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Fig. 1: Our method bounds the attention to enable layout control over a pre-trained
text-to-image diffusion model. Bounded Attention effectively reduces the impact of the
innate semantic leakage during denoising, encouraging each subject to be itself. Our
method can faithfully generate challenging layouts featuring multiple similar subjects
with different modifiers (e.g., ginger and gray kittens).

Abstract. Text-to-image diffusion models have an unprecedented abil-
ity to generate diverse and high-quality images. However, they often
struggle to faithfully capture the intended semantics of complex input
prompts that include multiple subjects. Recently, numerous layout-to-
image extensions have been introduced to improve user control, aiming
to localize subjects represented by specific tokens. Yet, these methods of-
ten produce semantically inaccurate images, especially when dealing with
multiple semantically or visually similar subjects. In this work, we study
and analyze the causes of these limitations. Our exploration reveals that
the primary issue stems from inadvertent semantic leakage between sub-
jects in the denoising process. This leakage is attributed to the diffusion
model’s attention layers, which tend to blend the visual features of differ-
ent subjects. To address these issues, we introduce Bounded Attention,
a training-free method for bounding the information flow in the sam-
pling process. Bounded Attention prevents detrimental leakage among
subjects and enables guiding the generation to promote each subject’s
individuality, even with complex multi-subject conditioning. Through ex-
tensive experimentation, we demonstrate that our method empowers the
generation of multiple subjects that better align with given prompts and
layouts.
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1 Introduction

In recent years, text-to-image generation has undergone a significant shift with
the integration of conditional diffusion models [?,?,?,?], allowing for the facile
generation of high-quality and diverse images. The use of attention layers in ar-
chitectures of such generative models has been identified as a major factor con-
tributing to improved quality of generated images [?,?]. However, these models
struggle to accurately generate scenes containing multiple subjects, especially
when they are semantically or visually similar.

In this work, we study the problem of multi-subject image generation in
attention-based diffusion models. Our contribution is twofold. First, we recog-
nize the underlying reasons for the difficulty in generating images containing
multiple subjects, especially those sharing semantic similarities. Second, build-
ing on our insights, we present a method aimed at mitigating semantic leakage in
the generated images, allowing control over the generation of multiple subjects
(see Figure 1).

We demonstrate an innate bias within the common attention-based architec-
tures utilized in diffusion models, which predisposes them to leak visual features
between subjects. In particular, the functionality of attention layers is designed
to blend features across the image. Therefore, they inherently lead to informa-
tion leakage between subjects. This phenomenon is particularly noticeable when
subjects are semantically similar and, therefore, attend to each other (Figure 2).

A plethora of works tries to mitigate the cross-subject leakage issue, ei-
ther by modifying the sampling process to better follow different subjects in
the prompt [?, ?], or by coupling the global prompt with layout information
via segmentation maps or bounding boxes labeled with subject classes or local
prompts [?,?,?,?]. However, the majority of these methods still encounter diffi-
culties in accurately aligning to input layouts, particularly in scenarios involving
two or more semantically similar subjects.

In our approach, we guide the image generation with a spatial layout [?,?].
To address cross-subject leakage, we introduce the Bounded Attention mecha-
nism, utilized during the denoising process to generate an image. This method
bounds the influence of irrelevant visual and textual tokens on each pixel, which
otherwise promotes leakage. By applying this mechanism, we encourage each
subject to be itself, in the sense that it hinders the borrowing of features from
other subjects in the scene. We show that bounding the attention is needed both
in the cross- and self-attention layers. Moreover, we find additional architectural
components that amplify leakage, modify their operation, and present remedies
to them.

