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Abstract. Recently, numerous tensor singular value decomposition (t-
SVD)-based tensor recovery methods have shown promise in processing
visual data, such as color images and videos. However, these methods
often suffer from severe performance degradation when confronted with
tensor data exhibiting non-smooth changes. It has been commonly ob-
served in real-world scenarios but ignored by the traditional t-SVD-based
methods. In this work, we introduce a novel tensor recovery model with
a learnable tensor nuclear norm to address such challenge. We develop a
new optimization algorithm named the Alternating Proximal Multiplier
Method (APMM) to iteratively solve the proposed tensor completion
model. Theoretical analysis demonstrates the convergence of the proposed
APMM to the Karush–Kuhn–Tucker (KKT) point of the optimization
problem. In addition, we propose a multi-objective tensor recovery frame-
work based on APMM to efficiently explore the correlations of tensor
data across its various dimensions, providing a new perspective on ex-
tending the t-SVD-based method to higher-order tensor cases. Numerical
experiments demonstrated the effectiveness of the proposed method in
tensor completion.

Keywords: Tensor Completion · Tensor SVD · Multi-Objective Opti-
mization

1 Introduction

In recent years, lots of tensor methods have been proposed to better analyze the
low-rankness in massive high-dimensional tensor data, including color images,
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(a) Comparison of DFT-based
t-SVD on yale dataset in or-
dered and random shuffled.

(b) Comparison of DCT-based
t-SVD on yale dataset in or-
dered and random shuffled. (c) Ordered images.

(d) Disordered images for clas-
sification task.

(e) Video with rapidly chang-
ing frames

(f) Image sequence with differ-
ent scenes.

Fig. 1: Illustration to challenges of t-SVD-based methods in real world scenarios.

hyperspectral images, and videos [9,15–18,26], as the traditional matrix methods
[1–4, 22, 24] fail on handling the tensor data. Depending on different adopted
low-rank prior, these tensor methods can be categorized as: (1) CP (Canonical
Polyadic) Decomposition-based methods [7,8,11], (2) Tucker Decomposition-based
methods [6, 14,21], and (3) t-SVD-based methods [16,17,20,28].

Recently, the t-SVD-based methods have gained increasing attention and
achieved great success in the applications of visual data processing, such as data
denoising [15], image and video inpainting [16,17, 26], and background modeling
and initialization [10, 15]. In these t-SVD-based methods, a fixed invertible
transform, such as Discrete Fourier Transform (DFT) [16] and Discrete Cosine
Transform (DCT) [17], is applied to a tensor data along its certain dimension.
The low-rankness prior of each frontal slice of the transformed tensor has been
used to explore global low-rankness of tensor data. However, the approach of
performing invertible transform and analyzing the low rankness along a specific
dimension of tensor data poses the following challenges, namely: (i) non-smooth
challenge, and (ii) the lack of an effective way to generalize t-SVD-based methods
directly to higher-order tensor cases.

Regarding the non-smooth challenge, Fig. 1 illustrates two different real-world
scenarios: disordered images sequence (Fig. 1 (a)-(d)) and tensor data with non-
smooth changes (Fig. 1 (e)-(f)). These commonly encountered scenarios pose a
significant challenge for t-SVD-based tensor analysis methods. Taken an example
illustrated in Fig. 1 (a)-(d), the disordered images sequence often affect the tensor
recovery performance significantly. This phenomenon is referred as to tensor
slices permutation variability (SPV) [27], i.e., interchanging the frontal slice of
the tensor will affect the t-SVD results. Since the sequence of samples is often
disordered prior to classification, this phenomenon is frequently observed within
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classification tasks. Although Zheng et al. have proposed an effective solution
for handling such issue by solving a Minimum Hamiltonian circle problem for
the case of DFT [27], a general solution is still lacking. In addition, the recovery
performance of the t-SVD-based methods is also susceptible to non-smooth of
the tensor data itself [12]. These data include videos with rapidly changing
content between frames and tensor data obtained by concatenating images with
different scenes as illustrated in Fig. 1 (e) and (f), respectively. These non-smooth
challenges arise because a fixed invertible transform, such as DFT or DCT, is
applied to the tensor along certain dimensions, making the t-SVD sensitive to
disorder and non-smooth changes in tensor slices.

