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Abstract. Digitising the 3D world into a clean, CAD model-based representation has im-
portant applications for augmented reality and robotics. Current state-of-the-art methods are
computationally intensive as they individually encode each detected object and optimise CAD
alignments in a second stage. In this work, we propose FastCAD, a real-time method that
simultaneously retrieves and aligns CAD models for all objects in a given scene. In contrast to
previous works, we directly predict alignment parameters and shape embeddings. We achieve
high-quality shape retrievals by learning CAD embeddings in a contrastive learning frame-
work and distilling those into FastCAD. Our single-stage method accelerates the inference
time by a factor of 50 compared to other methods operating on RGB-D scans while outper-
forming them on the challenging Scan2CAD alignment benchmark. Further, our approach
collaborates seamlessly with online 3D reconstruction techniques. This enables the real-time
generation of precise CAD model-based reconstructions from videos at 10 FPS. Doing so, we
significantly improve the Scan2CAD alignment accuracy in the video setting from 43.0% to
48.2% and the reconstruction accuracy from 22.9% to 29.6%.
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1 Introduction

Representing environments and rooms by aligned 3D CAD models is crucial for many downstream
tasks in augmented reality or robotics. Compared to noisy 3D scene meshes or point clouds, a CAD-
based representation has many advantages, such as the absence of holes in objects, clean surface
geometry, object-level annotations, and potential part-level scene understanding. Additionally, the
representation is more compact, with significantly fewer vertices and faces, which allows for faster
rendering and collision simulations.
In this work, we introduce FastCAD, which is carefully designed to perform real-time CAD retrieval
and alignment (see Fig. 1). First, to achieve this goal, FastCAD simultaneously solves object align-
ment and retrieval thanks to the proposed embedding distillation technique. For this, we first learn
an embedding space by training a separate encoder network in a contrastive learning setting. Noisy,
partial scans and clean CAD models are embedded into a unified embedding space. By introducing
two auxiliary tasks, performing foreground-background segmentation of the noisy object scan and
predicting the similarity of the positive and negative CAD model used for the contrastive setup, we
further improve the quality of the learned embeddings. Rather than using the encoder network to

⋆ This work was done as part of an internship at Qualcomm Technologies, Inc.
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Fig. 1. Intro: FastCAD retrieves and aligns CAD models to point clouds in real-time. FastCAD
can either directly operate on an RGB-D scan (left top) or on the output of an off-the-shelf reconstruction
method, which takes an RGB video as its input (left bottom). The graph on the right shows the Scan2CAD
[3] instance alignment accuracy as a function of inference time compared to competing methods. Note that
the inference time is displayed on a log scale. Closed circles and stars (ours) denote methods operating
on RGB-D scans, while open circles and stars represent methods using RGB videos as inputs. FastCAD
outperforms previous methods in both settings while being significantly faster than the previously fastest
methods. Note that RayTran [35] did not disclose their run-times but is most likely much slower than
FastCAD (see Supp. Mat.).

obtain embedding vectors at inference time, we distil the embeddings into FastCAD by supervising
its shape embedding prediction per detection by the embedding of the ground-truth CAD model.
Doing so greatly improves the speed as well as the quality of the retrieved shapes.

Second, FastCAD directly predicts alignment parameters. We parameterise the alignments with
oriented 3D bounding boxes where we additionally predict the front-facing side of the CAD model
within the bounding box. This is significantly faster than analysis-by-synthesis-based methods [1,16]
where CAD alignments are obtained iteratively by minimising rendering-based alignment objec-
tives. It is also more efficient than correspondence-based methods [3,2,4] where the network outputs
object-to-CAD correspondences and object poses are extracted with an additional alignment opti-
misation [8]. At inference time, the shape embeddings predicted by FastCAD are used to retrieve
the nearest neighbor CAD models from the embedding space. Those CAD models are aligned inside
the predicted bounding boxes according to the predicted front-facing side to form the final output.
In this way, we achieve a very efficient method running in just 50 ms per RGB-D scan (compared to
[2,4], which takes 2.6 s) while achieving a similar accuracy on the Scan2CAD alignment benchmark
compared to [4] (61.7% vs 61.2%, see Fig. 1).