We show that our method succeeds in facilitating control over multiple sub-
jects within complex, coarse-grained layouts comprising numerous bounding
boxes with similar semantics. Particularly challenging examples are demon-
strated in Figure 1, where we successfully generate five kittens with a mix of
adjectives. We conduct experiments on both Stable Diffusion [?] and SDXL [?]
architectures and demonstrate the advantage of our method compared to previ-
ous ones, both supervised and unsupervised.
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Fig. 2: Misalignment in layout-to-
image generation include (i) catastrophic
neglect [?] where the model fails to in-
clude one or more subjects mentioned in
the prompt within the generated image, (ii)
incorrect attribute binding [?, ?] where at-
tributes are not correctly matched to their
corresponding subjects, and (iii) subject fu-
sion [?] where the model merges multiple
subjects into a single, larger subject.

Catastrophic Incorrect att. Subject
neglect binding fusion

“A ginger “A spotted “A watercolor
kitten and a lizard and a painting and a
gray puppy” blue fruit” marble statue”

2 Related work

Text-to-image diffusion models. Diffusion models, trained on huge datasets
[?], have demonstrated their power in learning the complex distributions of di-
verse natural images [?,?,?,?,?]. Augmenting attention layers into diffusion mod-
els and conditioning them on textual prompts by coupling them with visually-
aligned text encoders [?] leads to powerful text-to-image models [?]. In this work,
we specifically examine two such open-source text-to-image diffusion models:
Stable Diffusion [?], and the more recent SDXL [?].

Semantic alignment in text-to-image synthesis. A critical drawback of
current text-to-image models pertains to their limited ability to faithfully rep-
resent the precise semantics of input prompts. Various studies have identified
common semantic failures and proposed mitigating strategies, such as adjusting
text embeddings [?,?,?], or optimizing noisy signals to strengthen or align cross-
attention maps [?,?]. Nevertheless, these methods often fall short in generating
multiple subjects, and do not adhere to positional semantics, such as subjects’
number or location.

Layout-guided image synthesis. Addressing the semantic alignment concern,
alternative approaches advocate for conditioning the diffusion process on layout
information, either by training new models from scratch [?, ?] or fine-tuning
an existing one [?,?,?,?]. Despite their promise, these methods demand exten-
sive computational resources and prolonged training times. Moreover, they are
constrained by the layout distribution of the training data and the models’ archi-
tectural bias to blend subject features, a limitation that our Bounded Attention
aims to overcome.

To circumvent these challenges, numerous researchers explore training-free
techniques, where the generation process itself is modified to enforce layout con-
straints. Several optimization-based works employ techniques similar to classifier-
free guidance to localize the cross-attention [?, ?, ?, ?] and/or self-attention
maps [?]. While effective in aligning random noise with the intended layout,
guiding attention maps to distinct regions may inadvertently lead to undesired
behavior, particularly when different subjects share similar semantics and vi-
sual features. Furthermore, these methods often exhibit a deteriorating effect on
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visual quality, thereby limiting their applicability to only the initial denoising
steps and neglecting finer control over shape and visual details, which are deter-
mined only in later stages [?]. Bounded Attention addresses these shortcomings
by regulating attention computation throughout the entire denoising process.

Another approach involves generating each subject separately in its own de-
noising process [?,?]. While these methods inherently address catastrophic ne-
glect, they tend to generate disharmonious images, and remain susceptible to
leakage when merging subjects in subsequent stages. In contrast, masking at-
tention maps to input bounding boxes [?] or attenuating attention in specific
segments [?] represents a milder variant of this strategy, aimed at avoiding visi-
ble stitching. However, these methods often fall short of fully mitigating subject
leakage, compromising semantic alignment. In comparison, Bounded Attention
is able to carefully govern information propagation among subjects in a single
denoising process.

While both the trained models and training-free techniques aim to generate
numerous objects, they do not mitigate the inherent leakage caused by attention
mechanisms. Unlike our Bounded Attention technique, these methods encounter
challenges in effectively generating and controlling a multitude of subjects, es-
pecially when they share semantic similarity. Notably, existing techniques strug-
gle to accurately generate even two semantically similar subjects, whereas our
method, as demonstrated succeeds in generating five and even more subjects.