To address the mentioned second challenge, a common solution for handling
high-order tensors is to utilize tensor unfolding operators [20,28]. For example,
in [28], the Weighted Sum of Tensor Nuclear Norm of all mode-(k1, k2) unfolding
tensors (WSTNN) has been proposed to investigate correlations along different
modes of higher order tensors. However, the consideration of weighted summation
in WSTNN results in a challenging setting requiring h(h−1)/2 weight parameters.
Therefore, there is an urgent need for more effective methods to address this
issue.

This study aims to address the above two challenges, and our contributions
are as follows.

– We proposed a new tensor recovery model with a learnable tensor nuclear
norm by introducing a set of unitary matrices to effectively address SPV
and non-smoothness issues in the traditional t-SVD-based methods, thereby
allowing our model to harness the inherent data characteristics.

– We presented a novel optimization algorithm named the Alternating Proximal
Multiplier Method (APMM) to solve the proposed tensor recovery model
effectively, along with a corresponding convergence analysis in theory.

– We are the first in the literature to propose a multi-objective tensor recovery
with learned tensor nuclear norms for effectively exploring the low-rankness
of tensor data across its various dimensions, without the need for introducing
numerous tensor variables and weights as in traditional weighted sum-based
methods [25, 28]. The experimental results demonstrates the superior perfor-
mance in tensor completion than other methods. For instance, the proposed
framework has achieved a 3.5 dB improvement in color vodeo inpaiting!

2 Multi-Objective Tensor Recovery with Learnable Tensor
Nuclear Norms

Before introducing our problem and the proposed methods, we summarize nota-
tions in Table 1 that will be used later.
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Table 1: Notations

Notations Descriptions Notations Descriptions

a, b, c, · · · scalars a, b, c, · · · vectors

A, B, C, · · · matrices A, B, C, · · · tensors

A, B, C, · · · sets A, B, C, · · · operators

[1 : n] {1, 2, · · · , n} AT transpose of A

I identity tensor 0 null tensor

[A]i1,i2,··· ,ih (i1, i2, · · · , ih)-th element of A ∥A∥0 the number of non-zero elements of A

∥A∥1 ∥A∥1 =
∑

i1,i2,··· ,ih
|[A]i1,i2,··· ,ih | ATk1,··· ,kh rotation of A ∈ RI1×···×Ih such that ATk1,··· ,kh ∈ RIk1

×···×Ikh

[ATk1,··· ,kh ]:,:,ik3
,··· ,ikh

slice along the (k1, k2)-th mode A(k) (or [A](n)) Mode-n Unfolding of A

×n Mode-n product Ac complementary set of A

2.1 Tensor Completion Problem

Considering tensor data M ∈ RI1×I2×···×Ih may with missing elements, [17, 20]
propose the following t-SVD-based tensor completion model:

min
X

rank[k1,k2](X ) s.t. ΨI(M) = ΨI(X ), (1)

where ΨI is a linear project operator on the support set I such that

[ΨI(M)]i1,i2,··· ,ih =

{
[M]i1,i2,··· ,ih , if (i1, i2, · · · , ih) ∈ I;
0, if (i1, i2, · · · , ih) /∈ I,

and ik ∈ [1 : Ik] for k = 1, 2, · · · , h. The tensor rank function in (1) operates on
the assumption that an h-order tensor data M ∈ RI1×I2×···×Ih in the real world
can be decomposed as

M = Z ×k3
Û

T

k3
· · · ×kh

Û
T

kh
, (2)

where {k3, k4, · · · , kh} ⊂ [1 : h], {Ûkn}hn=3 are a set of given invertible transforms,
and

rank[k1,k2](M) = max
ikn∈[1:Ikn ] for n=3,4,··· ,h

rank
(
[ZTk1,··· ,kh ]:,:,ik3

,··· ,ikh

)
<< min(Ik1

, Ik2
) (3)

for certain (k1, k2) satisfying 1 ≤ k1 < k2 ≤ h. If taken {Ûkn
}hn=3 as Discrete

Fourier Matrices, rank[k1,k2](M) is referred as to tensor tubal rank of M [16].

2.2 The Proposed Tensor Completion with A Learnable Tensor
Rank Function

From the definition of rank[k1,k2](M), we can see that it aims to examine the
slice-wise tensor rank along the (k1, k2)-th mode of transformed data Z. It
allows (1) to investigate the low-rankness of different features in tensor data
corresponding to different frequencies separately and jointly.



