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Fig. 1: Our ReNoise inversion technique can be applied to various diffusion models, in-
cluding recent few-step ones. This figure illustrates the performance of our method with
SDXL Turbo and LCM models, showing its effectiveness compared to DDIM inversion.
Additionally, we demonstrate that the quality of our inversions allows prompt-driven
editing. As illustrated on the right, our approach also allows for prompt-driven image
edits.

Abstract. Recent advancements in text-guided diffusion models have
unlocked powerful image manipulation capabilities. However, applying
these methods to real images necessitates the inversion of the images
into the domain of the pretrained diffusion model. Achieving faithful in-
version remains a challenge, particularly for more recent models trained
to generate images with a small number of denoising steps. In this work,
we introduce an inversion method with a high quality-to-operation ra-
tio, enhancing reconstruction accuracy without increasing the number
of operations. Building on reversing the diffusion sampling process, our
method employs an iterative renoising mechanism at each inversion sam-
pling step. This mechanism refines the approximation of a predicted
point along the forward diffusion trajectory, by iteratively applying the
pretrained diffusion model, and averaging these predictions. We evalu-
ate the performance of our ReNoise technique using various sampling
algorithms and models, including recent accelerated diffusion models.
Through comprehensive evaluations and comparisons, we show its effec-
tiveness in terms of both accuracy and speed. Furthermore, we confirm
that our method preserves editability by demonstrating text-driven im-
age editing on real images.
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Fig. 2: The diffusion process samples a
Gaussian noise and iteratively denoises it
until reaching the data distribution. At each
point along the denoising trajectory, the
model predicts a direction, ϵθ(zt), to step
to the next point along the trajectory. To
invert a given image from the distribution,
the direction from zt to zt+1 is approxi-
mated with the inverse of the direction from
zt to zt−1 denoted by a dotted blue line.
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Fig. 3: Comparing reconstruction re-
sults of plain DDIM Inv. with SDXL to
DDIM Inv. with one renoising iteration.

1 Introduction

Large-scale text-to-image diffusion models have revolutionized the field of image
synthesis [19,37,39,40]. In particular, many works have shown that these models
can be employed for various types of image manipulation [4,7–9,15,17,23,29,33,
35,47]. To edit real images, many of these techniques often require the inversion
of the image into the domain of the diffusion model. That is, given a real image z0,
one has to find a Gaussian noise zT , such that denoising zT with the pretrained
diffusion model reconstructs the given real image z0. The importance of this
task for real image manipulation has prompted many efforts aimed at achieving
accurate reconstruction [16,21,30,31].

The diffusion process consists of a series of denoising steps {ϵθ(zt, t)}1t=T ,
which form a trajectory from the Gaussian noise to the model distribution (see
Figure 2). Each denoising step is computed by a trained network, typically im-
plemented as a UNet, which predicts zt−1 from zt [19]. The output of the model
at each step forms a direction from zt to zt−1 [45]. These steps are not invert-
ible, in the sense that the model was not trained to predict zt from zt−1. Thus,
the problem of inverting a given image is a challenge, and particularly for real
images, as they are not necessarily in the model distribution (see Figure 3).

In this paper, we present an inversion method with a high quality-to-operation
ratio, which achieves superior reconstruction accuracy for the same number of
UNet operations. We build upon the commonly used approach of reversing the
diffusion sampling process, which is based on the linearity assumption that the
direction from zt to zt+1 can be approximated by the negation of the direction
from zt to zt−1 [12, 43] (see Figure 2). To enhance this approximation, we em-
ploy the fixed-point iteration methodology [10]. Specifically, given zt, we begin
by using the common approximation to get an initial estimate for zt+1, denoted
by z(0)t+1. Then, we iteratively renoise zt, following the direction implied by z(k)t+1

to obtain z
(k+1)
t+1 . After repeating this renoising process several times, we apply

an averaging on z(k)t+1 to form a more accurate direction from zt to zt+1.
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We show that this approach enables longer strides along the inversion trajec-
tory while improving image reconstruction. Therefore, our method can also be
effective with diffusion models trained to generate images using a small number
of denoising steps [27, 42]. Furthermore, despite the need to repeatedly renoise
in each step of the inversion process, the longer strides lead to a more favorable
tradeoff of UNet operations for reconstruction quality.

Through extensive experiments, we demonstrate the effectiveness of our method
in both image reconstruction and inversion speed. We validate the versatility
of our approach across different samplers and models, including recent time-
distilled diffusion models (e.g., SDXL-Turbo [42]). Importantly, we demonstrate
that the editability of the inversion achieved by our method allows a wide range
of text-driven image manipulations (see Figure 1).

