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A Additional Implementation Details

Triplane fitting. We split the triplane fitting into two stages to reduce com-
putation costs. In the first stage, we jointly train the MLP decoder and the
triplanes on a subset of 64 avatars. During each inner loop iteration, 8192 rays
are randomly sampled for loss calculation. We optimize one avatar per GPU for
each outer loop iteration due to large GPU memory consumption. The detailed
hyper-parameters of the first stage are listed in Tab. 1, including ablation studies.
In the second stage, we fix the decoder’s weights and fine-tune the triplanes of
46K avatars independently. The fitting iteration for each avatar is set to 25000.
For rendering efficiency, an occupancy grid of 1283 resolution is maintained [9]
to skip ray marching steps in empty space. Since we do not have the occupancy
grid of the diffusion generated triplane, we update the occupancy grid 16 times
from zero initialization before performing volumetric rendering.
Diffusion training. For triplane x = (xuv,xwu,xvw) of shape R3×H×W×C , we
perform triplane roll-out x = hstack(yuv,ywu,yvw) ∈ RH×3W×C in order to
employ the well-designed 2D UNet model in diffusion [6, 10] following [12]. We
also leverage 3D-aware convolution [12] for cross-plane feature communication.
The portrait image is resized to 256× 256 and the resulting multi-scale features
have the resolution of 128× 128, 64× 64, and 32× 32. The conditional features
are injected to the base diffusion model at layers with resolutions of 32 × 32,
16× 16, and 8× 8, respectively, through cross attention. The upsample diffusion
model only uses the conditional features of 128× 128, which are injected to the
middle latent features.

For our base diffusion model, we adopt the UNet model architecture from [6].
We train our base model using AdamW optimizer [8] with a learning rate 1e−5.
To condition on the multi-scale image features of input portrait as illustrated
in Sec. 3.2, we perform cross attention at resolutions (32, 16, 8). Our optimized
noise schedule is based on the cosine schedule mentioned in [3], and we further
adjust its hyper-parameters for 3D diffusion training. We provide the detailed
configurations of the model and diffusion below.
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Table 1: Hyper-parameters for the first stage of fitting, including ablation studies.

Rodin (512) + Task relay + Wight decay Ours

Inner loop iterations 15000 5000 5000 5000
Outer loop iterations per avatar 1 30 30 30
Loss Weight of TV regularization 1e-2 1e-2 1e-2 1e-2
Loss Weight of L2 regularization 1e-4 1e-4 1e-4 1e-4
Loss Weight of IWC regularization 0 0 0 0.1
Loss Weight of weight decay 0 0 1e-4 0
Triplane learning rate 2e-3 2e-3 2e-3 2e-3
Decoder learning rate 2e-4 2e-4 2e-4 2e-4
Ray batch size 8192 8192 8192 8192
Samples per ray 1024 1024 1024 1024

For our upsample diffusion model, we also adopt the UNet model architecture
from [6]. We train our upsample model using Adam optimizer [7] with a learning
rate 1e − 5. We remove self-attention due to unaffordable computation cost at
high resolutions, and perform cross attention at resolution 128 for conditioning
on input portrait features. Our optimized noise schedule for upsample diffusion
is based on the sigmoid noise schedule in [3], then we carefully adjust the hyper-
parameters for 3D diffusion training. The detailed configurations of the model
and diffusion are shown below.

# 128x128 Base diffusion
UNet configuration = {

"channels": 192,
"channel_mult": (1, 1, 2, 3, 4),
"embed_dim": 768,
"num_res_blocks": (3, 3, 3, 3, 3),
"attn_resolutions": (32, 16, 8),
"ms_vae_feature_cross_attn_res": (32, 16, 8),
"3D_aware_conv_res": (128),
"dropout": 0,
"feature_pooling_type": "attention",
"use_scale_shift_norm": True

}

Diffusion configuration = {
"Training steps": 1000,
"Noise schedule": Cosine(start=0.2, end=1, tau=3),
"Inference steps": 10,
"Inference sampler": "DDPM"

}
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# 128x128 -> 512x512 Upsample diffusion
UNet configuration = {

"channels": 128,
"channel_mult": (1, 2, 4),
"embed_dim": 512,
"num_res_blocks": (2, 2, 6),
"ms_vae_feature_cross_attn_res": (128),
"3D_aware_conv_res": (512, 256, 128),
"dropout": 0,
"feature_pooling_type": "attention",
"use_scale_shift_norm": False

}

Diffusion configuration = {
"Training steps": 100,
"Noise schedule": Sigmoid(start=0, end=3, tau=0.1),
"Inference steps": 10,
"Inference sampler": "DDPM"

}

Table 2: Comparison fitting quality (PSNR) of Triplane Resolution and Channel.