Handling The Non-Smooth Challenge in Tensor SVD 5

However, when M exhibits harsh changes caused by disordered tensor slices
along a certain mode kn, all information in M tends to collapse into the high-
frequency slices in Z. To handle such situation, we introduce a learnable permu-
tation matrix P ∈ RIkn×Ikn to (2):

M×kn
P = Z ×k3

Û
T

k3
· · · ×kn

(Ûkn
P )T ×kn+1

· · · ×kh
Û

T

kh
,

and therefore we can get the following model:

min
X ,P kn

rank[k1,k2](X ×kn
P kn

)

s.t. ΨI(M) = ΨI(X ),

Ikn∑
i=1

[P kn
]i,j = 1,

Ikn∑
j=1

[P kn
]i,j = 1 for [P kn

]i,j ∈ {0, 1}. (4)

This incorporation is aimed at addressing the slice permutation property in tensor
completion methods, thus facilitating a more effective exploration of the low-rank
property in M.

Unfortunately, solving (4) is challenging due to the constraints of
∑Ikn

i=1[P kn ]i,j =

1 and
∑Ikn

j=1[P kn
]i,j = 1 for [P kn

]i,j ∈ {0, 1}. Therefore, we opt to use a set of
learnable unitary matrices {Ukn

}hn=s+1 instead, proposing the following tensor
completion model for given {ks+1, ks+2, · · · , kh}:

min
X ,Ukn (n=s+1,··· ,h)

rank[k1,k2](X ×ks+1
Uks+1

· · · ×kh
Ukh

)

s.t. ΨI(M) = ΨI(X ), UT
kn
Ukn = I(n = s+ 1, · · · , h), (5)

where X is a low-rank estimation of the true tensor data M. Besides simplifying
the optimization process of (4), the introduction of the learnable unitary matrices
enables the model to extract features for better studying the low-rankness in
tensor data and to handle other scenarios where the initially provided transforms
{Ûkn

}hn=3 are inadequate, such as videos with irregularly changing content and
image sequences with different scenes. Hence, we introduce our learnable tensor
rank as

rank[k1,k2],Ũ (X ) = rank[k1,k2](Ũ(X )),

where Ũ(X ) = X ×ks+1
Uks+1

· · · ×kh
Ukh

.

2.3 Approximation to The Proposed Tensor Completion by Using A
Learnable Tensor Nuclear Norm (TC-SL)

Since the function rank[k1,k2],Ũ (·) is discrete, it often leads to the NP-hard problem.
From the result given in [16,17], we know that, when h = 3 and Û3 is orthogonal,
∥ · ∥[1,2]∗ is the tightest convex envelope of rank[1,2](·) on the set {A|∥A∥[1,2]2 ≤ 1},
where the definitions of ∥ · ∥[k1,k2]

2 and ∥ · ∥[k1,k2]
∗ are given in Definition 1. This

conclusion can be easily extended to our case, and we obtain the Property 1.
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Definition 1. For an h-order tensor A ∈ RI1×I2×···×Ih , ∥A∥[k1,k2]
∗ and ∥A∥[k1,k2]

2

are defined as

∥A∥[k1,k2]
∗ =

∑
ik3

,ik4
,··· ,ikh

∥[ATk1,··· ,kh ×k3 Ûk3 · · · ×kh
Ûkh

]:,:,ik3
,··· ,ikh

∥∗

and

∥A∥[k1,k2]
2 = max

ik3
,ik4

,··· ,ikh

∥[ATk1,··· ,kh ×k3
Ûk3

· · · ×kh
Ûkh

]:,:,ik3
,··· ,ikh

∥2,

respectively.

Property 1. For an h-order tensor A ∈ RI1×I2×···×Ih , let us define ∥A∥[k1,k2]

∗,Ũ and

∥A∥[k1,k2]

2,Ũ are defined as ∥A∥[k1,k2]

∗,Ũ = ∥Ũ(A)∥[k1,k2]
∗ and ∥A∥[k1,k2]

2,Ũ = ∥Ũ(A)∥[k1,k2]
2 ,

respectively.∥ · ∥[k1,k2]

∗,Ũ is the dual norm of tensor ∥ · ∥[k1,k2]

2,Ũ norm, and ∥ · ∥[k1,k2]

∗,Ũ

is the tightest convex envelope of rank[k1,k2],Ũ (·) on the set {A|∥A∥[k1,k2]

2,Ũ ≤ 1}.