2 Related Work
Image Editing via Diffusion Models Recent advancements in diffusion mod-
els [12, 19] have resulted in unprecedented diversity and fidelity in visual con-
tent creation guided by free-form text prompts [36, 37, 39, 40]. Text-to-image
models do not directly support text-guided image editing. Therefore, harness-
ing the power of these models for image editing is a significant research area
and many methods have utilized these models for different types of image edit-
ing [4,7–9,11,14,15,17,18,23,29,33,35,47,48]. A common approach among these
methods requires inversion [21, 31, 43, 49] to edit real images, i.e., obtaining a
latent code zT such that denoising it with the pretrained diffusion model re-
turns the original image. Specifically, in this approach two backward processes
are done simultaneously using zT . One of the processes reconstructs the image
using the original prompt, while the second one injects features from the first
process (e.g., attention maps) to preserve some properties of the original image
while manipulating other aspects of it.
Inversion in Diffusion Models Initial efforts in image inversion for real
image editing focused on GANs [2,3,5,6,13,34,38,46,52–54]. The advancements in
diffusion models, and in diffusion-based image editing in particular have recently
prompted works studying the inversion of a diffusion-based denoising process.
This inversion depends on the sampler algorithm used during inference, which
can be deterministic [43] or non-deterministic [19, 22]. Inversion methods can
be accordingly categorized into two: methods that are suitable for deterministic
sampling, and methods suitable for non-deterministic sampling.

Methods that approach the deterministic inversion commonly rely on the
DDIM sampling method [43], and build upon DDIM inversion [12, 43]. Mokady
et al. [31] observed that the use of classifier-free guidance during inference mag-
nifies the accumulated error of DDIM inversion and therefore leads to poor
reconstruction. Following this observation, several works [16, 30, 31] focused on
solving this issue by replacing the null text token with a different embedding,
which is found after an optimization process or by a closed solution. However,
excluding [31] which requires a lengthy optimization, these methods are limited
by the reconstruction accuracy of DDIM inversion, which can be poor, especially
when a small number of denoising steps is done. In our work, we present a method
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that improves the reconstruction quality of DDIM inversion and therefore can
be integrated with methods that build on it.

Another line of work [21,50] tackles the inversion of DDPM sampler [19]. In
these works [21,50], instead of inverting the image into an initial noise zT , a series
of noises {zT , ϵT , ..., ϵ1} is obtained. The definition of this noises series ensures
that generating an image with it returns the original input image. However, these
methods require a large number of inversion and denoising steps to allow image
editing. Applying these methods with an insufficient number of steps leads to
too much information encoded in {ϵT , ..., ϵ1} which limits the ability to edit the
generated image. As shall be shown, The editability issue of these methods is
particularly evident in few-steps models [26,27,42].

Most relevant to our work, two recent inversion methods [28,32] also use the
fixed-point iteration technique. Specifically, they improve the reconstruction ac-
curacy of DDIM inversion [43] with Stable Diffusion [39] without introducing a
significant computational overhead. In our work, we focus on the problem of real
image inversion for recently introduced few-step diffusion models, where the dif-
ficulties encountered by previous methods are amplified. Furthermore, we show
that our inversion method successfully works with various models and different
samplers.

Few Steps Models Recently, new methods [26, 27, 41, 42, 44] that fine-tune
text-to-image diffusion models enabled a significant reduction of the number of
steps needed for high-quality image generation. While standard diffusion models
typically require 50 denoising steps to generate high-quality images, recent ac-
celerated models achieve high-quality synthesis with 1-4 steps only. These new
methods pave the way for interactive editing workflows. However, as we show
in this paper, using current methods for the inversion of an image with a small
number of steps degrades the reconstruction quality in terms of accuracy [12,43]
or editability [21,50].

3 Method

3.1 ReNoise Inversion

Reversing the Sampler Samplers play a critical role in the diffusion-based im-
age synthesis process. They define the noising and denoising diffusion processes
and influence the processes’ trajectories and quality of the generated images.
While different samplers share the same pre-trained UNet model (denoted by
ϵθ) as their backbone, their sampling approaches diverge, leading to nuanced
differences in output. The goal of the denoising sampler is to predict the latent
code at the previous noise level, zt−1, based on the current noisy data zt, the
pretrained UNet model, and a sampled noise, ϵt. Various first-order denoising
sampling algorithms adhere to the form:

zt−1 = ϕtzt + ψtϵθ(zt, t, c) + ρtϵt, (1)

where c represents a text embedding condition, and ϕt, ψt, and ρt denote sampler
parameters. At each step, these parameters control the extent to which the
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previous noise is removed(ϕt), the significance assigned to the predicted noise
from the UNet(ψt), and the given weight to the additional noise introduced(ρt).

