth loss Ld,
the normal loss Ln, the smooth loss Ls, and the Eikonal loss Le.

To enhance the prediction of geometry and appearance, the RGB loss com-
prises the color loss with density derived from SRDF, denoted as LSRDF

c , and
another color loss with density transformed from SDF, denoted as LSDF

c . They
are calculated as follows:

Lc = LSRDF
c + LSDF

c

LSRDF
c =

1

Ns

∑
r∈S2

∥ CSRDF − C̄ ∥1

LSDF
c =

1

Ns

∑
r∈S2

∥ CSDF − C̄ ∥1

(S-1)

where S2 represents the set of rays in a minibatch. C̄ denotes the ground truth of
color. CSRDF is the rendered color with density derived from SRDF as detailed in
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Table S1: Definitions of evaluation metrics. p is the sampled point cloud from the
predicted mesh, while p̄ is from the ground truth. np and np̄ represent normal vectors
computed from the prediction and ground truth respectively. Cn

pred / Cn
gt is the n-th

predicted/ground truth image. NI is the number of images for evaluation.

Metric Definition
Acc meanp∈P (minp̄∈P̄ ||p − p̄||1)
Comp meanp̄∈P̄ (minp∈P ||p − p̄||1)
Chamfer-L1 Acc+Comp

2

Prec meanp∈P (minp̄∈P̄ ||p − p̄||1 < .05)

Recall meanp̄∈P̄ (minp∈P ||p − p̄||1 < .05)

F-score 2×Prec×Recall
Prec+Recall

Normal-Acc meanp∈P

(
nT

pnp̄
)

s.t. p̄ = argmin
p̄∈P̄

∥p − p̄∥1

Normal-Comp meanp̄∈P̄

(
nT

pnp̄
)

s.t. p = argmin
p∈P

∥p − p̄∥1
Normal Consistency Normal-Acc+Normal-Comp

2

PSNR meann∈[1,NI ](20 · log10(1/
√

MSE(Cn
pred,Cn

gt)))

Eq. (5), while CSDF represents the color rendered with the density that is derived
from SDF according to Eq. (3). Ns refers to the number of points sampled per
minibatch.

The depth and normal losses, serving to constrain the 3D geometry, are
defined as follows:

D =

N∑
i=1

Tiαizi,N =

N∑
i=1

Tiαini

Ld =
1

Ns

∑
r∈S2

∥ (wD + q)− D̄ ∥2

Ln =
1

Ns

∑
r∈S2

(∥ N − N̄ ∥1 + ∥ 1− NT N̄ ∥1)

(S-2)

where D̄ and N̄ correspond to the ground truth of depth and normal, predicted
by the pre-trained Omnidata model [3]. D and N denote rendered depth and
normal, respectively. Ti and αi are computed by Eq. (1) with density derived
from SRDF. To address potential depth ambiguities, a scale parameter w and a
shift parameter q are utilized to ensure predicted depth D matches the ground
truth D̄, as utilized by MonoSDF.

The smooth loss, defined in Eq. (S-3), is computed by considering the gra-
dients of the SDF between adjacent points. This encourages a smoother recon-
structed surface.

Ls =
1

Nsm

∑
p∈X

∥ ∇dΩ(p)−∇dΩ(p + ε) ∥2 (S-3)
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where ε is a small perturbation applied to the point. X is the set of sampled
points. dΩ(p) refers to the SDF output produced by the geometry MLP. Addi-
tionally, Nsm indicates the number of points for computing the smooth loss.

The Eikonal loss [4] serves as a regularization term for SDF prediction, de-
tailed in Eq. (S-4).

Le =
1

Nei

∑
p∈X

(∥ ∇dΩ(p) ∥2 − 1)2 (S-4)

where Nei refers to the number of sampled points for the Eikonal loss.

C Implementation Details

The MLP representation employs a geometry MLP comprising 8 layers with a
hidden dimension of 256, while the grid representation utilizes two layers. Both
the color MLP and SRDF MLP consist of two layers each, with an intermediate
output comprising 256 channels. Softplus is used as the activation layer in the
geometry MLP and SRDF MLP, while ReLU is applied in the color MLP. The
network utilizes geometric initialization [1] and is optimized over 200,000 itera-
tions with Adam optimizer [6]. The resolution of 2D output is set to 384× 384.
Each iteration includes the sampling of 1024 rays. The initial learning rate is con-
figured as 5e-4 for geometry MLP and color MLP, 1e-5 for the SRDF branch, and
1e-2 for feature grids. The hyperparameter k in the SRDF-SDF consistency loss
is set to 12. Loss weights {λd, λn, λe, λs, λcon, λvis} are {0.1, 0.05, 0.05, 0.005, 1.0,
0.001}. Following MonoSDF, the ground truth for monocular geometric cues is
predicted by the pre-trained Omnidata model [3]. The optimization is performed
on one NVIDIA A100 GPU.

