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Abstract. We introduce GRM, a large-scale reconstructor capable of re-
covering a 3D asset from sparse-view images in around 0.1s. GRM is a feed-
forward transformer-based model that efficiently incorporates multi-view
information to translate the input pixels into pixel-aligned Gaussians,
which are unprojected to create a set of densely distributed 3D Gaus-
sians representing a scene. Together, our transformer architecture and
the use of 3D Gaussians unlock a scalable and efficient reconstruction
framework. Extensive experimental results demonstrate the superiority
of our method over alternatives regarding both reconstruction quality
and efficiency. We also showcase the potential of GRM in generative tasks,
i.e., text-to-3D and image-to-3D, by integrating it with existing multi-
view diffusion models. Our project website is at: https://justimyhxu.
github.io/projects/grm/.
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1 Introduction

The availability of high-quality and diverse 3D assets is critical in many domains,
including robotics, gaming, architecture, among others. Yet, creating these as-
sets has been a tedious manual process, requiring expertise in difficult-to-use
computer graphics tools.

Emerging 3D generative models offer the ability to easily create diverse
3D assets from simple text prompts or single images [69]. Optimization-based
3D generative methods can produce high-quality assets, but they often require
a long time—often hours—to produce a single 3D asset [49, 70, 92, 97, 100].
Recent feed-forward 3D generative methods have demonstrated excellent quality
and diversity while offering significant speedups over optimization-based 3D
generation approaches [2, 12, 28, 37, 45, 53, 77, 90, 105]. These state-of-the-art
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Fig. 1: High-fidelity 3D assets produced by GRM—a transformer-based reconstruc-
tion model built on 3D Gaussians. Trained for fast sparse-view reconstruction (top,
∼0.1s), GRM works in synergy with other tools (e.g., text-to-multiview generation [45],
image-to-multiview model [78], and 2D segmentation [44]) to enable text-to-3D
(center top) and image-to-3D (center bottom) generation as well as real-world object
reconstruction (bottom).

(SOTA) models, however, typically build on the triplane representation [5],
which requires inefficient volume rendering. This inefficient rendering step not
only hinders fast inference but it often also requires the models to operate at a
reduced 3D resolution, limiting representational capacity.
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We introduce the Gaussian Reconstruction Model (GRM) as a new feed-forward
3D generative model. At its core, GRM provides a novel sparse-view reconstructor
that takes four different views of a 3D object as input and outputs the corre-
sponding 3D scene. GRM implements two key insights: first, we replace the triplane
scene representation of recent feed-forward generative frameworks [28,45,105] by
3D Gaussians; second, we design a pure transformer architecture to translate the
set of input pixels to the set of pixel-aligned 3D Gaussians defining the output
3D scene. While parts of this architecture uses standard vision transformers
(ViT) [17], we introduce a new upsampler that utilizes a variation of windowed
self-attention layers [3]. This upsampler is unique in being able to efficiently
pass non-local cues. As demonstrated in our experiment, it is critical for the
reconstruction of high-frequency appearance details. Instead of attempting to
synthesize missing regions from incomplete views—a highly ill-defined problem—
we opt to train our model with sparse yet well-distributed views to cover enough
information of a scene. This allows us to allocate the model’s capacity for fine-
grained detail reconstruction, leading to significantly higher fidelity than relevant
baselines for object-level 3D reconstruction. When combined with multi-view
diffusion models, GRM achieves SOTA quality and speed for text-to-3D and single
image-to-3D object generation.

Specifically, our contributions include

– a novel and efficient feed-forward 3D generative model that builds on 3D
Gaussian splatting;

– the design of a sparse-view reconstructor using a pure transformer architec-
ture, including encoder and upsampler, for pixel-to-3D Gaussian translation;

– the demonstration of SOTA quality and speed for object-level sparse-view
3D reconstruction and, when combined with existing multi-view diffusion
models, also text-to-3D and image-to-3D generation.

