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Abstract. This work addresses cross-domain semantic segmentation.
While recent CNNs and proposal-free transformers led to significant ad-
vances, we introduce a new transformer with a lighter encoder and more
complex decoder with query tokens for predicting segmentation masks,
called ADFormer. The domain gap between the source and target domains
is reduced with two mechanisms. First, we decompose cross-attention
in the decoder into domain-independent and domain-specific parts to
enforce the query tokens interact with the domain-independent aspects of
the image tokens, shared by the source and target domains, rather than
domain-specific counterparts which induce the domain gap. Second, we
use the gradient reverse block to control back-propagation of the gradient,
and hence introduce adversarial learning in the decoder of ADFormer.
Our results on two benchmark domain shifts – GTA to Cityscapes and
SYNTHIA to Cityscapes – show that ADFormer outperforms SOTA
proposal-free methods with significantly lower complexity. The implemen-
tation is available at https://github.com/helq2612/ADFormer.

Keywords: Cross-domain settings · Semantic segmentation

1 Introduction

This paper addresses cross-domain semantic segmentation. We are given images
from the source and target domains, which share semantic classes, but significantly
differ in imaging conditions and appearance of these classes – the difference
referred to as the domain gap. Only the source-domain images are annotated
with semantic segmentation masks. The goal is to use the provided source-
domain supervision to perform semantic segmentation in the target domain. This
problem arises in a wide range of applications, including autonomous driving
under different weather conditions [19,26].

A direct application of SOTA models for standard (single-domain) semantic
segmentation, e.g., transformers [4,5,43], to cross-domain settings typically yields
poor results. To reduce the domain gap, prior work has studied several frameworks:
(a) decomposition of features into domain-independent and domain-specific parts
[39–41]; (b) adversarial learning via a gradient reverse layer (GRL) [17]; (c) self-
training; and (d) hybrids thereof [11, 12,20]. For each of these frameworks, prior
work has typically used proposal-free models which have a heavy encoder, either
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CNNs [30,36,44,46] or transformers [13–15]. By proposal-free, we mean models
that do not explicitly use proposals to obtain the final semantic segmentation. For
example, a proposal-free transformer does not have query tokens in its decoder.
Also, by heavy encoder, we mean a complex image-encoding network pre-trained
on a very large dataset, like ImageNet [8]. We find that such proposal-free models
may not be the most suitable for our problem, because their pretraining is done
for image classification – a task different from semantic segmentation – on a large
dataset which may be unrelated to the source and target domains of interest.
While there are attempts to address this issue – e.g., “thing-class feature distance”
regularization [13] – they poorly generalize to all possible cross-domain settings –
e.g., the target domain may not have “thing” classes of ImageNet [35].

This motivates us to use a proposal-based transformer in which learnable
proposals (a.k.a. query tokens) serve as feature prototypes of semantic classes,
and where domain alignment is performed in the decoder. The decoder is aimed
at decoding the proposals into their semantic segmentation in the input image. As
the decoder is learned on both the source and target datasets, we can directly learn
how to align the proposals across the two domains. Therefore, our model choice
seems more suitable for the downstream cross-domain setting than proposal-free
models. Among recent proposal-based transformers [1,4,5,45,47], Mask2Former [4]
has shown great success in single-domain semantic segmentation. In the decoder
of Mask2Former, the “abstracted” query tokens are gradually refined and tuned
to the input image, by the means of cross-attention with the image tokens, such
that each query can predict a class and its segmentation mask in the image at
the output. We extend Mask2Former such that the query tokens learn domain-
independent class prototypes, as desired in cross-domain settings. To the best of
our knowledge, proposal-based transformers have never been used in cross-domain
semantic segmentation.

The cross-attention in Mask2Former estimates similarity between the query
tokens and image tokens. In cross-domain settings, the latter are characterized by
both domain-independent (DI) and domain-specific (DS) features. Consequently,
the cross-attention consists of DI and DS attentions. The DS cross-attention
tuned to the source domain may negatively affect the refinement of the query
tokens on the target-domain images. To mitigate this issue, prior work [11] has
directly decomposed the query and image tokens into DI and DS features, at
a high computational cost. In contrast, as shown in Fig. 1, our new attention
decomposition transformer, called ADFormer, splits the Mask2Former’s semantic-
segmentation head into two, parallel, DI and DS processing branches, for a more
direct estimation of the two types of cross-attention, with low complexity.