Therefore, we derive an approximation to the proposed model (6) by utilizing
a learnable tensor nuclear norm based on the prior assumption of slice-wise
low-rankness in the transformed data (TC-SL):

min
X ,Ũ

∥X∥[k1,k2]

∗,Ũ s.t. ΨI(M) = ΨI(X ). (6)

Let Û be the invertible transform operator learned by (6). The exactly recovery
of TC-SL with given Û is guaranteed from the current studies in the exactly
recovery of the t-SVD-based tensor completion [16,17].

2.4 The Proposed Multi-Objective Tensor Completion to Learn The
Cross-Dimensional Low-Rankness

From (6), we observe that the definition of TC-SL depends on the choice of k1
and k2, and it considers different kinds of low-rankness in the tensor data by
adjusting (k1, k2). However, considering only one mode may result in the loss of
correlation information across the remaining modes. To address this issue, we
give the following multi-objective model with learnable tensor nuclear norms for
tensor completion (MOTC):

min
X ,Ũ(k1,k2)

[
∥X∥[k1,k2]

∗,Ũ(k1,k2)

]
1≤k1<k2≤h

s.t. ΨI(M) = ΨI(X ), (7)

where Ũ(k1,k2)(X ) = X×ks+1
U

(k1,k2)
ks+1

· · ·×kh
U

(k1,k2)
kh

and (U
(k1,k2)
kn

)TU
(k1,k2)
kn

= I
for n = 1 + s, · · · , h and 1 ≤ k1 < k2 ≤ h. In MOTC, the multiple objective
functions ∥X∥[k1,k2]

∗,Ũ(k1,k2)
(1 ≤ k1 < k2 ≤ h) are utilized to examine the low-rankness

of tensor data from its various dimensions.
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3 Optimization Algorithm

In this section, we provide a detailed discussion for the optimizing (6) and (7).

3.1 Alternating Proximal Multiplier Method (APMM) for TC-SL

To solve the problem (6), we introduce auxiliary variables E ∈ E = {E|ΨI(E) = 0}
and Z such that X = Z ×ks+1

UT
ks+1

· · · ×kh
UT

kh
. Therefore, we turn to solve

the following equivalence problem:

min
Z,UT

kn
Ukn=I(n=s+1,··· ,h)

∥Z∥[k1,k2]
∗ s.t. ΨI(M) = Z×ks+1

UT
ks+1

· · ·×kh
UT

kh
+E.

(8)
The Augmented Lagrangian function of (8) is formulated as

L(Z, {Ukn
}hn=s+1,E,Y , µ) = ∥Z∥[k1,k2]

∗ + ⟨ΨI(M)−Z ×ks+1
UT

ks+1
· · · ×kh

UT
kh

− E,Y⟩+ µ

2
∥ΨI(M)−Z ×ks+1 U

T
ks+1

· · · ×kh
UT

kh
− E∥2F , (9)

where Y is Lagrange multiplier, and µ is a positive scalar. We solve (8) iteratively
by combining the proximal algorithm with the Alternating Direction Method of
Multipliers (APMM) that is given in the Algorithm 1. We detail the solutions
for solving Z(t+1), U (t+1)

kn
, and E(t+1) as follows.

• Calculate Z(t+1):

Z(t+1) = argmin
Z

1

2
∥
µ(t)P̂ ×ks+1

U
(t)
ks+1

· · · ×kh
U

(t)
kh

+ η(t)Z(t)

µ(t) + η(t)
−Z∥2F

+
1

µ(t) + η(t)
∥Z∥[k1,k2]

∗ ,

where P̂ = ΨI(M)− E(t) +
1

µ(t)
Y(t). It can be solved by the tensor singular

value thresholding operation with parameter
1

µ(t) + η(t)
[15].

• Calculate U
(t+1)
kn

: Let A = Z(t+1) ×kh
U

(t)T
kh

×kh−1 · · · ×kn+1 U
(t)T
kn+1 and

B = P̂ ×s+1 U
(t+1)
ks+1

· · · ×kn−1 U
(t+1)
kn−1, and we have

U
(t+1)
kn

= argmin
UT

kn
Ukn=I

∥Ukn [
√
µ(t)B(kn),

√
η(t)I]− [

√
µ(t)A(kn),

√
η(t)U

(t)
kn
]∥2F .