Res.
Ch. 4 8 16 32

128 30.15 30.71 31.21 31.59
256 30.24 31.01 31.44 31.67
512 30.38 31.31 31.60 31.71

B Additional Analysis and Visualization

Choices of triplane resolution and channel. We argue that both triplane
resolution and channel affect the preservation of high-frequency information in
renderings. To validate this argument, we experiment with different triplanes
from a resolution set of {128, 256, 512} and a channel set of {4, 8, 16, 32} to fit
1024 × 1024 images of one subject and show the results in Tab. 2 and Fig. 1.
Overall, the fitting quality increases with the triplane resolution and channel.
High-resolution triplane can render high-frequency detail, and low-resolution tri-
plane tends to produce blurring results. On the other hand, the triplane with
more channels can keep high-fidelity appearance without introducing noisy pat-
tern, but low-resolution triplane with more channels cannot achieve better high-
frequency detail preservation than high-resolution triplane. We thus choose to
utilize 512× 512× 32 triplanes in our experiments.
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Fig. 1: Comparison on Triplane Resolution and Channel. Zoom in for better visualiza-
tion.

Visualization of intermediate results in the denoising process. Dur-
ing inference, our model starts from isotropic Gaussian noise and progressively
reduces the noise to obtain the final high-quality triplanes. We visualize the
renderings of generated results xt of intermediate timesteps t ∈ (0, 1) in the
denoising process to provide a comprehensive understanding of the triplane dif-
fusion procedure. From Fig. 2, we observe that our model establishes the global
structure of the avatar, and subsequently adds more detail, which is similar to
[11,12].

C Additional Comparison

More quantitative comparison with Rodin. We additionally compare our
method with Rodin [12] on conditional avatar generation using more evaluation
metrics. We evaluate the cosine similarity of identity embedding derived from
ArcFace [4] between generated avatars and ground-truths (CSIM), as well as be-
tween paired renderings of generated avatars from different camera viewpoints
(CSIM-CrossView). We also include Average Expression Distance (AED), Av-
erage Pose Distance (APD) and Average Shape Distance (ASD) between the
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Fig. 2: Visualization of intermediate results in the denoising process.

Table 3: Additional comparison of conditional avatar generation. The subscript ∗

indicates that 2D refinement is applied to the rendered images.

Models FID↓ PSNR↑ CSIM↑ CSIM-CrossView↑ AED↓ APD%↓ ASD↓

Rodin 33.20 18.28 0.64 0.85 0.21 2.21 0.44
Rodin∗ 20.51 17.31 0.63 0.83 0.20 2.21 0.44
Ours 26.49 20.33 0.68 0.85 0.18 1.78 0.44

reconstructed 3D faces [5] of generated avatars and ground-truth avatars. The
results presented in Tab. 3 demonstrate that our model excels in preserving iden-
tity and accurately generating expression, pose, and geometry. While Rodin’s 2D
refinement achieves lower FID scores, it struggles to maintain the identity and
expression details of the conditioned portraits.
Comparison of 3D consistency with EG3D. We additionally compare our
3D consistency with SOTA 3D-aware GANs, EG3D. We evaluate the 3D consis-
tency of unconditional generated results in Fig. 3, which is similar to Fig. 9 of
main paper. Since EG3D also utilizes a 2D super-resolution module, the results
in Fig. 3 yield obvious texture flickering, whereas our method leads to a natural
and smooth texture pattern. We also provide numerical comparison in Tab. 5 by
fitting a NeuS model from generated multi-views following Tab. 3 of main pa-
per. Our generated results achieve significantly better metrics due to multi-view
consistency.