To learn to decompose the cross-attention, following [13, 30], we train our
ADFormer with self-learning on both source and domain-mixed images, where
the latter are synthetic images composed of select parts from the source- and
target-domain images, as illustrated in Fig. 2. The supervision for self-learning
represents the known masks of the corresponding source-domain and target-
domain regions in the domain-mixed image. Such training allows each query
token of our ADFormer to predict a quadruplet (class, mask, domain, domain-
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Fig. 1: ADFormer consists of a backbone, pixel-decoder, and transformer-decoder. The
transformer-decoder has two parallel domain-independent (DI) and domain-specific
(DS) branches that decompose the cross-attention into DI and DS components, and
enable every query token to predict a quadruplet (class, mask, domain, domain-mask).
The DI segmentation head outputs the semantic class and its segmentation mask in the
image, and the DS segmentation head outputs the domain class (source or target) and
its domain-mask in the image. The predicted quadruplets are matched with the ground
truth to estimate loss. The gradient reverse layer (GRL) is conveniently introduced for
the loss on DS outputs to reduce the domain gap.

mask). As shown in Fig. 1, the first pair in the quadruplet is output by the DI
head for the semantic class and its segmentation mask in the image, and the
second pair is output by the DS head for the domain class (source or target)
and its segmentation mask in the image. The predicted quadruplets are matched
with the ground truth to estimate loss. The gradient reverse layer (GRL) is
conveniently introduced for the loss on DS outputs to reduce the domain gap.

ADFormer achieves SOTA performance on two benchmark domain shifts,
GTA [27] → Cityscapes [7]) and SYNTHIA [28] → Cityscapes [7], with lower
complexity than prior work.

Our contributions are summarized below:
1. We are the first to design and evaluate a proposal-based model, ADFormer,

and integrate adversarial learning via GRL into self-learning of a proposal-
based model for cross-domain semantic segmentation.

2. ADFormer’s decoder explicitly decomposes cross-attention into DI and DS
components, which enforces the query tokens to focus their learning of class
prototypes on the semantically relevant DI cues in the image.
In the following, Sec. 2 reviews related work, Sec. 3 briefly outlines Mask2Former,

Sec. 4 specifies ADFormer, Sec. 5 presents our experimental results, and Sec. 6
concludes the paper.

2 Related Work

Transformer-based segmentation. Recent work shows that transformers
[2, 4, 5, 43] outperform CNNs in semantic segmentation. For example, Segformer
[43] avoids using complex decoders by unifying transformers with lightweight
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Fig. 2: For a domain-mixed image consisting of source- and target-domain parts, every
query token predicts the quadruplet (class, mask, domain, domain-mask). The figure
visualizes the cross-attention of two sample query tokens and the corresponding attention
decomposition, enabled by the DI and DS heads in ADFormer (see Fig. 1). The top
query predicts “target” as the domain class, and the bottom query, “source”. Before the
decomposition, the top query’s cross-attention has higher values on objects (e.g., cars)
from the target domain. Similarly, the bottom query’s cross-attention emphasizes objects
from the source domain. After the decomposition, the resulting DI cross-attention for
both queries has high values on objects from both source and target domains.

multi-layer perception (MLP) decoders. MaskFormer [5] estimates the query-
based attention and mask classification, while its successor Mask2Former [4]
additionally filters image background with the masked attention. Recent cross-
domain semantic segmentation methods usually adopt the MIt-B5 encoder from
Segformer, whose complexity is very high (> 85M parameters, see Sec. 5). Our
ADFormer extends Mask2Former, with significantly lighter encoder (called pixel-
decoder), to better suit cross-domain semantic segmentation.

Unsupervised domain adaptation (UDA) for semantic segmentation can
be divided into adversarial-training [31,32,37] and self-training approaches [13–
15,30]. The former use GRL to reverse the sign of loss and thus rather maximize
than minimize the loss for outputs deemed domain-specific. This effectively
suppresses learning on features that induce the domain gap. In self-training,
a student model is trained on both source- and target-domain images, where
supervision in the target domain comes based form pseudo-ground-truth labels
generated by a teacher model. The teacher model is updated from the student
model usually through exponential moving average (EMA). Recent domain-
bridging methods [3, 30] perform training on domain-mixed images composed of
source and target parts. In this paper, we follow these well-established learning
frameworks, and train ADFormer using adversarial-training via GRL, self-training
via student-teacher models, and domain-bridging via domain-mixed images.