Third, we can use FastCAD in conjunction with reconstruction methods (e.g. [33,18,5]) to per-
form precise, real-time CAD alignments from videos. For this, we sample a point cloud from the
output mesh generated with [18] and use it as the input to FastCAD to predict CAD alignments.
Our results demonstrate that this way of first reconstructing an object-agnostic 3D scene repre-
sentation and then performing object detection is more robust than frame-based methods [22,26].
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Further, choosing an explicit 3D point cloud as an intermediate representation means that 3D re-
construction methods can be used out-of-the-box and can be applied in an online setting, unlike
[35]. Applying FastCAD on the output of [18] our joint system can run online at 10 FPS (com-
pared to less than 3 FPS [22]) while significantly improving the instance alignment accuracy on the
Scan2CAD alignment benchmark from 43.0% [35] to 48.2%. Additionally, we introduce two metrics
to assess the quality of retrieved shapes on the Scan2CAD [3] benchmark and show that FastCAD
improves the introduced reconstruction accuracy from 22.9% [26] to 29.6%. In summary, our key
contributions include:

– a novel and effective method for CAD model-based reconstruction where high-quality shape
embeddings learned in a contrastive learning framework are distilled into an object detection
network.

– an efficient system that predicts CAD retrievals and alignments for all objects in a scan in just
50 ms, allowing for online application to videos at 10 FPS.

– state-of-the-art alignment accuracy on the challenging and commonly used Scan2CAD bench-
mark for methods operating on scans (61.7% vs 61.2%) and on videos (48.2% vs. 43.0%).

– new evaluation metrics for the Scan2CAD benchmark assessing the quality of the retrieved
shapes.

2 Related Work

Related work for this project comprises methods for CAD retrieval and alignment, 3D object detec-
tion as well as general approaches for CAD retrieval from an embedding space.
Compared to generative methods that directly predict 3D shapes, retrieval-based methods have sev-
eral advantages including guaranteeing realistic shapes with sharp edges and fine details. Generative
methods on the other hand can struggle to make realistic and accurate predictions, particularly for
unobserved object parts. The disadvantage of retrieval based methods is that they are constrained
to represent those shapes that are available in the database. However, depending on the application,
this limitation can be acceptable.

2.1 CAD Retrieval and Alignment

Using RGB-D scans as inputs. Methods like [2,4] attempt to retrieve CAD models for repre-
senting objects in an input point-cloud by first encoding the point-cloud into a feature volume and
using predicted bounding boxes to crop parts of this feature volume. Subsequently, each crop is fed
through a separate encoder to obtain shape embedding vectors. This is slower than our single-stage
approach. To obtain CAD alignments [3,2,4] predict 3D correspondences for each object individually
and then optimise for rotation and translation. [4] additionally predicts scene-layout elements and
refines the positions of the CAD models to obey support relations in their scene graph. Their run
times range from ca. 20 minutes [3] to 2.6 seconds [2,4]. Other methods [16,1] exhaustively render
all CAD models in a database and optimise the pose of the best-fitting one by comparing rendered
depth images to observed ones. However, with run times of more than 10 minutes per scene, these
are not suited for real-time applications.
Using RGB videos as inputs. [22,26,35] predict CAD alignments from posed RGB videos.
[22,26] both individually detect objects in each frame, associate them across frames, and perform
a multi-view optimisation to find the best pose for each object. Approaches such as [22,26] are
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very engineered and, due to the heterogeneity of their different modules, can usually not be trained
end-to-end. This fact, in combination with a brittle tracking-by-detection step, makes them error-
prone and unreliable. RayTran [35] does not perform per-frame predictions and instead relies on
propagating the information into a 3D scene volume and performs predictions here. While doing
so, they avoid the issues mentioned above, their mechanism for creating a 3D feature volume is
computationally expensive with undisclosed run times and, in its current form, can not be run in
an online setting.