2 Related Work

Sparse-view Reconstruction. Neural representations, as highlighted in prior
works [9,61–63,68,83,85], present a promising foundation for scene representation
and neural rendering [94]. When applied to novel-view synthesis, these methods
have demonstrated success in scenarios with multi-view training images, show-
casing proficiency in single-scene overfitting. Notably, recent advancements [10,
31,33,50,58,99,108] have extended these techniques to operate with a sparse set
of views, displaying improved generalization to unseen scenes. These methods
face challenges in capturing multiple modes within large-scale datasets, resulting
in a limitation to generate realistic results. Recent works [28, 98, 112] further
scale up the model and datasets for better generalization. But relying on neural
volume–based scene representation proves inadequate for efficiently synthesizing
high-resolution and high-fidelity images. Our proposed solution involves the use
of pixel-aligned 3D Gaussians [8, 89] combined with our effective transformer
architecture. This approach is designed to elevate both the efficiency and quality
of the sparse-view reconstructor when provided with only four input images.
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3D Generation. The advances of 3D GANs have set the foundation of 3D
scene generation. Leveraging various successful 2D GAN architectures [4, 21,
36, 38–41, 110], 3D GANs [5, 6, 20, 22, 64, 66, 76, 81, 86, 87, 103, 104] combine 3D
scene representations and neural rendering to generate 3D-aware content in a
feed-forward fashion. Recently, Diffusion Models (DM) have emerged as a more
powerful generative model, surpassing GANs in 2D generation [16, 27, 74, 88].
With its extension in 3D being actively explored, we review the most relevant
work and refer readers to [69] for a comprehensive review. One research line seek
to directly train 3D DMs using 3D [24,35,65,67,82] or 2D supervision [2,12,23,
37,54,77]. Though impressive, these work either cannot leverage the strong priors
from pretrained 2D DMs or they suffer from 3D inconsistency. Other researchers
propose to exploit 2D diffusion priors using an optimization procedure known
as Score Distillation Sampling (SDS) and its variant [13, 15, 25, 48, 49, 54, 70, 80,
92,97,100]. These methods yield high-quality 3D generations, but require hours
for the optimization process to converge. Therefore, there is a need to combine
the feed-forward generation framework with expressive generative powers from
DMs. To this end, many recent works first use 2D multi-view diffusion and then
lift the multi-view inputs to 3D [7, 53, 55, 57, 78, 93, 95]. Recently, the Large
Reconstruction Model (LRM) [28] scales up both the model and the dataset to
predict a neural radiance field (NeRF) from single-view images. Although LRM is
a reconstruction model, it can be combined with DMs to achieve text-to-3D and
image-to-3D generation, as demonstrated by extensions such as Instant3D [45]
and DMV3D [105]. Our method also builds on a strong reconstruction model
and uses pretrained 2D DMs to provide input images for 3D generation in
a feed-forward fashion. However, we adopt highly efficient 3D Gaussians [42]
for representing and rendering a scene. This design lifts the computation and
memory bottleneck posed by NeRF and volumetric rendering, allowing us to to
generate high-quality 3D assets within seconds.

Some concurrent works, such as LGM [91], AGG [102], and Splatter Im-
age [89], also use 3D Gaussians in a feed-forward model. Our model differs from
them in the choice of architecture—instead of using conventional convolution-
based U-Net, we opt for a purely transformer-based encoder and a highly efficient
transformer-based upsampler to generate a large number of pixel-aligned 3D
Gaussians, which offering superior reconstruction quality.

Generalizable Gaussians. 3D Gaussians [42, 43] and differentiable splat-
ting [42] have gained broad popularity thanks to their ability to efficiently
reconstruct high-fidelity 3D scenes from posed images using only a moderate
number of 3D Gaussians. This representation has been quickly adopted for
various application, including image- or text-conditioned 3D [14, 46, 48] and 4D
generation [51,73], avatar reconstruction [29,47,71,75,111], dynamic scene recon-
struction [60,101,106,107], among others [11,19,96]. All of these aforementioned
work focus on single-scene optimization, although very recent work also adopts
3D Gaussians into a GAN framework for 3D human generation [1].
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3 Method

GRM is a feed-forward sparse-view 3D reconstructor, utilizing four input images
to efficiently infer underlying 3D Gaussians [42]. Supplied with a multi-view
image generator head [45, 78], GRM can be utilized to generate 3D from text or
a single image. Different from LRM [28, 45, 98, 105], we leverage pixel-aligned
Gaussians (Sec. 3.1) to enhance efficient and reconstruction quality and we
adopt a transformer-based network to predict the properties of the Gaussians by
associating information from all input views in a memory-efficient way (Sec. 3.2).
Finally, we detail the training objectives in Sec. 3.3 and demonstrate high-quality
text-to-3D and image-to-3D generation in a few seconds (Sec. 3.4).