3 Preliminaries

Latent diffusion models. In this work, we examine Stable Diffusion [?] and
SDXL [?], which are both publicly available latent diffusion models. These mod-
els operate in the latent space of a pretrained image autoencoder, and are thus
tasked with denoising a latent representation of the image, where each latent
pixel corresponds to a patch in the generated image. Starting from pure random
noise zT , at each timestep t, the current noisy latent zt is passed to a denois-
ing UNet ϵθ, trained to predict the current noise estimate ϵθ (zt, y, t) using the
guiding prompt encoding y.

Attention layers. At each block, the UNet utilizes residual convolution layers,
producing intermediate features ϕ(l)(zt), where l denotes the layer’s index. These,
in turn, are passed to attention layers, which essentially average different values
V

(l)
t according to pixel-specific weights:

ϕ(l+1)(zt) = A
(l)
t V

(l)
t , where A

(l)
t = softmax
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Q
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(l)
t
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projections of context vectors C
(l)
t . In the cross-attention layers we inject se-

mantic context from the prompt encoding C
(l)
t ≡ y, while self-attention layers

utilize global information from the latent itself C(l)
t ≡ ϕ(l)(zt).
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The weighting scheme is determined by the attention map A
(l)
t which rep-

resents the probability of each pixel to semantically associate with a key-value
pair. This is done by linearly projecting the latent noisy pixels to queries Q(l)

t =

f
(l)
Q

(
ϕ(l)(zt)

)
and computing their inner product with the keys. It has been

widely demonstrated that the cross-attention maps are highly indicative of the
semantic association between the image layout and the prompt tokens [?]. Mean-
while, the self-attention maps govern the correspondence between pixels, and
thus form the image’s structure [?].

4 Semantic Leakage
We begin by studying the causes of semantic leakage in Stable Diffusion [?], and
examine the limitations of existing layout-to-image approaches.

4.1 On Subject Similarity
Figure 2 illustrates various misalignment failures observed in state-of-the-art
layout-to-image training-free methods. As we shall show, these failures are more
prevalent for subjects that share semantic or visual similarity.

Let xs1 , xs2 ∈ R2 be 2D latent coordinates corresponding to two seman-
tically similar subjects s1, s2 in the generated image. Intuitively, we expect
that along the denoising process, the queries corresponding to these pixels,
Q

(l)
t [xs1 ] ,Q

(l)
t [xs2 ], will be similar and hence also their attention responses.

This, in turn, also implies that they will share semantic information from the
token embeddings through the cross-attention layers or visual information via
the self-attention layers.

To explore this hypothesis, we investigate the model’s behavior when tasked
with generating two subjects and analyze their attention features in both cross-
and self-attention layers. Subsequently, we meticulously examine these features
and demonstrate how their behavior sheds light on the leakage observed in gen-
erated images.

4.2 Cross-Attention Leakage
To analyze the leakage caused by cross-attention layers, we examine the cross-
attention queries. We depict these queries in the plots in Figure 3, where each
point corresponds to a single query projected to 2D with PCA. To label each
point with its corresponding subject, we compute the subject masks by aver-
aging cross-attention maps [?] and color each projected query according to the
subject’s text color. The leftmost plot, in which the two subjects were generated
separately, serves as a reference point to the relation between the queries when
there is no leakage. For comparative analysis, we also present results for Layout-
guidance [?], as a simple representative of current training-free layout-guided
approaches, and Bounded Attention, which we shall cover in the sequel.

We consider the cross-attention queries in two examples: “a kitten” and “a
puppy”, and “a hamster” and a “squirrel”. As can be seen in the reference plots,
the kitten and puppy queries share some small overlap, and the hamster and
squirrel queries are mixed together. The level of separation between the red and
blue dots in the plots reveals the semantic similarity of the two forming subjects.
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A kitten A puppy A kitten and a puppy

SD SD LG BA

A hamsterA squirrel A hamster and a squirrel

SD SD LG BA

Fig. 3: Cross-Attention Leakage. We demonstrate the emergence of semantic leak-
age at the cross-attention layers. We show two examples: a puppy a kitten, and a
hamster and a squirrel. In the two leftmost columns, the subjects were generated sep-
arately using Stable Diffusion (SD). In the right three columns, we generate a single
image with the two subjects using three different methods: Stable Diffusion (SD), Lay-
out Guidance (LG), and Bounded Attention (BA, ours). Under each row, we plot the
two first principal components of the cross-attention queries. As can be seen, the sep-
aration of the queries (blue and red) reflects the leakage between the subjects in the
generated images.