The optimal solution U
(t+1)
kn

can be gievn by U
(t+1)
kn

= UV T from [29],
where U and V can be obtained by SVD of µ(t)A(kn)B

T
(kn) + η(t)U

(t)
kn

:
µ(t)A(kn)B

T
(kn) + η(t)U

(t)
kn

= UΣV T .
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Algorithm 1: APMM-based Iterative Solver to (8)

Input: ΨI(M), {U (0)
kn

}hn=s+1, {Û
(0)

kn
}hn=3, E(0), Y(0), t = 0, µ(0), η(0),

ρµ, ρη > 1, µ̄, and η̄.
Output: Z(t+1) ,{U (t+1)

kn
}hn=s+1, and X (t+1).

1. While not converge do

2. Z(t+1) = argminZ L(Z, {U (t)
kn

}hn=s+1,E(t),Y(t), µ(t)) +
η(t)

2
∥Z(t) −Z∥2F ;

3. Calculate U
(t+1)
kn

= argminUT
kn

Ukn=I L(Z
(t+1), {U (t+1)

kn
}n−1
n=s+1,

Ukn , {U
(t)
kn

}hn=n+1,E(t),Y(t), µ(t)) +
η(t)

2
∥U (t)

kn
−Ukn∥2F , (s+ 1 ≤ n0 ≤ h);

4. Calculate X (t+1) by X (t+1) = Z(t+1) ×kh U
(t+1)T
kh

×kh−1 · · · ×ks+1 U
(t+1)T
ks+1

;
5.

E(t+1) = argminE∈E L(Z(t+1), {U (t+1)
kn

}hn=s+1,E,Y(t), µ(t)) +
η(t)

2
∥E − E(t)∥2F ;

6. Calculate Y(t+1) by Y(t+1) = µ(t)(ΨI(M)−X (t+1) − E(t+1)) +Y(t);
7. Calculate µ(t+1) = min(µ̄, ρµµ

(t)) and η(t+1) = min(η̄, ρηη
(t)), respectively;

8. Check the convergence condition: ∥Z(t+1) −Z(t)∥∞ < ε,
∥X (t+1) −X (t)∥∞ < ε,

∥U (t+1)
kn

−U
(t)
kn

∥∞ < ε for n = s+ 1, s+ 2, · · · , h;
9. t=t+1.
10. end while

• Calculate E(t+1):

E(t+1) =argmin
E∈E

µ(t)

2
∥ΨI(M)−X (t+1) − E +

1

µ(t)
Y(t)∥2F +

η(t)

2
∥E − E(t)∥2F

=ΨIc(
1

µ(t) + η(t)
(µ(t)(ΨI(M)−X (t+1) +

1

µ(t)
Y(t)) + η(t)E(t))).

Computational Complexity The most time-consuming steps in the algorithm
1 are the computations of Z, and Ukn . Since the computational complexity of
n-mode product of P̂ ∈ RI1×I2×···×Ih and Un ∈ RIn×In is O(InI1I2 · · · Ih), the
complexity of the computation of Z is O(hI(1)I1I2 · · · Ih), where I(1) = maxk(Ik).
Besides, the complexity of the computation of Ukn

is O((h− 1)I(1)I1I2 · · · Ih +
I2kI1I2 · · · Ih), therefore the overall computational complexity of each iteration of
Algorithm 1 is O

(
(h− s)(h+ I(1) − 1)I(1)I1I2 · · · Ih + hI(1)I1I2 · · · Ih

)
.

Convergence Analysis Although the optimization problem (8) is non-convex
because of the constraints UT

kn
Ukn

= I(n = s+1, s+2, · · · , h) and the global op-
timality for (8) is hardly guaranteed, we can still prove some excellent convergence
properties of the Algorithm 1, as stated in the following theorem.
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Theorem 1. For the sequence {[Z(t), {U (t)
kn
}hn=s+1,E

(t),Y(t), µ(t)]} generated
by the proposed algorithm 1, we have the following properties if {Y(t)} is bounded,∑∞

t=1(µ
(t))−2µ(t+1) < +∞ and lim

n−→∞
µ(n)

∞∑
t=n

(η(t))−1/2 = 0.