A given image z0 can be inverted by reformulating Equation 1 and applying
it iteratively:

zt =
zt−1 − ψtϵθ(zt, t, c)− ρtϵt

ϕt
, (2)

where for non-deterministic samplers, a series of random noises {ϵt}Tt=1 is sam-
pled and used during both inversion and image generation processes. However,
directly computing zt from Equation 2 is infeasible since it relies on ϵθ(zt, t, c),
which, in turn, depends on zt, creating a circular dependency. To solve this im-
plicit function, Dhariwal et al. [12] propose using the approximation ϵθ(zt, t, c) ≈
ϵθ(zt−1, t, c):

z
(1)
t =

zt−1 − ψtϵθ(zt−1, t, c)− ρtϵt
ϕt

. (3)

This method has several limitations. First, the assumption underlying the ap-
proximation used in [12] is that the number of inversion steps is large enough,
implying a trajectory close to linear. This assumption restricts the applicability
of this inversion method in interactive image editing with recent few-step dif-
fusion models [26, 27, 42, 44], as the inversion process would take significantly
longer than inference. Second, this method struggles to produce accurate recon-
structions in certain cases, such as highly detailed images or images with large
smooth regions, see Figure 3. Moreover, we observe that this inversion method
is sensitive to the prompt c and may yield poor results for certain prompts.

ReNoise In a successful inversion trajectory, the direction from zt−1 to zt aligns
with the direction from zt to zt−1 in the denoising trajectory. To achieve this,
we aim to improve the approximation of ϵθ(zt, t, c) in Eq. 2 compared to the one
used in [12]. Building on the fixed-point iteration technique [10], our approach
better estimates the instance of zt that is inputted to the UNet, rather than
relying on zt−1.

Intuitively, we utilize the observation that z(1)t (from Eq. 3) offers a more
precise estimate of zt compared to zt−1. Therefore, employing z(1)t as the input
to the UNet is likely to yield a more accurate direction, thus contributing to
reducing the overall error in the inversion step. We illustrate this observation in
Figure 5. Iterating this process generates a series of estimations for zt, denoted
by {z(k)t }K+1

k=1 . While the fixed-point iteration technique [10] does not guarantee
convergence of this series in the general case, in Section 4, we empirically show
that convergence holds in our setting. However, as the convergence is not mono-
tonic, we refine our prediction of zt by averaging several {z(k)t }, thus considering
more than a single estimation of zt. See Figure 6 for an intuitive illustration.

In more detail, our method iteratively computes estimations of zt during each
inversion step t by renoising the noisy latent zt−1 multiple times, each with a
different noise prediction (see Figure 4). Beginning with z(1)t , in the k-th renois-
ing iteration, the input to the UNet is the result of the previous iteration, z(k)t .
Then, z(k+1)

t is calculated using the inverted sampler while maintaining zt−1 as
the starting point of the step. After K renoising iterations, we obtain a set of
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Fig. 4: Method overview. Given an image z0, we iteratively compute z1, ..., zT , where
each zt is calculated from zt−1. At each time step, we apply the UNet (ϵθ) K + 1
times, each using a better approximation of zt as the input. The initial approximation
is zt−1. The next one, z(1)t , is the result of the reversed sampler step (i.e., DDIM). The
reversed step begins at zt−1 and follows the direction of ϵθ(zt−1, t). At the k renoising
iteration, z(k)t is the input to the UNet, and we obtain a better zt approximation. For
the lasts iterations, we optimize ϵθ(z

(k)
t , t) to increase editability. As the final denoising

direction, we use the average of the UNet predictions of the last few iterations.
Fig. 5: Geometric intuition for ReNoise. At
each inversion step, we estimate zt (marked with
a red star) based on zt−1. The straightforward
approach is to use the negated direction of the
denoising step from zt−1, assuming the trajec-
tory is approximately linear. However, this as-
sumption is inaccurate, especially in few-step
models, where the size of the steps is large. We
use the linearity assumption as an initial esti-
mation and keep improving this estimation. We
recalculate the denoising step from the previous
estimation (which is closer to the target zt) and
then proceed with its negated direction from
zt−1 (see the orange vectors).
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estimations {z(k)t }K+1
k=1 . The next point on the inversion trajectory, zt, is then

defined as their weighted average, where wk is the weight assigned to z(k)t . For
a detailed description of our method, refer to Algorithm 1.