Clearly, vanilla Stable Diffusion struggles to adequately generate the two sub-
jects within the same image. This is apparent by the visual leakage between the
two subjects, as the model cannot avoid averaging their distinct visual proper-
ties. For example, the puppy has the visual features of a kitten, like raised ears
and a triangular nose, while the squirrel loses its distinct ear shape and its feet
are now pink like the hamster. Respectively, it can be seen that the queries of
the two subjects are mixed, even for the kitten and the puppy which are more
separated in the reference plot.

Meanwhile, Layout Guidance (LG), which optimizes zt to have attention
peaks for each noun token at their corresponding region, exhibits interesting
results. Its optimization objective implicitly encourages the separation between
subjects’ cross-attention queries. This can have positive effects, like the hamster
and squirrel having unique colors, but at the same time yields unwanted artifacts,
like the puppy losing its face altogether. Moreover, it can inadvertently push the
latent signal out of distribution, causing quality degradation, as evident by the
hamster’s and squirrel’s cartoonish texture. When it overly pushes the latent out
of distribution, it leads to the catastrophic neglect phenomenon (Figure 2).

In comparison, when examining the plots of our method alongside the ref-
erence plots, our approach preserves the feature distribution of the subjects’
queries, and successfully generates the two subjects, even when the queries are
as mixed as in the hamster and the squirrel.

The above analysis yields two immediate conclusions: (i) Semantic similar-
ity between subjects is reflected by their queries proximity, and leads to mixed
queries when the subjects are generated together. This in turn leads to leak-
age between the subjects in the generated images, and (ii) enforcing semantic
separation by modifying the semantic meaning of the cross-attention queries is
harmful. The former observation represents a crucial architectural limitation in
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SD LG

Fig. 4: Self-Attention Leakage. We demonstrate the emergence of semantic leakage
at the self-attention maps of two generally semantically dissimilar subjects: a crab and
a frog. The images are generated by Stable Diffusion (SD) and Layout-guidance (LG).
We highlight specific pixels, such as those of a subject’s eye or leg, and present their
respective self-attention maps.

current diffusion models, and the latter pinpoints to a previously unexplored
weakness in the widely used latent optimization methodology. Bounded Atten-
tion is designed to overcome these limitations.

4.3 Self-Attention Leakage
We now turn to analyze the leakage caused by self-attention layers. It has been
shown that self-attention features exhibit dense correspondences within the same
subject [?] and across semantic similar ones [?]. Hence, they are suspected as
another source of leakage, that we shall study next.

Here, we choose to examine the self-attention maps as a means to under-
stand the leakage. In Figure 4 we focus on representative pixels (marked in
yellow) associated with the subjects’ eyes and legs, where visual leakage is most
pronounced. As expected, features from one subject’s eye or leg attend to the
semantic similar body parts of the other. As a result, the features of each of the
yellow points are directly affected by the features of the counterpart subject,
causing leakage. In both images, the crab and the frog have similar appearances.
In vanilla SD, both have a crab-like color and limbs with frog’s toe pads. In LG,
both have frog-like eyes and crab legs.

Notably, this tendency to rely on similar patches aids the model in denoising
the latent signal and is essential for achieving coherent images with properly
blended subjects and backgrounds. Nevertheless, it has the drawback of leaking
features between disjointed subjects. Therefore, completely disjointing the vi-
sual features during denoising [?], or naively pushing self-attention queries apart
through optimization [?], can lead to subpar results. Consequently, we introduce
the Bounded Attention mechanism to mitigate leakage and guide the latent sig-
nal towards subject separability, while avoiding detrimental artifacts.