D Additional Results

D.1 Additional Ablation Study

Impact of SRDF Branch: Additional ablation study, shown in Tab. S3, eval-
uates the importance of SRDF branch. The experiments include: (a) Baseline:
MonoSDF with MLP representation. (b) SDF to SRDF : this setup generates
SRDF from the predicted SDF, eliminating the need for the SRDF branch. The
SRDF is then used to calculate volume density. (c) SRDF branch: SRDF is pre-
dicted by the SRDF branch. In Tab. S3, Row (b) performs much worse than
the baseline. The reason is that the SDF prediction for a single point is affected
by all nearby objects, which can result in inaccuracies, generating false surfaces
and imprecise SRDF. Thus, without the SRDF branch, SRDF-based volume
rendering may yield inaccurate weights, encountering the same issues as SDF-
based volume rendering. Moreover, since the surface is interpolated by the SDF of
near-surface points, SRDF derived from SDF lacks adequate supervision for SDF
during training, which can result in poorer geometry. Hence, generating SRDF
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Fig. S1: Visualization of structures with/without SDF on ScanNet. With
SDF representing the surface geometry, our method (RS. Den.) generates smoother
and more accurate surfaces.

Table S2: Ablation study for the impact of SDF in our method on ScanNet.

Method Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
RS. Den. (w/o SDF) 0.061 0.079 0.600 0.540 0.568

RS. Den. 0.040 0.044 0.772 0.720 0.745

from the SDF branch is not optimal. Instead, Row (c) shows that the structure
with an SRDF branch can avoid the influence of inaccurate SDF and achieve
better results. Additionally, the joint optimization of SRDF and SDF branches
can integrate SRDF information into the SDF branch, thereby improving SDF
prediction. In conclusion, the SRDF branch is crucial for SRDF-based volume
rendering.
Impact of SDF Prediction: Tab. S2 measures the importance of using SDF
for 3D surface localization. Two configurations are compared: (1) RS. Den. (w/o
SDF): This structure only predicts ray-specific SRDF, without using SDF for 3D
geometry representation. During training, color loss and depth loss are used to
optimize the network. Since SRDF relies on viewing direction, directly extracting

Table S3: Ablation study for the impact of SRDF branch in our method on ScanNet.

Method Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
a Baseline 0.035 0.048 0.799 0.681 0.733
b SDF to SRDF 0.049 0.068 0.673 0.591 0.628
c SRDF branch 0.040 0.044 0.772 0.720 0.745
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Fig. S2: Visualization for ablation study. Our ray-specific volume density (RS.
Den.), SRDF-SDF consistency loss (Con. L.), and self-supervised visibility task (Vis.)
all lead to better performance.

Table S4: Evaluation of 3D reconstruction meshes on ScanNet.

Method Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
NeuRIS [7] 0.050 0.049 0.717 0.669 0.692

NeuRIS + ours 0.044 0.046 0.768 0.717 0.742

the surface from SRDF is not feasible. Therefore, during inference, to generate
3D meshes, the network first renders 2D depth with volume density derived
from SRDF, after which TSDF Fusion [2] is adopted to fuse the multi-view
depth maps. (2) RS. Den.: This structure predicts both SRDF and SDF, where
SRDF models the volume density and SDF locates 3D surfaces. Notably, the
SRDF-SDF consistency loss and self-supervised visibility task are not employed
in this ablation study. In Tab. S2, The structure RS. Den. (w/o SDF) achieves
much worse results than RS. Den.. This occurs because the depth label in the
depth loss is generated by a pre-trained network, which may yield inaccurate
absolute depth and introduce noises. Besides, the scale inconsistency between
overlapped regions in the predicted depth also results in coarse surfaces, e.g .
walls and floors, as illustrated in Fig. S1. In contrast, our structure with SDF
yields superior reconstruction meshes.
Visualization for Ablation Study: To further comprehend the effectiveness
of our proposed method, Fig. S2 shows the visualization for ablation study. It
can be seen that our ray-specific volume density, SRDF-SDF consistency loss,
and self-supervised visibility task all contribute to high-quality reconstruction.

D.2 Applying Our SRDF-based Solution to NeuRIS [7]

In 3D surface reconstruction, VolSDF [9] and NeuS [8] are two mainstream base-
lines that apply volume rendering based on SDF. Our baseline MonoSDF, dis-
cussed in the main text, is an extension of VolSDF for indoor scene reconstruc-
tion. To assess the generalization of our method, we also apply our method to the
NeuS-based method, namely NeuRIS [7], which also operates on indoor scenes.
Tab. S4 compares our method based on NeuRIS and the baseline NeuRIS. Our
approach outperforms NeuRIS by a significant margin, e.g . achieving a 4.8% in-
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Fig. S3: Visualization of NeuRIS and our method on ScanNet. Our method
improves the reconstruction performance.

Table S5: 3D reconstruction metrics for objects on ScanNet.