3.2 Reconstruction-Editability Tradeoff

Enhance Editability The goal of inversion is to facilitate the editing of real
images using a pretrained image generation model. While the the renoising ap-
proach attains highly accurate reconstruction results, we observe that the result-
ing zT lacks editability. This phenomenon can be attributed to the reconstruction-
editability tradeoff in image generative models [46]. To address this limitation,
we incorporate a technique to enhance the editability of our method.

It has been shown [33] that the noise maps predicted during the inversion pro-
cess often diverge from the statistical properties of uncorrelated Gaussian white
noise, thereby affecting editability. To tackle this challenge, we follow pix2pix-
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zero [33] and regularize the predicted noise at each step, ϵθ(zt, t, c), using the
following loss terms.

First, we encourage ϵθ(zt, t, c) to follow the same distribution as ϵθ(z′t, t, c),
where z′t represents the input image z0 with added random noise corresponding
to the noise level at timestep t. We do so by dividing ϵθ(zt, t, c) and ϵθ(z

′
t, t, c)

into small patches (e.g., 4×4), and computing the KL-divergence between cor-
responding patches. We denote this loss term by Lpatch-KL. Second, we utilize
Lpair proposed in pix2pix-zero [33], which penalizes correlations between pairs
of pixels. We leverage these losses to enhance the editability of our method, and
denote the combination of them as Ledit. For any renoising iteration k where
wk > 0, we regularize the UNet’s prediction ϵθ(z

(k)
t , t, c) using Ledit before com-

puting z(k+1)
t . See line 9 in Algorithm 1.

Algorithm 1: ReNoise Inversion
1 Input: An image z0, number of renoising steps K, number of inversion steps

T , a series of renoising weights {wk}K+1
k=1 .

2 Output: A noisy latent zT and set of noises {ϵt}Tt=1.
3 for t = 0, 1, . . . , T do
4 sample ϵt ∼ N (0, I)

5 z
(0)
t ← zt−1

6 z
(avg)
t ← 0

7 for k = 0, . . . ,K do
8 δkt ← ϵθ(z

(k)
t , t)

9 δkt ← Enhance-edit(δkt , wk+1)

10 z
(k+1)
t ← Inverse-Step(zt−1, δ

k
t )

11 end
// Average ReNoised predictions

12 z
(avg)
t ←

∑K+1
k=1 wk · z

(k)
t

13 ϵt ← Noise-Corr(z(avg)
t , t, ϵt, zt−1)

14 end
15 return (zT , {ϵt}Tt=1)

16 Function Inverse-Step(zt−1, δt, t):
17 return 1

ϕt
zt−1 − ψt

ϕt
δt − ρt

ϕt
ϵt

// Enhance-editability
18 Function Enhance-edit(δkt , wk+1):
19 if wk+1 > 0 then
20 δkt ← δkt −∇δkt Ledit(δ

k
t )

21 end
22 return δkt

// Noise Correction
23 Function Noise-Corr(zt, t, ϵt, zt−1):
24 δt ← ϵθ(zt, t)
25 ϵt ← ϵt −∇ϵt 1

ρt
(zt−1 − ϕtzt − ψtδt)

26 return ϵt
27

Noise Correction in Non-deterministic Samplers Non-deterministic sam-
plers, in which ρt > 0, introduce noise (ϵt) at each denoising step. Previous
methods [21,50] suggested using ϵt to bridge the gap between the inversion and
denoising trajectories in DDPM inversion. Specifically, given a pair of points
zt−1, zt on the inversion trajectory, we denote by ẑt−1 the point obtained by
denoising zt. Ideally, zt−1 and ẑt−1 should be identical. We define:

ϵt =
1

ρt
(zt−1 − ϕtzt − ψtϵθ(zt, t, c)). (4)

Integrating this definition into Eq. 1 yields ẑt−1 = zt−1. However, we found that
replacing ϵt with the above definition affects editability. Instead, we suggest a
more tender approach, optimizing ϵt based on Eq. 4 as our guiding objective:

ϵt = ϵt −∇ϵt

1

ρt
(zt−1 − ϕtzt − ψtϵθ(zt, t, c)). (5)

This optimization improves the reconstruction fidelity while preserving the dis-
tribution of the noisy-latents.
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Fig. 6: Schematic illustration of the ReNoise con-
vergence process to the true inversion of zt−1.
While estimates may converge non-monotonically
to the unknown target zt, we found that averaging
them improves true value estimation. Typically,
the initial iteration exhibits an exponential de-
crease in the norm between consecutive elements.
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standard deviation. The averages
are computed over 32 images and
10 different timesteps.