(i) lim
t−→∞

ΨI(M) − X (t) − E(t) = 0, where X (t) = Z(t) ×kh
(U

(t)
kh
)T · · · ×ks+1

(U
(t)
ks+1

)T .

(ii) {[Z(t), {U (t)
kn
}hn=s+1},X

(t),E(t)]} is bounded.

(iii)
∑∞

t=1 η
(t)∥[Z(t), {U (t)

kn
}hn=s+1},E

(t)]− [Z(t+1), {U (t+1)
kn

}hn=s+1},E
(t+1)]∥2F is

convergent. Thus, we have

∥[Z(t), {U (t)
kn
}hn=s+1},E

(t)]− [Z(t+1), {U (t+1)
kn

}hn=s+1},E
(t+1)]∥2F ≤ O(

1

η(t)
).

(iv) lim
t−→∞

∥Y(t+1) −Y(t)∥F = 0.

(v) Let [Z∗, {U∗
kn
}hn=s+1,E

∗,Y∗] be any limit point of {[Z(t), {U (t)
kn
}hn=s+1,E

(t),

Y(t)]}. Then, [Z∗, {U∗
kn
}hn=s+1,E

∗,Y∗] is a KKT point to (8).

Please refer to the supplementary material of this paper for the proof of
the Theorem 1. Theorem 1 shows that, if {Y(t)} is bounded, the sequence
[Z(t), {U (t)

kn
}hn=s+1,E

(t)] generated by the proposed algorithm 1 is Cauchy con-

vergent, with a convergence rate of at least O(
1

η(t)
). Moreover, any accumulation

point of the sequence converges to the KKT point of (8).

3.2 APMM-based Heuristic Method for Solving MOTC

To solve MOTC, we iteratively update U (k1,k2)
kn

(n = 1+s, · · · , h, 1 ≤ k1 < k2 ≤ h)
and X in (7) by solving the following optimization problems:

Û(k1,k2) = argmin
Ũ(k1,k2)

∥X̂∥[k1,k2]

∗,Ũ(k1,k2)
(10)

and
X̂ = argmin

X

[
∥X∥(k1,k2)

∗,Û(k1,k2)

]
1≤k1<k2≤h

s.t. ΨI(M) = ΨI(X ), (11)

respectively. We use the proposed APMM for solving (10), and the non-dominated
sorting genetic algorithm (NSGA-II) [5] presented in Algorithm 2 for solving (11).
These two steps are used for the learning of the tensor nuclear norm functions
and the low rank estimation, respectively. It is worth noting that both updating
the Û(k1,k2) for each (k1, k2) and evaluating the individuals in Algorithm 2 can
be proceed in parallel, which can accelerate the whole optimization for MOTC.
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Algorithm 2: NSGA-II-based framework for solving (11)

Input: ΨI(M), {Û(k1,k2)}1≤k1<k2≤h, IterMax, and t = 0.
Output: X̂
1. Initialize: population P(0)

2. Evaluate
[
∥X∥[k1,k2]

∗,Û(k1,k2)

]
1≤k1<k2≤h

for each X ∈ P(t);

3. Sorting individuals by their non-domination ranks and crowding distance,
and obtaining the first front F1;

4. Selecting parents and applying crossover and mutation to create offspring;
5. Obtaining the next generation by truncating the sorted individuals

(including offspring population) and update the first front F1;
6. t = t+ 1;
7. Repeat steps 2-6 until t = IterMax;
8. X̂ = average sum of the individuals that belong to F1.

4 Experimental Results

In this section, we compared the TC-SL and MOTC6 with several state-of-the-
art methods, including TNN-DCT [17], TNN-DFT [16], SNN [14], KBR [23],
WSTNN [28], and HTNN-DCT [20], in the context of color video inpainting and
images inpainting. Below are brief explanations for all eight methods:

– TNN-DCT and TNN-DCT are three-order tensor completion methods;
– HTNN-DCT and TC-SL are higher-order tensor completion methods, but

they consider low-rankness along only one dimension of the tensor;
– SNN, KBR, WSTNN, and MOTC are higher-order tensor completion

methods that have considered low-rankness across various dimensions of the
tensor. SNN and KBR are Tucker decomposition-based methods.