D Additional Results

Conditional avatar generation. We provide more renderings of generated
avatars conditioned on the single portraits from our test set in Fig. 5. Our
model is capable of creating high-fidelity avatars with compelling details and
vivid expressions, demonstrating the strong capability of the proposed model.
Unconditional avatar generation. Fig. 6 show more unconditional avatars
created by our model. Our model is able to produce diverse high-quality avatars
with rich details, including complex clothing and hairstyles.
Avatar creation from in-the-wild portrait. In Fig. 7, we present additional
generated avatars conditioned on real-world images. Our methodology demon-
strates a higher fidelity in preserving the identity of the subjects when compared
with [12]. Furthermore, our results exhibit a remarkable ability to retain intricate
details such as hairstyle and clothing attributes.
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Table 4: Average ranking of user study in conditional generation.

Models ID Similarity↓ 3D Consistency↓ Visual Fidelity↓

Rodin 2.54 2.12 2.61
Rodin∗ 2.06 2.77 1.26
Ours 1.39 1.11 2.13

EG3D Our RodinHD

Fig. 3: Visual comparison of 3D consistency akin to the Epipolar Line Images [2]. Our
model yields smooth and natural texture, whereas EG3D produces obvious texture
flickering, indicating the 3D inconsistency with 2D refinement.

Text-to-avatar creation. We provide more samples of high-quality text-to-
avatar creation in Fig. 8. We first convert the text prompt to reference portrait
by our finetuned 2D text-to-image diffusion models, thereafter generate a high-
fidelity avatar conditioned on the reference portrait. It is worth noticing that the
trigger word we used “Blender Synthetic Avata” is not necessarily needed to be
added in the prompts since we can omit it and perform cropping and alignment
to the generated images, similar to how we handle realistic image inputs.
User study. We further conduct user study to measure the identity similar-
ity (ID), 3D consistency and visual fidelity. We ask 15 subjects to rank differ-
ent methods with 20 sets of comparisons in each study. The average ranking
in Tab. 4 shows that our method earns user preferences the best in identity
preservation and 3D consistency, only slightly worse than Rodin adding 2D re-
finement (Rodin∗) in fidelity. We think more follow-up research can be conducted
to further improve the visual quality while ensuring the 3d consistency.
Additional video results. We also provide an additional video in the website
including the above generation results and ablation of 3D consistency. The video
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Table 5: Quantitative comparison of 3D consistency with EG3D.

PSNR↑ SSIM↑ LPIPS↓

EG3D 29.51 0.962 0.052
Ours 33.39 0.967 0.043

(a) (b)

Fig. 4: Failure cases.

also demonstrates that our model is able to create high-fidelity avatars with
strong 3D consistency.

E Responsible AI Considerations

Our model is trained on the synthetic dataset [13] of 3D digital avatars akin to
those crafted by artists, as opposed to photo-realistic humans. This approach to
training data selection alleviates privacy and copyright concerns associated with
the use of real human face collections. Despite these precautions, it is important
to acknowledge that 3D avatar created by our model from real-world images
could potentially be exploited for the dissemination of disinformation, similar
to other generative models. We must therefore emphasize the importance of
responsible use of our technology. As a safeguard against misuse, we recommend
the implementation of measures such as embedding visible tags or watermarks
into the distributed renderings produced by our model.

F Limitation

As illustrated in Fig. 4, our model still has some limitations. Floating points
occasionally appear in the generated avatars as shown in Fig. 4 (a), which are
typical NeRF artifacts [1]. Handling glasses remains challenging due to limited
training data in Fig. 4 (b).
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Fig. 5: Conditional generation samples by our model. Reference portraits are shown
in dashed boxes.



Supplementary Material of RodinHD 9

Fig. 6: Unconditional generation samples by our model.
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Reference Rodin Our RodinHD

Fig. 7: Samples of generated avatars conditioned on single in-the-wild portraits. Com-
pared with Rodin, our method preserves more details of identity and clothing.

“Blender Synthetic Avatar, brown hair, boy, brown eyes, scarf, beard, stubble”

“Blender Synthetic Avatar, brown hair, boy, brown eyes, beard, black sweater ”

Fig. 8: Samples of text-to-avatar creation using our model. The leftmost reference
portraits are first created by based finetuned 2D diffusion model given the text prompts.
Then our 3D diffusion model is able to create high-fidelity avatars conditioned on the
generated reference portraits.
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