4 Convergence Discussion
In this section, we first express the inversion process as a backward Euler process

and our renoising iterations as fixed-point iterations. While these iterations do
not converge in the general case, in the supplementary materials we present a toy
example where they yield accurate inversions. Then, we analyze the convergence
of the renoising iterations in our real-image inversion scenario and empirically
verify our method’s convergence.
Inversion Process as Backward Euler The denoising process of diffusion
models can be mathematically described as solving an ordinary differential equa-
tion (ODE). A common method for solving such equations is the Euler method,
which takes small steps to approximate the solution. For ODE in the form of
y′(t) = f(t, y(t)), Euler solution is defined as:

yn+1 = yn + h · f(tn, yn),
where h is the step size. The inversion process can be described as solving ODE
using the backward Euler method (or implicit Euler method) [1]. This method
is similar to forward Euler, with the difference that yn+1 appears on both sides
of the equation:

yn+1 = yn + h · f(tn+1, yn+1).

For equations lacking an algebraic solution, several techniques estimate yn+1 it-
eratively. As we described in Section 3.1, the inversion process lacks a closed-form
solution, as shown in Equation 2. To address this, the ReNoise method leverages
fixed-point iterations, which we refer to as reonising iterations, to progressively
refine the estimate of yn+1:

y
(0)
n+1 = yn, y

(k+1)
n+1 = yn + h · f(tn+1, y

(k)
n+1).

In our ReNoise method, we average these renoising iterations to mitigate con-
vergence errors, leading to improvement in the reconstruction quality.
ReNoise Convergence During the inversion process, we aim to find the next
noise level inversion, denoted by ẑt, such that applying the denoising step to
ẑt recovers the previous state, zt−1. Given the noise estimation ϵθ(zt, t) and
a given zt−1, the ReNoise mapping defined in Section 3.1 can be written as
G : zt → InverseStep(zt−1, ϵθ(zt, t)). For example, in the case of using DDIM
sampler the mapping is G(zt) = 1

ϕt
(zt−1 − ψtϵθ(zt, t)). The point ẑt, which is
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mapped to zt−1 after the denoising step, is a stationary point of this mapping.
Given z(1)t , the first approximation of the next noise level zt, our goal is to show
that the sequence z(k)t = Gk−1(z(1)t ), k → ∞ converges. As the mapping G is
continuous, the limit point would be its stationary point. The definition of G
gives:

∥z(k+1)
t − z

(k)
t ∥ = ∥G(z(k)t )− G(z(k−1)t )∥,

where the norm is always assumed as the l2-norm. For the ease of the notations,
we define ∆(k) = z

(k)
t −z(k−1)t . For convergence proof, it is sufficient to show that

the sum of norms of these differences converges, which will imply that z(k)t is the
Cauchy sequence. Below we check that in practice ∥∆(k)∥ decreases exponentially
as k → ∞ and thus has finite sum. In the assumption that G is C2-smooth, the
Taylor series conducts:
∥∆(k+1)∥ = ∥G(z(k)t )− G(z(k−1)t )∥ =

∥G(z(k−1)t ) +
∂G
∂z

|
z
(k−1)
t

·∆(k) +O(∥∆(k)∥2)− G(z(k−1)t )∥ =

∥∂G
∂z

|
z
(k−1)
t

·∆(k) +O(∥∆(k)∥2)∥ ≤ ∥∂G
∂z

|
z
(k−1)
t

∥ · ∥∆(k)∥+O(∥∆(k)∥2) =
ψt
ϕt

· ∥∂ϵθ
∂z

|
z
(k−1)
t

∥ · ∥∆(k)∥+O(∥∆(k)∥2)
Thus, in a sufficiently small neighborhood, the convergence dynamics is defined
by the scaled Jacobian norm ψt

ϕt
· ∥∂ϵθ∂z |z(k−1)

t
∥. In the supplementary materials,

we show this scaled norm estimation for the SDXL diffusion model for various
steps and ReNoise iterations indices (k). Remarkably, the ReNoise indices min-
imally impact the scale factor, consistently remaining below 1. This confirms in
practice the convergence of the proposed algorithm. Notably, the highest scaled
norm values occur at smaller t (excluding the first step) and during the initial
renoising iteration. This validates the strategy of not applying ReNoise in early
steps, where convergence tends to be slower compared to other noise levels. Ad-
ditionally, the scaled norm value for the initial t approaches 0, which induces
almost immediate convergence.