2.2 3D Object Detection

3D object detection methods can be grouped by their underlying mechanism of aggregating per-
object information. Voting-based methods [29,7,38,36] are initialised with a set of candidate object
centres and require points to vote on whether they belong to a given object. Features of all points
that voted to be part of the same object are aggregated and decoded to obtain a bounding box pre-
diction. Attention-based methods [24,27] impose fewer inductive biases than voting-based methods.
They replace the voting-based method of determining which features to aggregate with an attention-
based method, resulting in softer assignments and alleviating the need for some hyper-parameters.
Convolution-based methods [14,31,32] convert point clouds into voxels and process them with 3D
convolutions. Densely processing features in 3D is very memory and compute-intensive. GSDN [14]
improves the efficiency for such 3D convolution-based methods by introducing a generative sparse
tensor decoder using a series of transposed convolutions and pruning layers. FCAF3D [31] used
those transposed convolutions but introduced an anchor-free method that can better model the
diversity of 3D object orientations and sizes. Simplifying the network architecture of [31] and in-
troducing a multi-level object assigner [32] achieves a run-time of 21 FPS while further improving
the performance. FastCAD uses the same backbone and neck as [32].

2.3 CAD Retrieval from an Embedding Space

Various previous works [28,11] have investigated learning an embedding space from which CAD
models can be retrieved to model real-world objects. The most relevant of such works is [11], which
learns a joint embedding space of noisy, incomplete scan objects and clean CAD models. They use
3D convolutions to learn feature embeddings for scans and CAD models. Their convolutional layers
are trained by minimising a triplet loss [34] where they sample CAD models of a different category
as negatives. Other works such as [23,19,20,21] learn CAD model embedding spaces by rendering
CAD models and learning embeddings for the rendered and real images in a contrastive learning
setting.

3 Method

FastCAD (Fig. 2) simultaneously predicts CAD alignments and shape embeddings for objects de-
tected in a point cloud (Sec. 3.1). The predicted shape embeddings are used to retrieve the nearest
CAD models from an embedding space. This embedding space is learned by encoding noisy, partial
object scans and clean CAD models into a joint embedding space in a contrastive learning setting
(Sec. 3.2).
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Fig. 2. Method. FastCAD retrieves and aligns CAD models for all objects detected in an input point
cloud. For all detected objects it predicts their category p̂, bounding box parameters b̂, front-facing side f̂
and shape embedding ŵ. The predicted embedding vector ŵ is used to retrieve the nearest neighbour CAD
model from an embedding space previously learned in a contrastive learning setting with auxiliary tasks.

3.1 CAD Retrieval and Alignment

The input to FastCAD is a point cloud, which may be derived from (i) an RGB-D scan or (ii) a
noisy scene reconstruction obtained, for example, by applying [33,18,5] to a video. This point cloud
is encoded into a feature volume using a set of sparse 3D convolutions followed by generative trans-
posed convolutions [15]. FastCAD’s network architecture is inspired by [32]. For a range of sampled
locations (x̂, ŷ, ẑ) a shared detection head outputs classification probabilities p̂, oriented bounding

box parameters b̂, front-facing side classification f̂ and shape embedding vector ŵ. Depending on
the average size of the predicted object class, the head output at feature level 2 or 3 is returned
(level 2 for small objects, level 3 for large objects). For each oriented bounding box prediction b̂

we classify which of the four faces is the front face of the object using f̂ . This information is used
to choose between the four possible orientations when aligning the CAD model within the oriented
bounding box. Encoding this information separately from the orientation in b̂ allows us to more
easily leverage the symmetry annotations from Scan2CAD [3] which label each object to be non-
symmetric or have 2-fold, 4-fold or complete rotational symmetry around the up-axis. For 2-fold,
4-fold and complete rotational symmetric objects, we modify the target front-facing side f from,
e.g. (1, 0, 0, 0) to

(
1
2 , 0,

1
2 , 0

)
,
(
1
4 ,

1
4 ,

1
4 ,

1
4

)
and

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
respectively. This prevents the network

from overfitting to arbitrary orientations for symmetric objects and allows it to generalise better
(see Tab. 1). Through an assignment procedure, a detection i at (x̂, ŷ, ẑ) may be matched with the
nearest ground-truth object. This location then has ground-truth labels associated with it, and one
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can formulate a loss function as:

Ltot =
1

Nmat

Ndet∑
i=1

Lcls(p̂i,pi) + 1i

(
Lbb(b̂i, bi) + Lff(f̂ i,f i) + Lemb(ŵi,wi)

)
(1)

For each loss, predicted values are denoted with a hat. 1i = 1 if detection i is matched to a ground-
truth object and 1i = 0 if not. Nmat =

∑Ndet

i=1 1i is the total number of matches. If a detection is
not matched to a ground-truth object pi = 0. Note that each detection can be matched to only
one ground-truth object, which is only matched if it is among the k = 6 closest detections to that
ground-truth object. The classification loss Lcls is a focal loss, the bounding box loss Lbb is a DIoU
loss [39], the front-facing side loss Lff is a cross-entropy loss and the shape loss Lemb is a MSE loss.
To obtain ground-truth shape embedding vectors wi we first learn a CAD model embedding space
(see Sec. 3.2).

3.2 Learned Embedding Space

We learn a shape embedding space using a contrastive learning setup with two new auxiliary tasks.
For contrastive learning, we embed noisy object point clouds from scans and clean point clouds
sampled from CAD models into a unified embedding space. For this purpose, we select all points
within the Scan2CAD [3] object bounding boxes as anchor objects and associate the point clouds
of the annotated CAD model as the positive example. We randomly sample different CAD models
of the same category as negative examples. These three point clouds are passed through an encoder
network to produce embedding vectors w. We employ a triplet loss [34]:

LTriplet = max(0, d2(A,P) +m− d2(A,N)), (2)

where A, P and N are the embeddings of the anchor, positive and negative examples respectively.
d(A,B) denotes the L2 distance between vector A and B. This loss ensures that the distance
between the anchor and the positive example is smaller by a margin m than the distance between
the anchor and the negative. In addition to the triplet loss, we train the encoder to perform two
auxiliary tasks. Doing so improves the quality of the retrieved shapes in FastCAD (see Tab. 2). The
first task is to perform foreground/background segmentation of the input point clouds of the real
scan. This is supervised with a binary cross-entropy loss:

LSegmentation = − 1

NSeg

NSeg∑
i=1

(yilog(xi) + (1− yi)log(1− xi)) (3)

Here xi ∈ [0, 1] are the predicted probabilities for each point, yi ∈ {0, 1} are the foreground/background
labels and NSeg is the number of points sampled. Note that we balance the ratio of foreground to
background labels by only applying a loss to as many foreground points as there are background
points. Otherwise, ca. 80%-90% of sampled points belong to the foreground class and we observe
slightly smaller improvements to the quality of the embeddings.

For the second task, we train a shallow MLP, dθ, to regress the Chamfer distance between the
positive and the negative CAD model from their embeddings. The Chamfer distance dChamfer(X,Y )
for point clouds X and Y is defined as

dChamfer(X,Y ) =
1

2

 1

|X|
∑
x∈X

min
y∈Y

d(x, y) +
1

|Y |
∑
y∈Y

min
x∈X

d(x, y)

 (4)
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The introduced loss is

LChamfer = ||dθ(cat(P,N))− dChamfer(Xpos, Xneg)||1 , (5)

where dθ(cat(P,N)) is the Chamfer distance predicted from the concatenated embeddings P and
N of the positive and negative CAD model. dChamfer(Xpos, Xneg) is the ground-truth Chamfer
distance computed using Eq. 4. The intuition behind introducing this loss is that sometimes the
negative CAD model can be similar to the positive CAD model, while at other times, it may be
very different. Forcing the encoder network to learn embeddings containing such information helps
learn more useful embeddings. After training the encoder network, we compute embeddings for all
CAD models in our training data. For each part of the scan that is annotated with a CAD model we
then train FastCAD to predict the embedding vector ŵ associated with it and refer to this process
as embedding distillation. At inference time for a given object detection and associated embedding
prediction ŵ we retrieve the nearest neighbour CAD model of the predicted category p̂ and align
it using the predicted bounding box b̂ and front-facing classification f̂ .