It’s important to highlight that the leakage resulting from both cross- and
self-attention layers is intertwined and mutually reinforced. Therefore, address-
ing the leakage caused by only one of these layers is insufficient to prevent the
leakage in the generated images.

4.4 Levels of Similarity
In the two previous sections, our focus was primarily on subjects that share
semantic similarity. Building upon the observation that the UNet’s inner layers
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A kitten A puppy 64 × 64 32 × 32 16 × 16 A lizard A fruit 64 × 64 32 × 32 16 × 16

Fig. 5: We generate different subjects, and plot the first two principal components
of the cross-attention queries at different layers of the UNet, where each layer is of
different resolution. The high semantic similarity between the kitten and the puppy is
expressed by the proximity of their queries through all layers. Meanwhile, the lizard and
fruit share similar texture, and hence only their high-resolution queries are entangled.

dictate the subject’s semantics and shape, while the outer layers control its style
and appearance [?], we analyzed the inner UNet layers. However, leakage can also
occur prominently when generating subjects that share visual similarity rather
than semantic. We now turn to explore this scenario and demonstrate that, in
such cases, the leakage originates from the UNet’s outer layers.

In Figure 5, we visualize cross-attention queries at different decoder’s layers,
when generating the kitten, puppy, lizard, and fruit in isolation. As can be seen,
the queries of the kitten and the puppy are mixed across all UNet’s layers, align-
ing with the visual and semantic similarity between these animals. On the other
hand, the queries of the lizard and the fruit are overlapped only in the highest-
resolution layer, aligning with the lack of semantic similarity between them. A
closer look reveals that the lizard and the fruit share surprisingly similar tex-
tures, which explains the overlap of the queries in the highest-resolution layer.
As explained in the previous sections, this overlap causes leakage between the
two subjects, in this case, a visual rather than a semantic leakage (see Figure 2).

5 Bounded Attention

Our method takes as input n distinct textual subjects S = {si}ni=1 contained
within a global prompt y, along with their corresponding bounding boxes B =
{bi}ni=1. Our objective is to condition the generation process on y, S, and B,
while preserving the intended semantics of each subject, all without requiring
any training or fine-tuning.

Figure 6 illustrates an overview of our method. There, the input prompt y
is “A kitten and a puppy”, S = {“kitten”, “puppy”}, and the two corresponding
bounding boxes {b1, b2} are illustrated in the top left corner. Bounded Attention
operates in two modes: Bounded Guidance and Bounded Denoising. Specifically,
at the beginning of the denoising process, for t ∈ [T, Tguidance], we perform a
Bounded Guidance step followed by a Bounded Denoising step. In the guidance
step, we utilize the Bounded Guidance loss. This interval of timesteps constitutes
the optimization phase. Then, for t ∈ [Tguidance, 0], we apply only Bounded
Denoising steps. In both modes, we manipulate the model’s forward pass by
adopting an augmented weighting scheme in the attention layers, that safeguard
the flow of information between the queries and the keys:
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Fig. 6: Bounded Attention operates in two modes: guidance and denoising, each im-
posing strict constraints to bound the attention of each subject solely to itself and
possibly to the background, preventing any influence from other subjects’ features. In
guidance mode, a loss is minimized to encourage each subject’s attention to concentrate
within its corresponding bounding box, with other bounding boxes masked to prevent
artifacts. During the denoising step, we confine the attention of each subject solely to
its bounding box, along with the background in the self-attention. This strategy effec-
tively prevents feature leakage while maintaining the natural immersion of the subject
within the image. Attention maps of a specific key, marked with ⋆, are shown for each
mode: the cross-attention map displays the key corresponding to the “kitten” token,
and the self-attention map shows a key within the kitten’s target bounding box.