3.1 Pixel-aligned Gaussians

3D Gaussians use a sparse set of primitives G = {gi}Ni=1 to represent the geom-
etry and appearance of a 3D scene, where each Gaussian is parameterized with
location µ ∈ R3, rotation quaternion r ∈ R4, scale s ∈ R3, opacity o ∈ R, and the
spherical harmonics (SH) coefficients c ∈ RD, with D denoting the number of
SH bases. These Gaussians can be rendered in real time using the differentiable
rasterizer [42]. 3D Gaussians have gained tremendous popularity for single-scene
optimization (SSO), but utilizing them in a generalizable framework remains
challenging. A primary reason is that the properties of Gaussians are highly
inter-dependent—multiple configurations can lead to the same visual represen-
tation, causing optimization difficulty. On the other hand, 3D Gaussians are an
unstructured 3D representation, making it challenging to integrate effectively
with neural networks for predictions which potentially increases the complexity
of the prediction process. We introduce pixel-aligned Gaussians [8,89] to address
the above challenges. Instead of directly predicting a set of Gaussians and expect
them to accurately cover the entire shape, we constrain the Gaussians’ locations
along the input viewing rays, i.e.,

µ = co + τr, (1)

where co and r denote the camera center and the ray direction. Specifically, for
every input view we predict a Gaussian attribute map T ∈ RH×W×C of C = 12
channels, corresponding to depth τ , rotation, scaling, opacity, and the DC term
of the SH coefficients. We then unproject the pixel-aligned Gaussians into 3D,
producing a total of V ×H×W densely distributed 3D Gaussians. Pixel-aligned
Gaussians establish connections between input pixels and the 3D space in a more
direct way, alleviating the learning difficulty, resulting to better reconstruction
quality as we empirically show in Sec. 4.5.

3.2 Large Gaussian Reconstruction Model

In the following, we introduce our network, which transforms a set of input
images I = {Iv}Vv=1 and their camera poses C = {cv}Vv=1 to the Gaussian maps
T = {Tv}Vv=1.
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Fig. 2: GRM pipeline. Given 4 input views, which can be generated from text [45] or a
single image [78], our sparse-view reconstructor estimates the underlying 3D scene in a
single feed-forward pass using pixel-aligned Gaussians. The transformer-based sparse-
view reconstructor, equipped with a novel transformer-based upsampler, is capable of
leveraging long-range visual cues to efficiently generate a large number of 3D Gaussians
for high-fidelity 3D reconstruction.

Transformer-based Encoder. For a given input image Iv ∈ RH×W×3, we
first inject the camera information to every pixel following [84,105] with Plücker
embedding [32, 84]. Then we use a convolutional image tokenizer with kernel
and stride 16 to extract local image features, resulting in a H/16 × W/16 feature
map. The features from every view are concatenated together to a single fea-
ture vector of length (V × H/16 × W/16). Following common practice in vision
transformers, we append learnable image position encodings for each token to
encode the spatial information in the image space. The resulting feature vector
is subsequently fed to a series of self-attention layers. The self-attention layers
attend to all tokens across all the input views, ensuring mutual information
exchange among all input views, resembling traditional feature matching and
encouraging consistent predictions for pixels belonging to different images. The
output of the transformer-based encoder is a V ×H/16×W/16-long feature vector,
denoted as F. Formally, the transformer function can be written as

F = Eθ,ϕ (I, C) , (2)

where θ and ϕ denote the network parameters and the learnable image position
encodings.