4 Experimental Setup

4.1 Dataset

For training and testing our method, we use ScanNet [12] with CAD model annotations provided by
Scan2CAD [3]. Those labels annotate the 1201 train scenes and 312 validation scenes from ScanNet
[12] with CAD models from ShapeNet [6]. There are over 14K objects annotated with over 3K
unique CAD models, which come from 35 categories, with the most popular categories being chair,
table and cabinet.

4.2 Evaluation Metrics

For evaluating the CAD alignments, we follow the original evaluation protocol introduced by
Scan2CAD [3]. A CAD model prediction is considered correct if the object class prediction is
correct, the translation error is less than 20 cm, the rotation error is less than 20°, and the scale
error is below 20%. For each scene and each category, as many predictions can be made as there
are ground-truth CAD models. No duplicate predictions for the same ground-truth CAD model are
considered.
Introducing reconstruction and shape accuracy metrics. The metric above does not evaluate
the quality of the aligned shapes. To do so, we introduce the Scan2CAD reconstruction accuracy.
For this metric, the individual checks on rotation, translation and scale are replaced by checking
if the F-score at τ between the aligned predicted and aligned target CAD model is larger than a
threshold µ and consider those a correct prediction. The F-score is defined as the harmonic mean
of precision and recall, where precision is the fraction of points sampled on the predicted CAD
model that lie within τ of points sampled on the ground-truth CAD model. Recall is the fraction
of points on the ground-truth CAD within τ from a point on the predicted CAD model. Following
[13], before computing the F-scores, objects are rescaled such that the largest side of the ground-
truth CAD model has a length of 10 so that small and large objects are compared fairly. We set
τ = 0.5 and µ = 0.7 (see the Supp. Mat. for results for different thresholds of µ). We also introduce
the Scan2CAD shape accuracy, which follows the same protocol as the Scan2CAD reconstruction
accuracy but computes the F-score when both the ground-truth and predicted CAD model are
perfectly aligned, such as only focusing on the quality of the retrieved shape.
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Reconstruction from Video CAD (from Video) Scan CAD (from Scan) GT

Fig. 3. Qualitative visualisation on ScanNet [12,3]. Column 1 shows the reconstruction generated by
applying [18] to the input video. Column 2 shows the CAD retrieval and alignments predicted by FastCAD
when operating on the reconstruction in column 1. Columns 3 and 4 show the input scan from ScanNet
[12] and the CAD alignments FastCAD predicts for it. Column 5 shows the ground-truth CAD alignments
from Scan2CAD [3].

4.3 Hyperparameters

For training the encoder network, we process all CAD models by normalising them to a unit
cube and randomly sampling 1024 points from their surface. Similarly, cropped object scans are
normalised and 1024 points are randomly sampled. Point clouds from cropped object scans with
less than 1024 points are padded with 0s. We apply random scaling between 0.9 and 1.1, random
translation between -0.1 and 0.1 and random rotation between −10◦ and 10◦ on all point clouds.
We use a Perceiver [17] as the encoder for the main experiments. It consists of three layers of cross-
attention, each followed by two layers of self-attention, which share weights. The number of latent
variables in the Perceiver [17] and their dimension is set to 256. The encoder network is trained
for 750 epochs using a Lamb Optimiser [37] with a learning rate of 1e-3 and batch size of 25. The
learned shape embeddings w also have dimension 256. The margin m in the triplet loss in Eq. 2 is
set to 0.1. Foreground/background segmentation labels are predicted by cross-attending the final
latent variables with the input point cloud. The MLP dθ for predicting the Chamfer distance has a
single hidden layer of size 256 and uses ReLU activation functions.
FastCAD is trained for 225 epochs using an AdamW optimiser [25] with a learning rate set to 1e-3
and weight decay by a factor of 10 after 120 and 165 epochs. Before processing each scene, the
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Method bathtub bkshlf cabinet chair display sofa other table trash bin class instance time [ms]