A
(l)
t = softmax

(
Q

(l)
t K

(l)
t

⊺
+Mt

)
, (2)

where l represents the layer index, t represents the diffusion timestep, and
Q

(l)
t ,K

(l)
t are the queries and keys of the l-th attention layer. Mt represents

time-specific masks composed of zeros and −∞ elements. We refer to A
(l)
t as

the Bounded Attention map. When indexing A
(l)
t , we use pixel coordinates x

for rows, and attention-type-specific context vectors c for columns. In locations
[x, c], where Mt [x, c] = −∞, it holds that A(l)

t [x, c] = 0. Therefore, these masks
prevent harmful information flow between pixels in self-attention layers, and be-
tween pixels and token embeddings in cross-attention layers.

5.1 Bounded Guidance
In Bounded Guidance, we backpropagate through the diffusion model to steer the
latent signal toward the desired layout, using Gradient Descent. Our Bounded
Guidance loss encourages the Bounded Attention map of each key corresponding
to subject si, to be within the bi bounding box. To this end, for each subject key
we consider the ratio between the attention within the corresponding bounding
box, to the entire Bounded Attention map (see Figure 6). Formally, we aggregate
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the following loss on the different subjects:

Li = 1−
∑

x∈bi,c∈Ci
Â [x, c]∑

x∈bi,c∈Ci
Â [x, c] + α

∑
x/∈bi,c∈Ci

Â [x, c]
, (3)

where i denotes the index of subject si, Â is the mean Bounded Attention map,
averaged across heads and layers, and α is a hyperparameter that magnifies
the significance of disregarding attention towards the background, as we explain
later. Similarly to the above, When indexing Â, pixel coordinates x represent
rows, and attention-type-specific context vectors c represent columns. We des-
ignate Ci as the set of all si-related context vectors, i.e., pixel coordinates in bi
for self-attention layers, and the token identifiers of si in cross-attention layers.
Additionally, for cross-attention layers, we include the first padding token [EoT]
in Ci to enhance layout alignment [?].

For each subject si, the mask Mt should block the influence of opposing
keys (tokens in sj and pixels in bj for j ̸= i), to avoid the artifacts illustrated
in Figure 3. This fosters that the queries of different subjects, including similar
ones, are not erroneously forced to be far apart. Utilizing this loss, our Bounded
Guidance step is defined as zopt

t = zt − β∇zt

∑
i L2

i .
Integrating this loss within the cross-attention layers encourages the local-

ization of each subject’s semantics within its bounding boxes [?]. However, as
cross-attention responses tend to peak around more typical patches associated
with the subject’s semantics (e.g., the face of a human, the legs of a crab, etc.), it
may lack control over the subject’s boundaries. By applying the loss within the
self-attention layers, we encourage each subject to establish its own boundaries
close to its bounding box, thereby discouraging subject fusion (see Figure 2).

In the computation of the loss, we also introduce a hyperparameter α to re-
inforce attention to the background. This adjustment aids in preventing subject
amalgamation, where a redundant subject is realized from different subject se-
mantics in the background. To preserve image quality, we limit the application
of this mode to an initial time interval [T, Tguidance], following similar works [?,?].

5.2 Bounded Denoising
In Bounded Denoising, we compute the model’s output and use it as the next
latent in the series. Here, the masks aim to reduce semantic leakage between
subjects, as detailed in Section 4, and to prevent unintended semantics from
leaking to the background. Unlike Bounded Guidance and typical attention-
based guidance approaches, Bounded Denoising can be applied throughout all
time steps to mitigate leaks in fine details, which emerge only in later stages [?].

However, coarse masking in later stages may degrade image quality and re-
sult in noticeable stitching. To address this, after the optimization phase, for
t ∈ [Tguidance, 0], we replace each bounding box with a fine segmentation mask
obtained by clustering the self-attention maps [?]. Since the subject outlines are
roughly determined in the initial time steps and evolve gradually thereafter [?],
we refine the masks periodically.