Domain Decomposition. Cross-domain learning typically focuses on feature
decomposition. For example, CNN features can be disentangled into DI and DS
parts with an orthogonal constraint [41], or mutual-information loss [40], or a
cyclic-disentanglement [39]. Also, images can be disentangled into DI structure and
DS texture representations [38]. In contrast, we focus on attention decomposition,
rather than feature decomposition.
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3 Brief Review of Mask2Former

ADFormer extends Mask2Former [4], which consists of a backbone network,
pixel decoder (also called “encoder” in DETR-family detectors [1, 10, 25, 47]),
(query) decoder, and a semantic segmentation branch. The encoder embeds image
features, extracted with a backbone network, into a sequence of image tokens,
X = {xi}Ni=1, xi ∈ Rd, where N = h×w is the sequence length, and [h,w] are the
height and width of the image-feature map. The decoder introduces a sequence
of query tokens, Z = {zj}

Nq
j=1, zj ∈ Rd, aimed at learning class prototypes. In the

decoder, every query token zj is correlated with all image tokens X to compute
the semantic-segmentation responses of zj :

Mj = {σ(mij) : mij = x⊤
i FFN(zj), i = 1, . . . , N}, j = 1, . . . , Nq , (1)

where σ(·) is the sigmoid function, and FFN(·) is a feedforward three-layer
non-linear projection. For every zj , the decoder’s classification head, denoted as
class(·), predicts a class distribution, cj = softmax(class(zj)) ∈ [0, 1]C , over C
classes. Thus, the decoder of Mask2Former can be viewed as decoding the image
tokens into class-mask responses {(cj ,Mj)}

Nq
j=1, which can be mapped into the

final pixel-wise prediction:

yi = softmax(
Nq∑
j=1

σ(mij)cj) ∈ [0, 1]C , i = 1 . . . N . (2)

The decoder usually has several layers, l = 1, 2, . . . , aimed at refining Z through
cross-attention and self-attention before making the final prediction given by
(2). The refinement of Z l at every layer l, by the means of cross-attention, is
important since it focuses every “abstracted” class prototype zlj to tune to visual
cues captured by the image tokens as:

Z l = (Al(XWV ))WO, Z l ∈ RNq×d, X ∈ RN×d , (3)

where we slightly abuse the notation for Z and X and treat them as matrices,
WV ,WO ∈ Rd×d are two linear projection matrices, and Al ∈ RNq×N is the
cross-attention at the decoder layer l estimated as

Al = (Z lWQ)(XWK)⊤ +M l−1, M(i, j) =

{
0 , if σ(mij) > 0.5

−∞ , otherwise , (4)

where WQ,WK ∈ Rd×d are another two linear projection matrices, and M l−1 is
the attention mask for filtering out image tokens predicted as background by the
previous layer (l − 1) in (1). M enforces that the query tokens are refined only
based on the foreground image tokens.

4 Specification of ADFormer

Fig. 1 shows the main components of ADFormer. In training, we use both source
and domain-mixed images. This allows for self-learning of ADFormer by predicting
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Fig. 3: (Left): The single semantic segmentation branch of Mask2Former. (Middle
and Right) The decoder of ADFormer disentangles the class-mask and domain-mask
predictions through the respective domain-independent (DI) and domain-specific (DS)
segmentation branches.

not only the semantic mask of each class but also the domain mask for the input
image. The encoder produces the image tokens, X , which are passed to the decoder
for refining the query tokens Z and decoding X with Z into the quadruplet (class,
mask, domain, domain-mask) responses, {(cj ,MDI

j , dj ,MDS
j )}Nq

j=1. As depicted
in more detail in Fig. 3, every zj is passed to two parallel branches: the DI
branch for predicting the semantic segmentation mask MDI

j and the DS branch
for estimating the domain segmentation mask MDS

j . In the DS branch, several
GRLs are used to reverse the gradient flow in back-propagation to reduce the
domain gap. In the following, we specify the DI and DS branches, whose detailed
architecture is shown in Fig. 3.

4.1 DS Segmentation Branch

Since both X and Z carry information about the domain, regions belonging to
the target or source domain in the input image are identified by correlating every
zj with X as

MDS
j = {σ(mDS

ij ) : mDS
ij = x⊤

i FFNDS(zj), i = 1, . . . , N}, j = 1, . . . , Nq , (5)

For every zj , the binary domain classification head, denoted as domain(·), predicts
a domain-class distribution, dj = softmax(domain(zj)) ∈ [0, 1]2, over two domain
classes source and target. The domain(·) is implemented as a FFN. Thus, the DS
segmentation branch can be viewed as decoding X into domain-mask responses
{(dj ,MDS

j )}Nq
j=1, which can be mapped into the pixel-wise domain classification:

yDS
i = softmax(

Nq∑
j=1

σ(mDS
ij )dj) ∈ [0, 1]2, i = 1 . . . N . (6)