Number of test instances # 120 212 260 1093 191 113 410 553 232 35 3184 -

Competing Methods - Input RGB-D Scan

Scan2CAD [3] 36.2 36.4 34.0 44.3 17.9 30.7 70.6 30.1 20.6 35.6 31.7 740000
End-to-End CAD Retrieval [2] 38.9 41.5 51.5 73.0 26.5 76.9 26.8 48.2 18.2 44.6 50.7 2600
SceneCAD [4] 42.4 36.8 58.3 81.2 50.7 82.9 40.2 45.6 32.3 52.3 61.2 2600
Ours (Scan) 43.3 47.2 46.5 85.7 24.1 61.9 40.5 56.1 69.8 52.8 61.7 50

Competing Methods - Input RGB Video

ODAM [22] 24.2 12.3 13.1 42.8 36.6 28.3 0.0 31.1 42.2 25.6 29.2 366
Vid2CAD [26] 28.3 12.3 23.8 64.6 37.7 26.5 6.6 28.9 47.8 30.7 38.6 3200
RayTran [35] 19.2 34.4 36.2 59.3 30.4 44.2 27.8 42.5 31.5 36.2 43.0 -
Ours (Video) 35.0 31.1 35.0 71.5 4.2 54.0 25.1 48.8 48.7 39.3 48.2 100

Ablations - Front-Facing Side Prediction

Ours – discrete CAD orientation in embedding 27.5 36.3 42.7 85.5 24.6 61.1 33.4 47.7 50.0 45.4 56.2 50
Ours – front-facing side prediction 41.7 45.3 46.2 84.6 17.8 58.4 38.0 56.8 65.1 50.4 60.1 50
Ours – front-facing side prediction + symmetry 43.3 47.2 46.5 85.7 24.1 61.9 40.5 56.1 69.8 52.8 61.7 50

Table 1. Alignment accuracy on Scan2CAD [3] in comparison to the state-of-the-art. All numbers
(except time and the first row) are percentages, and higher is better. FastCAD outperforms competing
methods on scans and videos while dramatically reducing the inference time in both cases.

corresponding point cloud is down-sampled to a maximum of 50,000 points. During training, we
perform a random sampling of input points (between 33% and 100%), random flipping along the
x and y-axis with probability 50% as well as random rotation around the z-axis (from −π to π),
random scaling (between 0.9 and 1.1) and random translation (between -0.5 m and 0.5 m). Note
that for predicting CAD alignments from videos, we train a separate version of FastCAD on the
outputs of [18] for the training scenes in ScanNet [12]. This is because these more closely match
the inputs that FastCAD receives at inference time for this setting.

4.4 Implementation Details

All code is implemented in PyTorch. FastCAD is integrated within the open-source object detec-
tion toolbox MMDetection3D [10]. It uses sparse convolutions from the Minkowski Engine [9,14].
Training on a single RTX 2080 takes ∼7 hours. Training the encoder network on the same GPU
takes ∼24 hours.

5 Results

In Sec. 5.1 we evaluate our CAD alignments on the Scan2CAD alignment benchmark. In Sec. 5.2
we analyse the quality of the achieved reconstructions and the shape retrievals. Sec. 5.3 presents
results when evaluating FastCAD’s predictions continuously while reconstructing a scene. Finally,
Sec. 5.4 ablates various components of the proposed system.

5.1 CAD Model Alignments

Comparing FastCAD to existing methods operating on RGB-D scans, we find that FastCAD per-
forms similarly to SceneCAD [4], the previously most accurate method (61.7% vs. 61.2% instance
alignment accuracy) while being more than 50 times faster (see Tab. 1). This massive speedup is
mainly due to direct prediction of CAD alignments and shape embeddings in a single step. Com-
pared to other methods when the input is an RGB video, FastCAD is not just significantly faster
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Fig. 4. Investigating different thresholds for the instance alignment accuracy on Scan2CAD
[3]. The translation, rotation and scale thresholds, used to determine whether an alignment is correct, are
varied from their default values at 20 cm, 20° and 20%. Note that in each plot, the thresholds that are not
investigated remain at their default value. FastCAD outperforms competing methods across all thresholds.