For the three-order tensor methods, the data tensors were constructed by the
mode-(1,2) unfolding tensor, i.e., [ΨI(M)](1,2) ∈ RI1×I2×I3I4 . Here, I1 × I2
represents the size of each image (frame), I3 = 3 is RGB channel number
of each image, and I4 is the number of images (frames). For a fair comparison, we
implemented the compared methods using the code provided by the respective
authors in our experimental environment.

We used the Peak Signal-To-Noise Ratio (PSNR) to evaluate the performance
of different methods in tensor completion. To ensure the reliability of our ex-
periments, we conducted each experiment five times and reported the average
results as the final outcomes. The best results for each case are shown in bold.
All experiments were implemented using Matlab R2022b.

4.1 Images Inpainting

Image Sequences With Various Scenes In this subsection, we evaluated
different tensor completion methods on Berkeley Segmentation Dataset (BSD)7

6 The code of our method is available at https://github.com/jzheng20/MOTC.git.
7 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

https://github.com/jzheng20/MOTC.git
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Table 2: Comparing the PSNR results by different methods on BSD at different
sampling rates p.

Sampling Rate p TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL MOTC
0.3 23.25 23.21 21.86 25.45 25.75 25.21 26.32 27.53
0.5 27.25 27.20 25.50 31.57 31.07 30.72 31.55 33.25
0.7 32.04 31.95 29.84 38.81 37.11 38.22 38.33 39.97

Average 27.51 27.45 25.73 31.94 31.31 31.38 32.06 33.58

WSTNNTNN-DFTTNN-DCT SNN KBR HTNN-DCT MOTCTC-SLInput Ground-truth

Fig. 2: Examples of images inpainting by different methods on the BSD dataset with
sampling rate p = 0.3. Best viewed in ×2 sized color pdf file.

[19], which includes color images with different scenes. Following the experiment
setting in [15], we randomly selected 50 color images for testing.

Table 2 presents the PSNR values achieved by each method. From the table,
most of the higher tensor methods (KBR, WSTNN, HTNN-DCT, TC-SL, and
MOTC) consistently outperform the three-order tensor methods (TNN-DCT and
TNN-DFT) across all cases. It indicates that high-order tensor methods are more
effective in accurately capturing the low-rank structure in four-order tensor data.
Additionally, both TC-SL and MOTC, the proposed methods, exhibit the best
performance across all cases, surpassing other methods by approximately 1.5 dB
for p ∈ {0.3, 0.5}. Visual examples of images inpainting by different methods
at a sampling rate p = 0.3 are presented in Fig. 2. As observed in the figure,
the visual results obtained from WSTNN, TC-SL, and MOTC demonstrate
superior reconstruction quality and preservation of finer details compared to
other methods.

Image Sequences With Random Shuffling In this subsection, we evaluated
different tensor completion methods using four image classification datasets:
CIFAR10 8 [13], CIFAR100 [13], Labeled Faces in the Wild (LFW)9, and Georgia
Tech Face database (GTF)10. Due to constraints in computing resources, we
8 https://www.cs.toronto.edu/~kriz/cifar.html
9 http://vis-www.cs.umass.edu/lfw/

10 http://www.anefian.com/research/face_reco.htm

https://www.cs.toronto.edu/~kriz/cifar.html
http://vis-www.cs.umass.edu/lfw/
http://www.anefian.com/research/face_reco.htm
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Fig. 3: Examples of images inpainting by different methods on three dataset with
sampling rate p = 0.3. Best viewed in ×2 sized color pdf file.

Table 3: Comparing the PSNR results by different methods at sampling rates p = 0.3.

Data TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL MOTC
CIFAR10 19.59 19.54 20.71 24.08 25.02 22.12 24.63 26.46
CIFAR100 19.39 19.31 20.70 24.15 24.76 21.71 24.50 26.16

LFW 27.49 27.45 22.48 33.47 34.33 30.15 31.57 35.67
GTF 25.46 25.41 23.54 25.83 26.66 22.11 32.10 33.56

Average 22.98 22.92 21.85 26.88 27.69 24.02 28.20 30.46

utilized subsets of the datasets. Specifically, for CIFAR10 and CIFAR100, we
sampled the first 50 images and 5 images for each category, respectively, resulting
in two subsets of 500 images. For LFW, we selected the first 50 classes, and for
GTF, we selected the first five classes. Random shuffling was applied to the image
sequences before testing. All PSNR results are provided in Table 3.