Importantly, the refinement of Z via cross-attention is not computed in the DS
branch, since the query tokens are supposed to learn DI class prototypes.
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The DS branch uses GRL to reduce the domain gap, as shown in Fig. 3. In the
forward pass, GRL is the identity function. In back-propagation, GRL reverses
the sign of the gradient of loss in order to “fool” the DS branch such that errors in
predicting the domain classes are encouraged. The hyperparameter λGRL of the
reversed gradient is empirically set to a very small value (λGRL = 10−4). Thus,
on the one hand, in back-propagation, GRL effectively makes the network ignore
domain differences and focus more on the DI visual cues. On the other hand,
the loss incurred on the per-query predictions {(dj ,MDS

j )}Nq
j=1 and pixel-wise

domain classification {yDS
i }Ni=1 make the network learn the domain differences.

In this way, GRL enables adversarial learning of the DS branch.

4.2 DI Segmentation Branch

The DI segmentation branch decodes X into DI class-mask responses. While
the DS branch leverages the domain information entangled in both X and Z
for the pixelwise domain classification in (6), the DI branch seeks to estimate
DI correlation between X and Z. Following prior work, we make two common
assumptions about the DI and DS components of the image tokens and query
tokens. First, they can be decomposed as:

xi = xDI
i + xDS

i , zj = zDI
j + zDS

j . (7)

Second, they are uncorrelated (orthogonal):

(xDS
i )⊤zDI

j = 0, (xDI
i )⊤zDS

j = 0 . (8)

From (7), (8), the DI correlation between every xi and zj can be computed as

x⊤
i zj = (xDI

i )⊤zDI
j + (xDS

i )⊤zDS
j +�����

(xDI
i )⊤zDS

j +�����
(xDS

i )⊤zDI
j ,

⇒ (xDI
i )⊤zDI

j = x⊤
i zj − (xDS

i )⊤zDS
j .

(9)

From (9), the DI semantic-segmentation responses of the query tokens can be
estimated as

MDI
j = {σ(mDI

ij ) : m
DI
ij = mij −mDS

ij , i = 1, . . . , N}, j = 1, . . . , Nq . (10)

where mij is given by (1) and mDS
ij is computed in (5).

Note that MDI
j in (10) does not require an explicit decomposition of features

of the image and query tokens. It suffices to simply subtract the domain-mask
prediction MDS

j from the entangled semantic mask Mj which can be predicted
as in Mask2Former (1).

As in Mask2Former, the DI branch has a classification head, denoted as
class(·), which predicts a class distribution, cj = softmax(class(zj)) ∈ [0, 1]C .
Thus, the DI segmentation branch outputs semantic-segmentation responses
{(cj ,MDI

j )}Nq
j=1, which can be mapped into the pixel-wise semantic classification:

yi = softmax(
Nq∑
j=1

σ(mDI
ij )cj) ∈ [0, 1]C , i = 1 . . . N . (11)
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Similar to Mask2Former, ADFormer’s decoder refines Z l through layers l, by
the means of cross-attention, only in the DI segmentation branch, because we
want the class prototypes in Z l to capture DI properties of the image tokens as:

Z l = ((ADI)l(XWV ))WO, Z l ∈ RNq×d, X ∈ RN×d , (12)

where (ADI)l ∈ RNq×N is the cross-attention of the DI branch at layer l:

(ADI)l = (Z lWQ)(XWK)⊤+(MDI)l−1, MDI(i, j) =

{
0 , if σ(mDI

ij ) > 0.5
−∞ , otherwise ,

(13)
where MDI is the DI attention mask for enforcing the refinement of the query
tokens based only on the DI foreground image tokens.

4.3 Loss Functions

ADFormer predicts per-query quadruplets (class, mask, domain, domain-mask)
and pixel-wise semantic and domain classification. This incurs the set loss and
the pixel-wise loss, as described below.

