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This supplementary material is organized as follows. We first introduce im-
plementation details of our GRM (Appendix A) . Then, we evaluate the geometry
quality of our GRM against the baselines (Appendix B). We also present the
details of mesh extraction from 3D Gaussians in Appendix C. Finally, we show
additional results on 3D reconstruction and generation to evaluate the flexibility
and effectiveness of our approach (Appendix D).

A Implementation Details

Network Architecture and Training Details. We illustrate the details of
network architecture and training in Tab. 1.

Training Data. We obtain multi-view images from Objaverse [2] as training
inputs. Objaverse contains more than 800k 3D objects with varied quality.
Following [5], we filter 100k high-quality objects, and render 32 images at random
viewpoints with a fixed 50◦ field of view under ambient lighting.

Test Data. We use Google Scanned Objects (GSO) [3], and render a total of
64 test views with equidistant azimuth at {10, 20, 30, 40} degree elevations. In
sparse-view reconstruction, the evaluation uses full renderings from 100 objects
to assess all models. For single-view reconstruction, we restrict the analysis to
renderings generated at an elevation angle of 20 from 250 objects.

Deferred Backpropagation. Our model generates 4 × 512 × 512 Gaussians,
consuming a significant amount of GPU memory. We would only be able to train
our model with a batch size of 2 on 80GB A100 GPUs. Deferred backpropaga-
tion [13] is an important technique for saving GPU memory in large batch-size
training. With it, we are able to scale up the batch size to 8, consuming only
38GB per GPU. We provide a pseudo code (Algorithm 1) to demonstrate how
we implement it in our model training.
⋆ Equal Contribution
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Table 1: Implementation details.

Encoder Convolution layer 1, kernel size 16, stride 16
Att layers 24, channel width 768, # heads 12

Upsampler block

Pixelshuffle per block 1, scale factor 2
Att layers per block 2, # heads 12
Channel width starting from 768, decay ratio of 2 per block
# Blocks 4

Gaussian splatting

Color activation sigmoid
Rotation activation normalize
Opacity activation sigmoid
Scale activation sigmoid
Position activation None

Training details

Learning rate 3e-4
Learning rate scheduler Cosine
Optimizer AdamW
(Beta1, Beta2) (0.9, 0.95)
Weight decay 0.05
Warm-up 3000
Batch size 8 per GPU
# GPU 32

Perceptual loss. We have experimented with an alternative loss to the conven-
tional perceptual loss mentioned in the paper, known as the Learned Perceptual
Image Patch Similarity (LPIPS) loss [14]. However, we observe severe unstable
training and the model cannot converge well.

B Geometry Evaluation

Here, we demonstrate the geometry evaluation results on sparse-view reconstruc-
tion and single-image-to-3D generation. We report Chamfer Distance (CD) and
F-score as the evaluation metrics. Specifically, we use different thresholds for
F-score to reduce the evaluation uncertainty. We use ICP alignment to register
all the 3D shapes into the same canonical space. All metrics are evaluated on
the original scale in the GSO dataset.

Sparse-view Reconstruction. We compare with SparseNeuS [9] which trained
in One-2-3-45 [7], and LGM [10] in Tab. 2. The SparseNeuS exhibits a very
high CD score with 16 views for reconstruction (32 views in the original paper)
because of the far-away floaters. GRM achieves better geometry scores across all
metrics, particularly on the F-score with small thresholds.

Single-Image-to-3D Generation. We compare GRM against baselines on ge-
ometry quality in Tab. 3. The original implementation of One-2-3-45++ [6]
suffers from a limitation where it can only generate a single component in multi-
object scenes, resulting in geometry metrics that are not as good as other baseline
methods. GRM outperforms all baseline methods across all metrics. Moreover,
when compared to optimization-based methods, such as DreamGaussian [11],



GRM 3

Algorithm 1 Pseudocode of Deferred Backpropagation on Gaussian Rendering
in PyTorch-like style.
Render: Rendering process;

class DBGaussianRender(torch.autograd.Function):
def forward(ctx, gaussians, cameras):

# save for backpropagation
ctx.save_for_backward(gaussians, cameras)

with torch.no_grad():
images = Render(gaussians, cameras)

return images

def backward(ctx, grad_images):
# restore input tensor
gaussians, cameras = ctx.saved_tensors

with torch.enable_grad():
images = Render(gaussians, cameras)
images.backward(grad_images)

return gaussians.grad

Table 2: Geometry evaluation on Sparse-view Reconstruction. SparseNeuS [7,
9] exhibits an exceptionally high CD due to the far-away floaters.

Method #Views CD↓ F-Score(0.01)↑ F-Score(0.005) ↑

SparseNeuS [7,9] 16 0.02300 0.3674 0.5822
LGM [10] 4 0.00393 0.9402 0.7694
GRM (Ours) 4 0.00358 0.9560 0.8239

our approach demonstrates notable runtime advantages along with superior
geometry quality.

Table 3: Geometry evaluation on Single-image-to-3D generation. Note that
the original implementation of One-2-3-45++ [6] suffers from a limitation where it can
only generate a single component in multi-object scenes.

Method CD↓ F-Score(0.01)↑ F-Score(0.025) ↑

One-2-3-45++ [6] 0.0145 0.6419 0.8362
Wonder3D [8] 0.0131 0.6384 0.8576
One-2-3-45 [7] 0.0134 0.6689 0.8682
Shap-E [4] 0.0118 0.6990 0.8820

LGM [10] 0.0123 0.6853 0.8591
DreamGaussian [11] 0.0077 0.7616 0.9506
GRM (Ours) 0.0058 0.8758 0.9775
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Fig. 1: Blender scene constructed with our textured mesh.

C Mesh Extraction from 3D Gaussians

We utilize the Fibonacci sampling method to sample 200 uniformly distributed
cameras on sphere for rendering images and depth maps based on the 3D Gaus-
sians of the scene. Subsequently, we fuse the RGB-D data using the TSDFVol-
ume [1] method to generate a mesh. We must take into account that due to
the Gaussian distribution, some points may scatter outside the surface of the
object. Therefore, we employ clustering to remove very small floaters outside
the object’s surface in order to smooth the generated mesh.

D Additional Visual Results

We assemble the extracted texture mesh in Blender to construct a 3D scene.
We attach the scene image in Fig. 1. We include more qualitative results on
sparse-view reconstruction, text-to-3D generation and image-to-3D generation
in Fig. 2, Fig. 3 and Fig. 4, respectively.
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E Limitations

The output quality of our sparse-view reconstructor suffers when the input views
are inconsistent. The reconstructor is deterministic in nature and future work
could embed it in a probabilistic framework, akin to DMV3D [12]. Our current
framework is limited to object-centric scenes due to the lack of large-scale 3D
scene datasets. Future work could explore the generation of larger and more
complicated scenes.

Despite the high-quality reconstruction, image-to-3D and text-to-3D gener-
ation results we achieved, our model relies on the input information for recon-
struction and lacks the capability for hallucination. For example, if a region is
not observed in any of the input images, the model may produce blurry textures
for it.

Ethics. Generative models pose a societal threat—we do not condone using our
work to generate deep fakes intending to spread misinformation.
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Fig. 2: Sparse-view Reconstruction.
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Fig. 3: Text-to-3D Generation.
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Fig. 4: Single-image-to-3D Generation.
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