Notably, this mechanism also addresses imperfect alignments between sub-
jects and bounding boxes after the guidance phase, which are more common
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“a golden retriever and a german shepherd and a boston terrier
and an english bulldog and a border collie in a pool”
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Fig. 7: Our results with SDXL. See the supplemental for more examples.

when generating numerous subjects. Thus, employing this technique enhances
the robustness of our method to seed selection, ensuring proper semantics even
when subjects extend beyond their initial confines (see Figure 1,7). Compared
to methods that necessitate strict input masks yet remain susceptible to leak-
age [?,?,?], our method offers greater user control with simpler inputs and more
satisfactory outcomes.

Method Details. Further details on the adaptation of Bounded Attention to
the cross- and self-attention layers, along with a description of the subject mask
refinement process, are provided in the supplementary materials.

6 Experiments

In this section, we conduct both qualitative and quantitative experiments to
assess the effectiveness of our Bounded Attention method. We compare our
approach with three training-free baseline methods: Layout-guidance (LG) [?],
BoxDiff (BD) [?], and MultiDiffusion (MD) [?]. Additionally, we include compar-
isons with GLIGEN [?] and ReCo [?], which necessitate training. Since Attention-
refocusing (AR) [?] is based on GLIGEN, we categorize it as a trained method
for the purpose of our evaluation. For fairness, when comparing our method with
other methods, we use Stable Diffusion.

6.1 Qualitative Results

SDXL results. We begin our experiments by demonstrating the efficacy of
our method in challenging scenarios, particularly when tasked with generating
multiple semantically similar subjects using SDXL. As can be seen in Figure 7,
Vanilla SDXL fails to follow the prompt due to semantic leakage. It generates
inaccurate number of dogs and mixes the features of each breed. In comparison,
our approach adeptly generates each dog with its unique characteristics.
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“A gray kitten and a ginger kitten and black puppy in a yard.”

Bounded Attention Layout Guidance BoxDiff MultiDiffusion

Fig. 8: Comparison of the first six images generated from the seed 0.

Non-curated results. Next, we conduct a non-curated comparison with the
training-free baseline methods and present the results in Figure 8. We showcase
the initial six images sampled from seed 0 for each method. We anticipate that
in the absence of Bounded Attention, semantic leakage may freely blend subject
features, hindering the intended layout’s formation.

It is evident from the results that none of the competing methods is able to
consistently construct the input layout. Layout Guidance [?] frequently neglects
one of the subjects, and even when it generates three subjects, it struggles to
avoid leakage, resulting in puppies with kitten-like features or incorrect color as-
signments. BoxDiff [?] often generates the correct number of subjects but suffers
from artifacts in the form of blobs. Similar to Layout Guidance, it encounters
difficulties in properly constructing the puppy. Surprisingly, even MultiDiffu-
sion [?], which generates the subjects separately, faces challenges in generating
them all, with some disappearing or merging together in its bootstrapping phase.

In contrast, our method consistently outperforms these approaches, produc-
ing three subjects that align with the both prompt and layout in all six images.

Comparisons with baselines. We present a qualitative comparison in Fig-
ure 9. All competing methods, including those trained specifically for the layout-
to-image task, exhibit significant visual and semantic leakage. The training-free
methods perform the worst: MultiDiffusion produces disharmonious, low-quality
images, while optimization-based methods often result in object fusion, combin-
ing different semantics without adhering to the layout.

The training-based approaches closely follow the layout but fail to convey
the correct semantics. In the first row, they neglect the corduroy jacket, leaking
the denim texture into the other jacket, or even fusing them together. In the
second row, the elephant’s features leak into the rhino.

In comparison, our method generates images that align with the input layout
and prompt, ensuring each subject retains its unique attributes, semantics, and
appearance.
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“A denim jacket and a corduroy jacket and a leather handbag in a closet.”

“A big red elephant and a far away rhino in a jungle.”

BA (ours) LG [?] BD [?] MD [?] GLIGEN [?] AR [?] ReCo [?]

Fig. 9: Qualitative comparison of our method with baseline methods: Above each
row, we display the input prompt, where each subject’s color matches the color of its
corresponding bounding box. We compare with both training-free methods (2nd-4th
columns) and trained models (5th-7th columns). See supplemental for more results.