Set loss is estimated with the one-to-one Hungarian matching between the
quadruplet predictions {(cj ,MDI

j , dj ,MDS
k )}Nq

j=1 and the ground truth appropri-
ately converted to ground-truth quadruplets {(c∗k,M∗

k, d
∗
k, (MDS

k )∗)}Ngt
k=1. Let h(k)

denote the Hungarian mapping of every kth ground truth to its best matched
jth prediction, h(k) = j. Then, the set loss is specified as

Lset =

Ngt∑
k=1

LM2F((c
∗
k,M∗

k), (ch(k),MDI
h(k))) +LDS((d

∗
k, (MDS

k )∗), (dh(k),MDS
h(k))) ,

(14)
where LM2F is the same set loss used in Mask2Former, which includes the cross-
entropy semantic classification loss and the regression loss for the semantic mask
responses. Similarly, LDS includes the cross-entropy domain classification loss
and the domain-mask regression loss. The regression losses for both LM2F and
LDS include the pixel-wise binary cross-entropy loss and the dice loss.

Segmentation loss. In addition to the set loss, we take into account the
pixel-wise supervision for both semantic segmentation and domain segmentation:

Lseg =

N∑
i=1

LCE(y
∗
i , yi) + LBCE((y

DS
i )∗, yDS

i ) , (15)

where CE and BCE denote the pixel-wise cross-entropy loss and binary cross-
entropy loss, and * denotes the corresponding ground truth at ith pixel.

Our cross-domain learning. We adopt the self-training framework of [13,30],
and train the student-ADFormer with the overall loss:

L = λset(Lsource
set + Lmix

set ) + λseg(Lsource
seg + Lmix

seg ) , (16)
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where λset, λseg are positive hyperparameters, and “source” and “mix” denote loss
from the source-domain and domain-mixed images, respectively. The “mix” loss
is evaluated with respect to pseudo-ground-truth labels, predicted by the teacher-
ADFormer on the target-domain parts, and actual ground-truth labels for the
source-domain parts in the domain-mixed images. The teacher-ADFormer updates
its weights from the student-ADFormer via exponential moving average.

5 Experimental Results

Datasets. Following prior work [13–15], we evaluate ADFormer on two domain
shifts: GTA [27] → Cityscapes [7], and SYNTHIA [28] → Cityscapes [7]. The
source-domain datasets GTA and SYNTHIA consist of 24,996 and 9400 annotated
images, respectively. The target-domain dataset Cityscapes consists of 2975 and
500 images for training and validation.

Evaluation metric. As in [13–15], ADFormer is evaluated with respect to
the mean intersection-over-union (mIoU) of semantic segmentation in target-
domain images on 19 classes of GTA → Cityscapes and 16 classes of SYNTHIA
→ Cityscapes.

Network architecture. The architecture of ADFormer is implemented using
the mmsegmentation framework [6] of Mask2former [4]. As the backbone network,
we use the lightweight Swin-S [21], pre-trained on the ImageNet-1K [8]. The
encoder in ADFormer has six layers, and the decoder’s mandatory zero layer is
followed by six additional layer (i.e., there are 7 decoder layers).

Parameter setting. As in [13], we train ADFormer with AdamW [22],
learning rates ηbase = 1e− 4 and ηbackbone = 1e− 5, weight decay of 0.05, linear
learning rate warm-up twarm = 1.5K iterations, and linear decay after that. The
hyperparameter of the segmentation loss is λseg = 10.0 and the hyperparameter
of the set loss is λset = 0.025. The gradient reverse hyperparameter in the
GRLs of the DS branch is λGRL = 0.0001. As in [13], we adopt the Rare Class
Sampling strategy to handle the class imbalance in the datasets, but do not use
the “Thing-Class ImageNet Feature Distance” regularization. The experiments
were conducted on a NVIDIA-H100.

Ablation Study. Tab. 1 shows how individual components of ADFormer and
our design choices affect our performance on GTA→ Cityscapes. We organize
the ablations as follows:

– baseline: Mask2Former is the baseline model that predicts (class, mask) for
every query token.

– DS: The DS segmentation branch is added to Mask2Former, and the cross-
attention is computed as in (4); the model predicts (class, mask, domain,
domain-mask) for every query token.

– AD: The attention decomposition is performed, and the refinement of the
query tokens via the DI cross-attention is computed as in (12) and (13).

– GRL: GRLs are used in the DS branch.
– FD: “Thing-class ImageNet feature distance” regularization of [13] is used.
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– Lseg: In addition to the set loss, the model is trained on the pixel-wise
segmentation loss Lseg.