Figure 7 illustrates the exponential decrease in distances between consecutive
elements z(k)t and z(k+1)

t , which confirms the algorithm’s convergence towards the
stationary point of the operator G. The proposed averaging strategy is aligned
with the conclusions described above, and also converges to the desired station-
ary point. In The supplementary materials, we present a validation for this claim.

5 Experiments
In this section, we conduct extensive experiments to validate the effectiveness

of our method. We evaluate both the reconstruction quality of our inversion
and its editability. To demonstrate the versatility of our approach, we apply it
to four models, SD [39], SDXL [36], SDXL Turbo [42], and LCM-LoRA [27],
with SDXL Turbo and LCM-LoRA being few-step models. Additionally, we use
various sampling algorithms including both deterministic and non-deterministic
ones. Implementation details for each model are provided in the supplemen-
tary materials. Following previous works [5, 31], we quantitatively evaluate our
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Table 1: Image reconstruction results
with a fixed number of 100 UNet opera-
tions. Each row showcases the results ob-
tained using different combinations of in-
version steps, denoising steps, and renois-
ing iterations, totaling 100 operations. As
observed, allocating some of the opera-
tions to renoising iterations improves the
reconstruction quality while maintaining
the same execution time.

Image Reconstruction Results

Inv Inf ReNoise L2 ↓ PSNR ↑ LPIPS ↓
Steps Steps Steps

50 50 0 0.00364 26.023 0.06273
75 25 0 0.00382 25.466 0.06605
80 20 0 0.00408 25.045 0.07099
90 10 0 0.01023 20.249 0.10305
25 25 2 0.00182 29.569 0.03637
20 20 3 0.00167 29.884 0.03633
10 10 8 0.00230 28.156 0.04678

Table 2: Quantitative ablation study on
SDXL Turbo. We demonstrate the im-
pact of each component of our inversion
method on reconstruction results. The re-
sults improve with additional renoising it-
erations and significant enhancements oc-
cur through averaging final estimations.
Additionally, we observe a reconstruction-
editability trade-off, with edit losses caus-
ing degradation that is effectively miti-
gated by Noise Correction.

Ablation - Image Reconstruction

L2 ↓ PSNR ↑ LPIPS↓

Euler Inversion 0.0700 11.784 0.20337
+ 1 ReNoise 0.0552 12.796 0.20254
+ 4 ReNoise 0.0249 16.521 0.14821
+ 9 ReNoise 0.0126 19.702 0.10850
+ Averaging ReNoise 0.0087 21.491 0.08832
+ Edit Losses 0.0276 18.432 0.12616
+ Noise Correction 0.0196 22.077 0.08469

method with three metrics: L2, LPIPS [51], and PSNR. Unless stated otherwise,
for both inversion and generation we use the prompt obtained from BLIP2 [24].
5.1 Reconstruction and Speed

We begin by evaluating the reconstruction-speed tradeoff. The main compu-
tational cost of both the inversion and denoising processes is the forward pass
through the UNet. In each renoising iteration, we perform one forward pass,
which makes it computationally equal to a standard inversion step (as done in
DDIM Inversion for example). In the following experiments, we compare the
results of a sampler reversing with our method, where we match the number of
UNet passes between the methods. For example, 8 steps of sampler reversing are
compared against 4 steps with one renoising iteration at each step.
Qualitative Results In Figure 8 we show qualitative results of image recon-
struction on SDXL Turbo [42]. Here, we utilize DDIM as the sampler, and apply
four denoising steps for all configurations. Each row exhibits results obtained
using a different amount of UNet operations. In our method, we apply four in-
version steps, and a varying number of renoising iterations. As can be seen, the
addition of renoising iterations gradually improves the reconstruction results.
Conversely, employing more inversion steps proves insufficient for capturing all
details in the image, as evident by the background of the car, or even detrimental
to the reconstruction, as observed in the Uluro example.
Quantitative Results For the quantitative evaluation, we use the MS-COCO
2017 [25] validation dataset. Specifically, we retain images with a resolution
greater than 420× 420, resulting in a dataset containing 3,865 images.