In the transformer encoder, we utilize patch convolution to tokenize the
input images, resulting in the output feature F with a smaller spatial dimension.
While this is advantageous for capturing broader image context, it is limited in
modeling high-frequency details. To this end, we introduce a transformer-based
upsampler to improve the detail reconstruction.

Transformer-based Upsampler. Inspired by previous work [3, 56], we use
windowed attention to balance the need for non-local multi-view information
aggregation and feasible computation cost. Specifically, we construct multiple
upsampler blocks to progressively upsample the features by factors of 2 until we
reach the original input image resolution. In each block, we first quadruple the
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feature dimensions with a linear layer and then double the spatial dimension with
a PixelShuffle layer [79]. The upsampled feature maps are grouped and passed
to a self-attention layer in a sliding window of size W and shift W/2. While the
self-attention operation is performed within each distinct window, to maintain
manageable memory and computation, the overlapping between shifted windows
improves non-local information flow. Formally, an upsampler block contains the
following operations:

F = PixelShuffle (Linear (F) , 2) , (3)
F = SelfAttention (F,W ) , (4)
F = Shift (SelfAttention (Shift (F,W/2) ,W ) ,−W/2) . (5)

After several blocks, the context length expands to the same spatial dimension
as the input. We reshape the features back to 2D tensors, resulting in V feature
maps with a resolution of H ×W , denoted as F = {Fv}Vv=1.

Rendering with Gaussian Splatting. From the upsampled features F , we
predict the Gaussian attribute maps {Tv}Vv=1 for pixel-aligned Gaussians using
separate linear heads. As mentioned in Sec. 3.1, these are then unprojected along
the viewing ray according to the predicted depth, from which a final image Iv′

and alpha mask Mv′ (used for supervision) can be rendered at an arbitrary
camera view cv′ through Gaussian splatting.

3.3 Training

During the training phase, we sample V = 4 input views that sufficiently cover
the whole scene, and supervise with additional views to guide the reconstruction.
To remove floaters, we also supervise the alpha map from Gaussian splatting with
the ground truth object mask available from the training data.

Given V ′ supervision views, the training objective is

L =
1

V ′

∑
1≤v′≤V ′

Limg + Lmask, (6)

Limg = L2

(
Iv′ , Îv′

)
+ 0.5Lp

(
Iv′ , Îv′

)
, (7)

Lmask = L2

(
Mv′ , M̂v′

)
, (8)

where Îv′ and M̂v′ denote ground truth image and alpha mask, respectively. L2

and Lp are L2 loss and perceptual loss [34].
To further constrain the Gaussian scaling, we employ the following activation

function corresponding to the output so of the linear head for scale. Subsequently,
we conduct linear interpolation within predefined scale values smin and smax:

s = sminSigmoid(so) + smax(1− Sigmoid(so)). (9)
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3.4 Reconstructor for 3D Generation

Our reconstructor alone is able to efficiently estimate a 3D scene from 4 input
images. We can seamlessly integrate this reconstructor with any diffusion model
that generates multi-view images to enable fast text-to-3D and image-to-3D
generation, similar to Instant3D [45]. Specifically, we use the first stages of
Instant3D [45] and Zero123++ [78] to produce 4 multi-view images from a text
prompt or a single image, respectively. Note that Zero123++ generates 6 images,
from which we select the 1st, 3rd, 5th, and 6th as input to our reconstructor.

4 Experiments

4.1 Experimental Settings

Training Settings. The encoder E consists of 1 strided convolution layer to
tokenize the image and 24 self-attention layers with channel width 768. The
upsampler consists of 4 upsampler blocks and each block contains 2 attention
layers. For training, we use AdamW [59] with a learning rate initialized at 0.0003
decayed with cosine annealing after 3k steps. Deferred back-propagation [109]
is adopted to optimize GPU memory. We train our model on 32 NVIDIA A100
GPUs for 40M images on the resolution of 512×512, using a batch size of 8 per
GPU and taking about 4 days to complete. The window size in the transformer-
upsampler is 4096. The values for smin and smax are set to 0.005 and 0.02.