All of the ablated models and the baseline in Tab. 1 use the rare-class sampling
from [13] and self-training of [30], and follow the same training strategies as in [13].
Interestingly, when we train ADFormer with the FD regularization, our mIoU
decreases to 66.3. From Tab. 1, adding each proposed component to the baseline
gradually improves our performance. ADFormer achieves the best performance
for the configuration shown in the last bottom row 8 of Tab. 1, which is used
further in the remaining experiments.

baseline DS AD GRL FD Lseg mIoU
1 ✓ - - - - - 44.1
2 ✓ - - - - ✓ 51.4
3 ✓ ✓ - - - ✓ 56.6
4 ✓ ✓ ✓ - - ✓ 57.5
5 ✓ ✓ - ✓ - ✓ 63.1
6 ✓ ✓ ✓ ✓ - - 65.0
7 ✓ ✓ ✓ ✓ ✓ ✓ 66.3
8 ✓ ✓ ✓ ✓ - ✓ 69.2

Table 1: Contribution of each proposed component to the results of ADFormer on
GTA→Cityscapes. Baseline is Mask2Former, DS is the DS segmentation branch, AD is
the attention decomposition, FD is the feature distance regularization of [13].

Complexity vs. Performance. Tab. 2 presents a trade-off between com-
plexity and performance of ADFormer when using different backbone networks
on GTA→Cityscapes. Complexity is evaluated in terms of the number of model
parameters, and average running time in inference tested on a single NVIDIA-
H100 machine. The table also compares DAFormer [13] with the variant of
ADFormer which uses the same backbone MiT-B5 as DAFormer. Other SOTA
approaches [14, 15] also use MiT-B5 as the backbone. ADFormer with Swin-S
as the backbone has significantly fewer model parameters than DAFormer (76%
#Param), and outperforms DAFormer in terms of mIoU (+0.9) and speed (1.7
times faster). When ADFormer uses the larger backbone Swin-B, mIoU improves
from 69.2 to 70.4; however, at the cost of increasing both model and compu-
tational complexity. Therefore, we find that ADFormer with Swin-S represents
our optimal trade-off between complexity and performance, and is used in the
remaining experiments including the comparison with SOTA in Tab. 6.

Sensitivity to the loss hyperparameters. Tab. 3 exhaustively tests our
sensitivity to the hyperparameters λset and λseg, which control the loss in (16),
on the domain shift GTA→Cityscapes. From Tab. 3, a careful selection of λset
and λseg is critical, where our performance is less sensitive to λset than λseg.

Sensitivity to the strength of the gradient reverse. In Tab. 4, we test
the effect of λGRL on our performance on the domain shift GTA→Cityscapes.
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Model Backbone #Param(M) speed mIoU
DAFormer [13] MiT-B5 [43] 85.1 3.9fps 68.3

1 ADFormer MiT-B5 [43] 96.2 2.9fps 70.1
2 ADFormer ResNet101 [9] 58.5 7.5fps 65.6
3 ADFormer Swin-S [21] 64.3 6.7fps 69.2
4 ADFormer Swin-B [21] 102.5 2.7fps 70.4

Table 2: Trade-off between complexity and performance of ADFormer and DAFormer
when using different backbone networks on the domain shift GTA→Cityscapes.

λset λseg mIoU λset λseg mIoU λset λseg mIoU
1 0.01 5.0 58.7 4 0.025 5.0 61.3 7 0.05 5.0 59.8
2 0.01 10.0 65.4 5 0.025 10.0 69.2 8 0.05 10.0 67.6
3 0.01 20.0 62.1 6 0.025 20.0 62.4 9 0.05 20.0 62.9

Table 3: Sensitivity to the hyperparameters which control the loss in (16) on
GTA→Cityscapes.

As described in Sec. 4.1, λGRL controls the strength of the gradient of loss with
the reversed sign in back-propagation. Note that λGRL = −1 means that we
remove GRLs from the DS branch. For λGRL = −1, Tab. 4 shows very poor
results, since the DS branch is encouraged to increase the domain gap. λGRL = 0
means that FFNDS and the FFN of the domain classifier will be learned while
the other components of the DS branch will receive zero gradient. At λGRL = 0,
the result in Tab. 4 suggests that the query tokens are successfully refined based
on DI properties of the image tokens. Finally, λGRL > 0 means that the DS
branch is trained via adversarial learning, which gives the best performance at
λGRL = 1e−4. However, when the reversed gradient is too high, e.g. λGRL ≥ 1e−3,
the adversarial learning starts hurting our performance.

λGRL -1 -0.1 0 1e-5 1e-4 1e-3 1e-2
mIoU 57.5 59.4 65.4 66.8 69.2 67.1 63.4

Table 4: Ablation about gradient reverse control

Sensitivity to the number of decoder layers. Tab. 5 presents the model
complexity and performance of ADFormer for different numbers of decoder layers,
including the mandatory layer zero. From Tab. 5, the higher the number of
decoder layers the better mIoU, but at the cost of increasing model complexity.