We begin by evaluating both the sampler reversing approach and our ReNoise
method, while varying the number of UNet operations during the inversion pro-
cess and keeping the number of denoising steps fixed. This experiment is con-
ducted using various models (SDXL, SDXL Turbo, LCM) and samplers. For all
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Fig. 8: Qualitative comparison between
DDIM Inversion and our ReNoise method
on SDXL Turbo (4 denoising steps). The
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Fig. 9: Ablation study on SDXL Turbo.
The first row presents the input image.
In each subsequent row, we show the re-
construction results using an additional
component of our inversion method. The
images in the bottom row represent the
results obtained by our full method. NC
stands for Noise Correction.

models, we utilize the DDIM [43] sampler. In addition, we employ the Ancestral-
Euler scheduler for SDXL Turbo, and the default LCM sampler for LCM-LoRA.
We set the number of denoising steps to 50 for SDXL, and to 4 for SDXL Turbo
and LCM-LoRA. Quantitative results, using PSNR as the metric, are presented
in Figure 11. We evaluate our method using different configurations. The x-axis
refers to the number of UNet operations in the inversion process. Other metrics
results are provided in the supplementary materials.

As depicted in the graphs, incorporating additional renoising iterations proves
to be more beneficial for image reconstruction compared to adding more inver-
sion steps. Note that the performance of the Ancestral-Euler and LCM samplers
noticeably degrades when the number of inversion steps exceeds the number of
denoising steps. Unlike DDIM, these samplers have Φt ≈ 1, resulting in an in-
crease in the latent vector’s norm beyond what can be effectively denoised in
fewer steps. In this experiment, we maintain the same number of UNet opera-
tions for both ReNoise and the sampler reversing approach. However, in ReNoise,
the number of inversion steps remains fixed, and the additional operations are
utilized for renoising iterations, refining each point on the inversion trajectory.
Consequently, our method facilitates improved reconstruction when using these
noise samplers.
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Original
Image ←− Editing Results −→ Original

Image ←− Editing Results −→

“cat” “koala” “cat statue” “bear” “person” “panda
mask”

“purple
shirt” “astronaut”

Fig. 10: LCM Editing Results. We showcase two examples of real images, each followed
by three edits. The text below each edited image indicates the specific word or phrase
replaced or added to the original prompt for that specific edit.
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Fig. 11: Image reconstruction results comparing sampler reversing inversion techniques
across different samplers (e.g., vanilla DDIM inversion) with our ReNoise method using
the same sampler. The number of denoising steps remains constant. However, the num-
ber of UNet passes varies, with the sampler reversing approach increasing the number
of inversion steps, while our method increases the number of renoising iterations. We
present various configuration options for our method, including options with or without
edit enhancement loss and Noise Correction (NC).

We continue by evaluating both the sampler reversing approach and our
method while maintaining a fixed total number of UNet operations for the in-
version and denoising processes combined. The results for SDXL with DDIM
are presented in Table 1. The table displays various combinations of inversion,
denoising, and renoising steps, totaling 100 UNet operations. Despite employing
longer strides along the inversion and denoising trajectories, our ReNoise method
yields improved reconstruction accuracy, as evident in the table. Furthermore,
a reduced number of denoising steps facilitates faster image editing, especially
since it commonly involves reusing the same inversion for multiple edits.
5.2 Reconstruction and Editability
In Figure 10, we illustrate editing results generated by our method with LCM

LoRA [27]. These results were obtained by inverting the image using a source
prompt and denoising it with a target prompt. Each row exhibits an image fol-
lowed by three edits accomplished by modifying the original prompt. These edits
entail either replacing the object word or adding descriptive adjectives to it. As
can be seen, the edited images retain the details present in the original image.
For instance, when replacing the cat with a koala, the details in the background
are adequately preserved.

5.3 Ablation Studies
Figure 9 qualitatively demonstrates the effects of each component in our method,

highlighting their contribution to the final outcome. Here, we use SDXL Turbo
model [42], with the Ancestral-Euler sampler, which is non-deterministic. As
our baseline, we simply reverse the sampler process. The reconstruction, while



ReNoise: Real Image Inversion Through Iterative Noising 13

O
ur

s
F
ri

en
dl

y

Input Recon-
struction

“cat” →
“dog”

“wooden
cat”

Fig. 12: Comparison with edit-friendly
with SDXL Turbo. We inverted the im-
age with the prompt “a cat is sitting in
front of a mirror” and applied edits.
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Fig. 13: Image reconstruction compar-
isons with SD. While NTI and our method
achieve comparable results, ours demon-
strates significant speed improvement.

semantically capturing the main object, fails to reproduce the image’s unique
details. For example, in the bird image, the reconstruction contains a bird stand-
ing on a branch, but the branch is in a different pose and the bird is completely
different. Using 9 ReNoise iterations significantly improves the reconstruction,
recovering finer details like the bird’s original pose and branch texture. How-
ever, some subtle details, such as the bird’s colors or the color in Brad Pitt’s
image, remain incomplete. Averaging the final iterations effectively incorporates
information from multiple predictions, leading to a more robust reconstruction
that captures finer details. Regularize the UNet’s noise prediction with Ledit can
introduce minor artifacts to the reconstruction, evident in the smoother appear-
ance of the hair of the two people on the left, or in the cake example. Finally,
we present our full method by adding the noise correction technique.