6.2 Quantitative Results

Method Counting Spatial

Precision Recall F1 Accuracy

Stable Diffusion [?] 0.74 0.78 0.73 0.19
Layout-guidance [?] 0.72 0.78 0.72 0.35
BoxDiff [?] 0.81 0.78 0.76 0.28
MultiDiffusion [?] 0.70 0.55 0.57 0.15
Ours 0.81 0.91 0.82 0.43

Table 1: Evaluation on the DrawBench dataset.

We evaluate our method’s ef-
fectiveness using the Draw-
Bench dataset [?], known for
its challenging prompts de-
signed to test a model’s abil-
ity to compose multiple sub-
jects with specific quanti-
ties and relations. We use
the evaluation procedure from
previous work [?, ?]. Our re-
sults, alongside those of other training-free methods, are summarized in Table 1.
Unlike other approaches that do not account for semantic leakage, our method
demonstrates notable improvements in both the counting and the spatial cate-
gories. Notably, other methods struggle to surpass the counting recall rates of
vanilla SD, highlighting the effectiveness of Bounded Attention in generating
multiple subjects.

We further conduct a quantitative comparison of semantic leakage in training-
free methods through a user study. Further details are in the supplemental.

6.3 Ablation Studies
To assess the significance of each component, we conduct an ablation study where
we systematically vary our method’s configurations by omitting one component
in each setting. We show the results in Figure 10.

Guidance is crucial for aligning the latent signal with the intended layout.
Neglecting it can lead to subject generation in the background, as demonstrated
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“A red lizard and a turtle on the grass.”

w/o G w/o BG w/o BD w/o MR Full Method

Fig. 10: Qualitative ablation. We ablate our method by skipping the guidance step
(G), performing guidance without Bounded Guidance (BG), not applying Bounded De-
noising (BD), and not performing Mask Refinement (MR). We show zoomed-in images
of the two rightmost configurations. More examples can be found in the supplemental.

by the emergence of a turtle-lizard hybrid. However, attempting to guide the
latent signal without our Bounded Guidance mechanism may cause distortions
in subject appearances, such as the turtle’s neck growing out of its leg and
inconsistent artifacts appearing on the lizard’s head and back.

Meanwhile, forgoing Bounded Denoising results in noticeable semantic leak-
age, with the lizard being replaced by a turtle, and the “red” attribute erroneously
leaking to the wrong subject.

Lastly, incorporating mask refinement in the later stages prevents fine-details
from leaking. Without mask refinement, the lizard exhibits shell-like contours on
its back.

7 Conclusions
We introduce Bounded Attention, a technique designed to regulate the accurate
generation of multiple subjects within an image. This approach encourages each
subject to “be yourself”, emphasizing the importance of preserving individuality
and uniqueness without being excessively influenced by other subjects present
in the image. Our development of the Bounded Attention technique stemmed
from an in-depth analysis of the root causes behind the misalignment observed
between the provided prompt and the resulting generated image. Our investi-
gation revealed that this misalignment primarily arises due to semantic leakage
among the generated subjects, a phenomenon observed in both the cross and
self-attention layers.

While Bounded Attention effectively mitigates a significant portion of seman-
tic leakage, it does not entirely eliminate it. Our findings demonstrate a marked
improvement in performance compared to other methods that seek to achieve
semantic alignment. However, residual leakage persists, which we attribute to
imperfect optimization during the guidance mode and inaccurate segmentation
of the subject prior to the second phase.

While Bounded Attention excels in generating multiple subjects with plau-
sible semantic alignment, its performance may vary across different layouts.
Achieving success with Bounded Attention hinges on a strong match between
the seed and the layout. Moving forward, we aim to explore methods for gen-
erating well-suited seeds tailored to specific layouts. One potential avenue is to
introduce noise to the layout image, thereby creating a seed that aligns more
closely with the desired outcomes.
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