Comparison with SOTA. Tab. 6 presents a comparison of ADFormer with
SOTA approaches on the two domain shifts. The table splits the methods into the
proposal-free and proposal-based groups. Specifically, DAFormer [13], HRDA [14],



12 L. He and S. Todorovic

# decoder layers 1+1 1+3 1+6 1+9
#param (M) 56.4 59.6 64.3 69.1

mIoU 66.7 67.8 69.2 69.7

Table 5: The number of model parameters and mIoU of ADFormer for the varying total
number of decoder layers, including the mandatory layer zero, on GTA→Cityscapes.

MIC [15], CDAC [34] and DiGA [29] fall in the proposal-free group, since they
use complex encoders which require pre-training. The other approaches in the
table including ADFormer align the domain gap mainly in their CNN-based
or transformer-based decoders, and hence belong to the proposal-based group.
For a fair comparison, MIC [15], CDAC [34] and DiGA [29] are considered
without the high-resolution domain adaptation (HRDA) [14]. From the table,
ADFormer outperforms the second best DAFormer on both domain shifts by 0.7
and 1.2 in mIoU.

Qualitative results. Fig. 4 illustrates our results in training on an example
domain-mixed image. The figure visualizes the quadruplet predictions of four
query tokens which got matched by the Hungarian algorithm to the ground truth
segments in the domain-mixed image. The rightmost column of the figure shows
that ADFormer succeeds in recognizing and segmenting the very challenging
“sidewalk”, as well as in classifying that “sidewalk” belongs to the target domain.

Query 2 Query 16 Query 78 Query 87

Se
m

an
tic

/D
om

ai
n 

G
T 

M
as

k 
(o

n 
S/

T 
m

ix
ed

 im
ag

e)
Se

m
an

tic
 P

re
di

ct
io

n
Do

m
ai

n 
Pr

ed
ic

tio
n

Fig. 4: Visualization of our training. Results of ADFormer on an example training
domain-mixed image (3rd column from the left), which represents a collage of parts
taken from the source and target images (1st and 2nd columns from the left). On the
right-hand-side we visualize predictions of four query tokens matched by the Hungarian
algorithm to the ground truth segments (top row on the right). Note that the ground-
truth semantic mask and domain mask are equivalent for the domain-mixed image, by
construction. Each query predicts the quadruplet (class, mask, domain, domain-mask)
shown in the middle and bottom rows on the right.
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mIoU
GTA → Cityscapes

DAFormer† [13] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
DAFormer*† 96.0 70.6 89.2 54.4 49.3 50.7 56.1 60.9 88.9 42.5 91.7 71.7 43.1 92.6 77.8 71.8 54.9 58.3 64.5 67.6
HRDA† [14] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC*† [15] 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6 70.6
CLAN [23] 88.7 35.5 80.3 27.5 25.0 29.3 36.4 28.1 84.5 37.0 76.6 58.4 29.7 81.2 38.8 40.9 5.6 32.9 28.8 45.5
CBST [48] 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35 47.0

FADA-MST [33] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
FDA [44] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

DACS† [30] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
IAST-MST [24] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2

ProCA [18] 91.9 48.4 87.3 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3
CorDA [36] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [46] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
CaCo‡ [16] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

SePiCo†† [42] 95.2 67.8 88.7 41.4 38.4 43.4 55.5 63.2 88.6 46.4 88.3 73.1 49.0 91.4 63.2 60.4 0.0 45.2 60.0 61.0
ADFormer† 96.7 75.1 88.8 57.5 45.9 45.6 55.4 59.8 90.2 45.6 92.1 70.8 43.0 91.0 78.9 79.3 68.7 52.7 65.0 69.2

SYNTHIA → Cityscapes
DAFormer† [13] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9