From the results, both proposed methods (TC-SL and MOTC) achieved
the best performance on average. Upon comparing HTNN-DCT and TC-SL,
it is observed that the average performance of the proposed TC-SL surpasses
HTNN-DCT by more than 4 dB. It indicates that our method, incorporating a
learnable tensor norm, effectively handles SPV in t-SVD-based methods. Among
all methods, MOTC achieves the best performance across all cases. Particularly
noteworthy is the average PSNR result obtained by MOTC, outperforming other
methods by more than 2.5 dB on average. Additionally, as observed in Fig. 3,
the visual results obtained from MOTC exhibit smoother transitions and better
restoration of intricate textures. All results highlights the effectiveness of the
proposed framework.

Results Analysis These results suggest that the proposed MOTC is able to
exploit the correlations of tensor data along different dimensions effectively and
can more accurately exploit the low-rank structure of four-order tensor data (the
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Fig. 4: Comparing PSNR by different methods on the 50 video segments at a sampling
rate p = 0.3.
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Table 4: Comparing the average PSNR by different methods on the 50 video segments
at a sampling rate p = 0.3.

Video TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL MOTC
Average 30.01 29.91 28.59 33.76 35.28 27.71 36.82 38.74

one with non-continue change) than other methods. The superiority of TC-SL
and MOTC over other methods can be attributed to the introduction of both
the given transforms from smooth priors and learnable unitary matrices, which
enable it to better handle the non-smooth in tensor data caused by random
shuffling image sequences (such as CIFAR10, CIFAR100, LFW, and GTF ) or the
concatenation of different scene images (such as BSD) and capture the underlying
low-rank structures in the tensor data more effectively.

4.2 Color Video Inpainting for Video with Rapidly Changing Frames

We evaluated all tensor completion methods on the randomly selected 50 color
video segments with the rapidly changing frames from the ‘run’ category of the
HMDB51 11.
11 https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

WSTNNTNN-DFTTNN-DCT SNN KBR HTNN-DCT TC-SL Ground-truthInput MOTC

Fig. 5: Examples of video inpainting by different methods on HMDB51 dataset for
case of p = 0.3. Best viewed in ×2 sized color pdf file.
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We presented the PSNR values of all methods on the 50 video segments in
Fig. 4 and report their average results in Table 4. The results show a significant
improvement achieved by our methods (TC-SL and MOTC) for color video
inpainting. For some videos (such as the 24-th, 34-th, 42-th, 43-th), as shown
in the Fig. 4, MOTC even achieved a 5-10 dB improvement in PSNR value!
Furthermore, the average results obtained by MOTC outperform the third-best
method by more than 3.5 dB on average, where the second-best method is TC-SL.
The comparison between TC-SL and MOTC demonstrates the effectiveness of the
proposed multi-objective tensor recovery framework in exploring the low-rankness
of high-order tensor data across its various dimensions. Additionally, comparing
tensor methods that consider the low-rankness of a tensor along with only one
of its dimensions, TC-SL has achieved a 6.5 dB improvement! This substantial
improvement showcased by TC-SL in color video inpainting provides strong
evidence for its effectiveness in high-order tensor completion, particularly in
scenarios involving non-smooth changes between tensor slices. Visual examples
of video inpainting by different methods are presented in Fig. 5. As we can see
from the Fig. 5, even for cases that are hardly recognized by humans, MOTC
can still reconstruct the video well and restore more detailed information than
other tensor completion methods.

5 Conclusions

In this work, we propose a multi-objective tensor recovery framework with a
learnable tensor nuclear norm, which is solved by the proposed APMM-based
heuristic optimization. This framework first provides an effective solution for
addressing the non-smooth challenge in t-SVD-based methods. Thanks to our
proposed methods, there has no longer a need to introduce

(
h
2

)
variables and

tune weighted parameters to analyze the correlation information of tensors across
different dimensions. Experimental results in real-world applications demonstrate
the superiority of our methods over previous methods, especially for the tensor
data with non-smooth changes.

It is worth noting that the proposed tensor completion methods and framework
extend beyond tensor completion alone and are applicable to various tensor
analysis problems and tasks, including data processing, representation learning,
sketching, and clustering. Many directions for future work are possible.
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