More details about training settings and data are presented in Supplementary
Material .

4.2 Sparse-view Reconstruction

Baselines and Metrics. We compare our method with Gaussian Splatting [42],
SparseNeuS [53,58], IBRNet [99], MV-LRM [45], and the concurrent LGM [91].
Since MV-LRM neither released their code nor model, we reproduce it following
their paper. The original SparseNeuS does not support 360◦ reconstruction, so
we use the improved version trained in One-2-3-45 [53]. The remaining baselines
are evaluated using their original implementations. For all baselines, except for
SparseNeuS and IBRNet, we use the same set of four input views that roughly
cover the entire object. SparseNeuS and IBRNet are originally intended for
denser input views, hence we additionally sample another 12 views, resulting
in 16 roughly uniformly distributed views. Following MV-LRM, we use PSNR,
SSIM, and LPIPS to measure the reconstruction quality. Additional evaluations
for geometry reconstruction accuracy is included in the Supplementary Material .
We conduct all the comparisons using a resolution of 512×512.

Results. As Tab. 1 shows, our method significantly outperforms all baselines
across all metrics by a large margin, even though SparseNeuS and IBRNet
require 4 times more input views. At the same time, our inference speed is
among the fastest two, only second to the concurrent LGM. However, ours
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Fig. 3: Sparse-view reconstruction. Given the same sparse-view inputs (top), we
compare the 3D reconstruction quality with strong baselines, among which GS [42]
is optimization based. SparseNeuS [58] (trained in One-2-3-45 [53]) and IBRNet [99]
require 16 views (only 4 of those are visualized in the top row). GRM more accurately
reconstructs the geometric structure as well as the finer appearance details.

predicts 16 times more Gaussians than they do, which leads to a much higher
reconstruction fidelity. Fig. 3 shows the novel-view rendering results. Compared
to other methods, our reconstructions accurately reflect the geometric structures,
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Table 1: Sparse-view reconstruction. We compare the reconstruction quality for
64 novel views with 100 objects from GSO [18]. GRM yields superior quality while
maintaining fast speed. INF. Time is time from image inputs to the corresponding
3D representation (e.g., 3D Gaussians or Triplane NeRF); REND. Time is the time
used to render a 5122 image from the 3D representation.

Method #views PSNR↑ SSIM↑ LPIPS↓ INF. Time↓ REND. Time↓
GS [42] 4 21.22 0.854 0.140 9 min Real time
IBRNet [99] 16 21.50 0.877 0.155 21 sec 1.2 sec
SparseNeuS [53,58] 16 22.60 0.873 0.132 6 sec Real time
LGM [91] 4 23.79 0.882 0.097 0.07 sec Real time
MV-LRM [45] 4 25.38 0.897 0.068 0.25 sec 1.7 sec
GRM (Ours) 4 30.05 0.906 0.052 0.11 sec Real time

containing no visible floaters, and they capture better appearance details than
the baselines.

4.3 Single Image-to-3D Generation

As shown in Sec. 3.4, GRM can be used for single image-to-3D generation by
combining it with image-to-multiview diffusion models, such as Zero123++ [78].

Baselines and Metrics. The baselines include SOTA single-image 3D gen-
eration methods: ShapE [35], One-2-3-45 [53], One-2-3-45++ [52], DreamGaus-
sian [92], Wonder3D [57], TriplaneGaussian [112], and LGM [91]. For all methods,
we use the same input image that is selected randomly from the 4 input views
in the sparse-view reconstruction task. All the comparisons are done using a
resolution of 256×256.

Similar to sparse-view reconstruction, we compute PSNR, SSIM and LPIPS.
We also include CLIP scores [72] and FID [26], which are two common metrics to
evaluate image similarity in generation tasks [53,54,105]. Geometry evaluations
are included in the Supplementary Material .