DAFormer*† 89.2 51.1 87.4 31.5 7.8 47.7 53.1 49.3 83.9 - 84.3 73.4 47.0 88.3 - 56.1 - 55.6 60.8 60.4
HRDA† [14] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8
MIC*† [15] 83.0 40.9 88.2 37.6 9.0 52.4 56.0 56.5 87.6 - 93.4 74.2 51.4 87.1 - 59.6 - 57.9 61.2 62.2
DiGA*† [29] 85.2 41.4 88.2 42.6 7.5 52.1 57.5 47.7 87.8 - 90.8 75.0 50.8 87.8 - 58.0 - 58.5 63.0 62.1
CDAC*† [34] 83.7 42.9 87.4 39.8 7.5 50.7 55.7 53.5 85.9 - 90.9 74.5 47.2 86.0 - 60.2 - 57.8 60.8 61.5
FDA [44] 84.2 35.1 78.0 6.1 0.44 27.0 8.5 22.1 77.2 - 79.6 55.5 19.9 74.8 - 24.9 - 14.3 40.7 40.5
CBST [48] 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 - 74.7 67.2 17.5 84.5 - 28.4 - 15.2 55.8 42.5
FADA [33] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 - 84.0 53.5 22.6 85.4 - 43.7 - 26.8 27.8 45.2
CaCo‡ [16] 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 - 81.2 56.3 24.2 78.6 - 39.2 - 28.1 48.3 46.0
DACS† [30] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.6 38.3 82.9 - 38.9 - 28.5 47.6 48.3

IAST-MST [24] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 - 85.0 65.5 30.8 86.5 - 38.2 - 33.1 52.7 49.8
CorDA [36] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 - 90.4 69.7 41.8 85.6 - 38.4 - 32.6 53.9 50.0
ProCA [18] 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 - 85.9 69.8 28.7 88.7 - 53.7 - 14.8 54.8 53.0
ProDA [46] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 - 84.4 74.2 24.3 88.2 - 51.1 - 40.5 45.6 55.5

SePiCo†† [42] 77.0 35.3 85.1 23.9 3.4 38.0 51.0 55.1 85.6 - 80.5 73.5 46.3 87.6 - 69.7 - 50.9 66.5 58.1
ADFormer† 91.8 53.6 87.0 40.5 5.2 46.8 52.1 54.9 88.4 - 92.6 72.5 45.7 86.1 - 61.6 - 50.4 64.4 62.1

Table 6: Comparison of ADFormer with SOTA on GTA→Cityscapes and
SYNTHIA→Cityscapes. The methods are divided into the proposal-free group (top)
and proposal-based group (bottom). We use the official code to reproduce the results of
DAFormer [13] without the ImageNet Feature Distance regularization (DAFormer*).
For a fair comparison, MIC [15], CDAC [34] and DiGA [29] are considered without
the high-resolution domain adaptation [14] (MIC*, CDAC*, and DiGA*). †, ‡, and ††

indicate the domain-mix techniques introduced in [30], [16] and [42], respectively.

Fig. 5 and Fig. 6 compare the inference results of ADFormer and DAFormer
on a few example validation images from the target Cityscapes domain. These
examples support our general observation that ADFormer outperforms DAFormer
on challenging classes which are very similar to “thing” classes in ImageNet.
One possible explanation for our better performance on such classes is that
ADFormer does not use DAFormer’s feature distance regularization which favors
detection of “thing” classes from ImageNet.

6 Conclusion

We have specified a new proposal-based transformer, ADFormer, for cross-domain
semantic segmentation. ADFormer extends Mask2Former with an additional DS
segmentation branch aimed at predicting the source-domain or target-domain
class at every pixel, which allows for self-learning on the domain-mixed images. In
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Input image ADFormer DAFormer [12] Ground Truth

Fig. 5: Inference on example validation images from Cityscapes when ADFormer and
DAFormer [13] are trained on GTA→Cityscapes. DAFormer tends to confuse “sidewalk”
with “road” (middle) and “person” with “pole” (bottom), whereas ADFormer makes
fewer of such mistakes.

Input image ADFormer DAFormer [12] Ground Truth

Fig. 6: Inference on example validation images from Cityscapes when ADFormer and
DAFormer [13] are trained on SYNTHIA→Cityscapes. DAFormer has a higher false
positive rate of “sidewalk” for the ground-truth “road” than ADFormer.

addition, ADFormer decomposes cross-attention into the DI and DS components,
and uses only the DI cross-attention for refining the query tokens through
seven decoder layers. The attention decomposition and GRLs in the DS branch
jointly reduce the domain gap. Evaluation is performed on two benchmark
domain shifts: GTA→Cityscapes, and SYNTHIA→ Cityscapes. Our extensive
ablation study demonstrates that adding each proposed component to the baseline
Mask2Former gradually improves performance, and that ADFormer with Swin-S
as the backbone network achieves a good trade-off between complexity and
performance. With significantly fewer model parameters, ADFormer outperforms
all SOTA approaches on the test domain shifts.
Acknowledgement: This work has been supported by USDA NIFA award
No.2021-67021-35344 (AgAID AI Institute).
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