3-class objects All objects
Comp↓ Recall↑ Comp↓ Recall↑

MonoSDF_Grid 0.041 0.754 0.047 0.662
Ours_Grid 0.035 0.801 0.036 0.779

MonoSDF_MLP 0.034 0.849 0.038 0.772
Ours_MLP 0.026 0.886 0.031 0.827

crease in recall and a 5.0% increase in F-score. Qualitative comparisons are given
in Fig. S3. Our approach demonstrates the ability to reconstruct more accurate
surfaces compared to NeuRIS. Overall, these results highlight the efficacy of our
method across both VolSDF-based and NeuS-based methods.

D.3 Additional Reconstruction Results

To further verify that our method is beneficial for small/thin objects, we also
evaluate the reconstruction performance for objects. Using the semantic seg-
mentation mask as prior, we adopt two evaluation approaches: (1) Assessing ‘3-
class objects’ including chairs, tables, and lamps, which often contain thin/small
regions. (2) Evaluating ‘all objects’ excluding walls, ceilings, floors, windows,
and doors, as they may not include thin/small regions. In Tab. S5, compared
to MonoSDF, our method demonstrates significant improvements in both com-
pleteness and recall, confirming its effectiveness in object reconstruction.

Fig. S4 and Fig. S5 give additional visualizations on ScanNet and Replica, re-
spectively, with the grid representation. In comparison to MonoSDF, our method
demonstrates superior performance in capturing more surfaces and details, e.g .
chairs, toilets, and shelves.

Fig. S6 and Fig. S8 present the reconstructed surfaces using grid and MLP
representations on Tanks and Temples. It can be seen that our approach yields
much better surfaces compared to MonoSDF and Occ_SDF_Hybrid.
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Fig. S4: Additional results on ScanNet. Our method can recall more regions.

D.4 Visualization for View Synthesis

Fig. S7 presents visualization for rendered views. MonoSDF with MLP repre-
sentation produces blurred regions, whereas our method captures more details
and textures in the rendered views. Similarly, with the grid representation, our
approach generates more precise views.

E Additional Analysis

E.1 Analysis for Reconstruction

The reconstruction task aims to predict accurate SDF values. Existing NeRF-
based reconstruction methods [5,9] typically apply a 2D color loss as the primary
loss function, in which the predicted color is rendered with volume density de-
rived from SDF. However, the 2D color loss aims to learn the actual appearance,
potentially interfering with the optimization of 3D geometry. For example, in
the toy scene depicted in Fig. 1, the 2D color loss guides the network to assign a
higher weight to the point P and a lower weight to the point Q. Consequently,
the lower weight for the point Q encourages the network to learn a SDF with
a larger absolute value, contradicting the actual SDF for Q. This discrepancy
negatively impacts surface reconstruction, particularly for small objects and thin
regions.

Our method, including the ray-conditioned density function with SRDF, the
SRDF-SDF consistency loss, and the self-supervised visibility task, can solve
the aforementioned issue, generating more accurate surface geometry. The rea-
sons are as follows: (1) Reduced negative impact from 2D output: Our
approach utilizes SRDF to represent density, guiding the network to predict a
positive SRDF with a large absolute value at point Q, consistent with SRDF’s
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Fig. S5: Additional results on Replica. Our method can generate more details.

definition. This partially mitigates the negative influence of 2D losses on SDF.
The comparison between Fig. S2 - (Baseline) and Fig. S2 -(RS. Den.) also proves
that our method can generate better geometry, e.g . recalling thin objects. (2)
Positive impact from the proposed SRDF-SDF consistency loss: As an-
alyzed in Fig. 1, the density generated from the SRDF closely matches the actual
observation. Hence, with multi-view input, the network can learn an accurate
SRDF and density distribution among the entire 3D space. However, the network
may struggle to produce precise SDF, resulting in missed surfaces, as shown in
Fig. S2 -(RS. Den.). Our SRDF-SDF consistency loss is designed to ensure SDF
shares the same sign as SRDF, which can facilitate the recall of missed surfaces.
As observed in Fig. S2 -(RS. Den. + Con. L.), more surfaces are recalled. (3)
Positive impact from the proposed self-supervised visibility task: Our
self-supervised visibility task incorporates the physical visibility prior into the
network, which can help the learning of SRDF and SDF. The comparisons in
Fig. S2 demonstrate that our self-supervised visibility task can recover more
surfaces. Overall, our proposed method contributes to producing accurate SDF
and reconstructing superior 3D geometry.

E.2 Analysis for View Synthesis

Existing methods [5, 9] utilize SDF to generate the volume density. However,
as depicted in Fig. 1 and Fig. 5, the transformed density and weight derived
from predicted SDF may introduce noises during volume rendering, resulting in
inaccurate 2D color and consequently low PSNR. In contrast, our approach gen-
erates volume density from SRDF when rendering 2D color, ensuring consistent
weights with actual observations and avoiding the influence of SDF. As a result,
views rendered by our method achieve higher PSNR.
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Fig. S6: Additional results on Tanks and Temples. Our method enhances the
quality of reconstructed meshes.
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Fig. S7: Visualization of rendered views. Our method improves the quality of
generated views.
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Fig. S8: Qualitative comparisons on Tanks and Temples. Compared to other
methods, our method can reconstruct more surfaces and recover details.
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