Table 2 quantitatively showcases the effect each component has on recon-
struction results. As can be seen, the best results were obtained by our full
method or by averaging the last estimations of zt. Our final method also offers
the distinct advantage of getting an editable latent representation.

In the Appendix, we present an ablation study to justify our editability en-
hancement and noise correction components.
5.4 Comparisons

Inversion for Non-deterministic Samplers. In Figure 12 we show a qual-
itative comparison with “an edit-friendly DDPM” [21] where we utilize SDXL
Turbo [42]. Specifically, we assess the performance of the edit-friendly method
alongside our ReNoise method in terms of both reconstruction and editing.

We observe that in non-deterministic samplers like DDPM, the parameter
ρ0 in Equation 1 equals zero. This means that in the final denoising step, the
random noise addition is skipped to obtain a clean image. In long diffusion pro-
cesses (e.g., 50-100 steps), the final denoising step often has minimal impact as
the majority of image details have already been determined. Conversely, shorter
diffusion processes rely on the final denoising step to determine fine details of the
image. Due to focusing solely on noise correction to preserve the original image
in the inversion process, edit-friendly struggles to reconstruct fine details of the
image, such as the shower behind the cat. However, our ReNoise method finds
an inversion trajectory that faithfully reconstructs the image and does not rely
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solely on noise corrections. This allows us to better reconstruct fine details such
as the shower. Additionally, encoding a significant amount of information within
only a few external noise vectors, ϵt, limits editability in certain scenarios, See
more examples in the appendix

Null-prompt Inversion Methods In Figure 13, we present a qualitative com-
parison between our method and null-text based inversion methods. For this com-
parison, we utilize Stable Diffusion [39] since these methods rely on a CFG [20]
mechanism, which is not employed in SDXL Turbo [42]. Specifically, we com-
pare DDIM Inversion [43] with one renoising iteration to Null-Text Inversion
(NTI) [31] and Negative-Prompt Inversion (NPI) [30]. Both NTI and NPI en-
hance the inversion process by replacing the null-text token embedding when
applying CFG. Our method achieves results comparable to NTI, while NPI
highlights the limitations of plain DDIM inversion. This is because NPI sets
the original prompt as the negative prompt, essentially resulting in an inversion
process identical to plain DDIM inversion. Regarding running time, our ReNoise
inversion process takes 13 seconds, significantly faster than NTI’s 3 minutes. For
comparison, plain DDIM inversion and NPI each take 9 seconds.

6 Conclusion

In this work, we have introduced ReNoise, a universal approach that enhances
various inversion algorithms of diffusion models. ReNoise gently guides the in-
version curve of a real image towards the source noise from which a denoising
process reconstructs the image. ReNoise can be considered as a meta-algorithm
that warps the trajectory of any iterative diffusion inversion process. Our exper-
iments demonstrate that averaging the last few renoising iterations significantly
enhances reconstruction quality. For a fixed amount of computation, ReNoise
shows remarkably higher reconstruction quality and editability. The method is
theoretically supported and our experiments reconfirm its effectiveness on a va-
riety of diffusion models and sampling algorithms. Moreover, the method is nu-
merically stable, and always converges to some inversion trajectory that eases
hyperparameters adjustment.

Beyond the net introduction of an effective inversion, the paper presents
a twofold important contribution: an effective inversion for few-steps diffusion
models, which facilitates effective editing on these models.

A limitation of ReNoise is the model-specific hyperparameter tuning required
for Edit Enhancement and Noise Correction. While these hyperparameters re-
main stable for a given model, they may vary across models, and tuning them is
necessary to achieve high reconstruction quality while maintaining editability.

While ReNoise demonstrates the potential for editing few-step diffusion mod-
els, more extensive testing with advanced editing methods is needed. It is worth
noting that no such editing has been demonstrated for the few-step diffusion
models. We believe and hope that our ReNoise method will pave the way for fast
and effective editing methods based on the few-steps models. We also believe that
ReNoise can be adapted to the challenging problem of inverting video-diffusion
models.
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