Table 2: Single image-to-3D generation. Combined with an image-to-multiview
diffusion model [78], GRM can be used for single image-to-3D generation. Our method
outperforms relevant baselines in terms of the quality of the synthesized novel views
with fast inference speed.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑ FID↓ INF. Time↓

One-2-3-45 [53] 17.84 0.800 0.199 0.832 89.4 45 sec
Shap-E [35] 15.45 0.772 0.297 0.854 56.5 9 sec
DreamGaussian [92] 19.19 0.811 0.171 0.862 57.6 2 min
Wonder3D [57] 17.29 0.815 0.240 0.871 55.7 3 min
One-2-3-45++ [52] 17.79 0.819 0.219 0.886 42.1 1 min

TriplaneGaussian [112] 16.81 0.797 0.257 0.840 52.6 0.2 sec
LGM [91] 16.90 0.819 0.235 0.855 42.1 5 sec
GRM (Ours) 20.10 0.826 0.136 0.932 27.4 5 sec
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Fig. 4: Single image-to-3D generation. We compare with methods using Gaussians
(top) and non-Gaussians (bottom) as 3D representations. Reconstruction methods,
e.g., TriplaneGaussian [112] struggle to realistically complete the unseen region
(rows 1–2). SDS-based methods, e.g., DreamGaussian [92] suffer from considerable
inconsistencies with the input image. LGM [91], One-2-3-45 [53], One-2-3-45++ [52],
and Wonder3D [57] also combine multiview diffusion and reconstruction for single
image-to-3D generation, but they produce blurrier texture and noticeable geometry
artifacts. Our results contain more appearance details and shows significantly better
consistency with the input.

Results. The quantitative results are presented in Tab. 2. Notably, GRM outper-
forms all baselines across all metrics. Our model only takes 5 seconds in total
to generate 3D Gaussians from the input image, which includes the runtime of
the generation head. While this is slower than TriplaneGaussian, we achieve sig-
nificantly higher reconstruction quality. Our advantage is further demonstrated
in the qualitative results shown in Fig. 4. On the top, we compare with other
3D Gaussian-based methods. The pure reconstruction method TriplaneGaussian
struggles to fill in the missing content realistically (see rows 1–2). DreamGaus-
sian, using SDS optimization, shows various geometry artifacts (row 1) and
overall noticeable inconsistencies with the input image. LGM, also using an
image-to-MV generation head, produces blurrier and inconsistent texture and
geometry.
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The bottom of Fig. 4 shows non-Gaussians based approaches. These methods
all display various geometry and appearance artifacts, inconsistent with the
input. In contrast, our scalable GRM learns robust data priors from extensive
training data, demonstrating strong generalization ability on generated multi-
view input images with accurate geometry and sharper details. This leads to fast
3D generation and state-of-the-art single-image 3D reconstruction.

4.4 Text-to-3D Generation

By using a text-to-MV diffusion model, such as the first stage of Instant3D [45],
GRM can generate 3D assets from text prompts.

Baselines and metrics. We choose Shap-E [35], Instant3D [45], LGM [91], and
MVDream [80] as baselines. MVDream represents the SOTA of optimization-
based methods, while others are feed-forward methods. We use the 200 text
prompts from DreamFusion [70]. The metrics we use are CLIP Precisions [30,92],
Averaged Precision [105], and CLIP Score [45,105], which measure the alignment
between the text and images. All the comparisons are done using a resolution
of 512×512. Additionally, we include a preference study on Amazon Mechanical
Turk, where we recruited 90 unique users to compare the generations for 50 text
prompts.

Results. As shown in Tab. 3, our method consistently ranks the highest among
feed-forward methods (rows 1–3) and compares onpar with optimization-based
MVDream. Visually, as shown in Fig. 5, our method excels at generating plau-
sible geometry and highly detailed texture. MVDream, using SDS-based opti-
mization, requires 1 hours to generate a single scene. It delivers impressive visual
quality, but exhibits sub-optimal text-image alignment, as indicated by the CLIP
score and the ‘a cat wearing eyeglasses’ example in Fig. 4.

Table 3: Text-to-3D Generation. Combined with a text-to-multiview diffusion
model [45], GRM can be used for text-to-3D generation and it achieves a competitive
CLIP score. Our method is most often preferred in our user study while maintains very
fast inference speed.

Method R-Prec↑ AP↑ CLIP↑ User Pref↑ INF. Time

Shap-E [35] 12.7 17.7 17.3 15.7% 9 sec
LGM [91] 35.8 41.4 17.2 13.3% 5 sec
Instant3D [45] 59.3 64.3 17.9 15.7% 20 sec
MVDream-SDS [80] 70.1 74.4 17.6 25.9% 1 hour
GRM (ours) 67.5 72.0 18.5 29.5% 8 sec
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Fig. 5: Text-to-3D Generation. Our method creates high-quality 3D assets from
text prompts with accurate text alignment. GRM only requires 8 seconds to generate
comparable results to the SOTA optimization-based MVDream, which takes 1 hour.

4.5 Ablation Study

We analyze our model components and architectural design choices on the train-
ing resolution of 256. The results are shown in Tab. 4. Note that all ablations
are trained with 16 GPUs for 14M images.

Scale Activation. We conduct an experiment to study the function of the acti-
vation function for the Gaussians’ scales. Conventionally, gaussian splatting [42]
takes the scales with an exponential activation. However, the exponential acti-
vation can easily result in very large Gaussians, resulting in unstable training
and blurry images. With the linear interpolation between the predefined scale
ranges, the model achieves better appearance regarding all metrics in the first
two rows of Tab. 4.

Number of Upsampler Blocks. We analyze the effects of different number
of upsampler blocks. We can see that the model performance increases as the
number of upsampler blocks grows from 0 to 3 (Tab. 4, left, rows 2–4), ben-
efiting from the detailed spatial features modulated by our transformer-based
upsampler.
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Table 4: Ablation. Left: Using the sigmoid activation improves the visual quality
across all metrics; increasing the number of sampling blocks also increases the
Gaussians’ density and their modeling capability, as demonstrated by the growing trend
of PSNR; finally supervising the alpha channel further boost the reconstruction quality
by removing outlier Gaussians. Right: We ablate the proposed transformer-based
upsampler and pixel-aligned Gaussians using alternative approaches, and demonstrate
that each component is critical for the final reconstruction quality.

Scale Act #Up α-reg PSNR SSIM LPIPS

✗ 0 ✗ 24.43 0.638 0.133
✓ 0 ✗ 27.51 0.900 0.044
✓ 1 ✗ 29.11 0.922 0.037
✓ 3 ✗ 29.38 0.917 0.036
✓ 3 ✓ 29.48 0.920 0.031

Method PSNR SSIM LPIPS

Conv-Upsampler 27.23 0.894 0.063
XYZ prediction 28.61 0.910 0.037
Full model 29.48 0.920 0.031

w/ alpha reg.w/o alpha reg.

Fig. 6: Comparison on al-
pha regularization.

Alpha Regularization. We ablate the alpha regu-
larization used during training. Without alpha regu-
larization, floaters are observable around the objects.
The model can successfully remove those floaters with
the help of alpha regularization as shown in Fig. 6,
leading to a improvement over all metrics (Tab. 4,
left, rows 4–5).

Upsampler Architecture. There is an alternative
design of the upsampler, which mimics the conven-
tional 2D upsamplers by replacing the transformers
with CNNs. We find that CNN-based upsampler leads
to worse results (Tab. 4, right). We conjecture that the
transformer can capture multi-view correspondences
and further enhance the spatial details.

Depth vs. XYZ. In Tab. 4 (right), we conduct an ablation where we predict
the 3D coordinates of each Gaussian instead of the depth value. We observe a
performance drop across all metrics. Without the constraint of camera rays, the
positions of the Gaussians in 3D space become unstructured, making it prone to
getting stuck at local minima, resulting in a degraded performance.

5 Discussion

In this paper, we introduce the Gaussian Reconstruction Model (GRM)—a new
feed-forward 3D generative model that achieves state-of-the-art quality and speed.
At the core of GRM is a sparse-view 3D reconstructor, which leverages a novel
transformer-based architecture to reconstruct 3D objects represented by pixel-
aligned Gaussians. Our work represents a significant advancement towards effi-
cient and high-quality 3D reconstruction and generation.
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