but also considerably more accurate, outperforming the following best-competing method RayTran
[35] by a large margin (48.2% vs. 43.0% alignment accuracy). We also compare our alignments to
previous works at different thresholds for computing the alignment accuracy (see Fig. 4). Here,
we find that we outperform them across all settings. Regarding run times, our total run-time to
integrate new information from a new frame is just 100 ms (50 ms to run [18] plus 50 ms to run
FastCAD on the reconstructed scene). This is significantly faster compared to ODAM [22] (366
ms), Vid2CAD [26] (3200 ms) and most likely also RayTran3 [35] (see Fig 1).

We ablate our design decision for predicting the front-facing side f̂ . In the first row of the last
section in Tab. 1 we present the accuracies when encoding the information about the front-facing
side of a CAD model in the shape embedding w. In this case, each CAD model has four embedding
vectors for each of the four discrete 90-degree orientations associated with it. At inference time
the CAD model is aligned inside the predicted bounding box according to the discrete orientation
of its nearest-neighbour embedding w. The second row shows the accuracies when predicting the
object front-facing side with an extra classification head (as explained in Sec. 3). This significantly
improves the alignment accuracy (60.1% vs. 56.2%) while reducing the number of CAD embeddings
that need to be stored and searched by a factor of four compared to the previous row. Finally, the
last row shows that the alignment accuracy is further improved if the symmetry of the CAD model
is taken into account when learning to predict the front-facing side (61.7% vs. 60.1%).

5.2 Reconstruction and Shape Quality

The CAD alignment accuracy used by [3,2,4,26,22,35] does not evaluate the quality of the retrieved
CAD models. We therefore introduce two metrics, the Scan2CAD reconstruction accuracy and
Scan2CAD shape accuracy as explained in Sec. 4. While the Scan2CAD reconstruction accuracy
evaluates both the retrieved shapes and their alignments, the Scan2CAD shape accuracy only eval-
uates the quality of the retrieved shapes.
[3,2,4,35] do not have publicly available code and were not able to share their shape retrievals with

3 See the Supp. Mat. for a discussion of this.
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Method Alignment Acc. Recon. Acc. Shape Acc. time [ms]

Competing Methods - Input RGB-D Scan

Input RGB-D Scan
ScanNotate* [1] 78.2 60.1 83.5 660000
Ours (Scan) 61.7 41.7 83.1 50

Competing Methods - Input RGB Video

Input RGB Video
Vid2CAD* [26] 38.6 22.9 76.6 3200
Ours (Video) 48.2 24.7 79.8 100
Ours (Video, same retrieval Vid2CAD) 48.2 29.6 87.7 100

Ablation Experiments -Input RGB-D Scan

Embedding Distillation
2-step retrieval: pred bbox 61.7 15.6 51.0 104
2-step retrieval: nearest GT bbox 61.7 30.6 78.1 104
Embedding distillation 61.7 41.7 83.1 50

Auxiliary Tasks for Training Encoder

Triplet 62.3 38.3 81.1 50
Triplet + Chamfer 61.0 38.7 82.0 50
Triplet + Segmentation 61.3 41.5 84.3 50
Triplet + Chamfer + Segmentation 61.7 41.7 83.1 50

Encoder Architecture
PointNet++ [30] 61.5 29.6 74.0 50
Perceiver [17] 62.3 38.3 81.1 50

Different Input Sources
ScanNet (Gray) 60.4 40.1 82.9 50
DG Recon [18] (Gray) 48.2 24.7 79.8 100

Table 2. Alignment, reconstruction and shape accuracy on Scan2CAD [3] in comparison to
competing methods and for various ablations. All accuracies are percentages and higher is better. Note that
ScanNotate [1] initialises its CAD alignments from their ground-truth poses and Vid2CAD [26] constraints
its CAD retrieval to the very small ground-truth scene pool, making some of their results not exactly
comparable to ours.

us. We therefore compare our CAD retrievals to those from ScanNotate [1]. Note that ScanNotate
[1] is used as an offline annotation method and optimises CAD retrievals and CAD poses, which are
initialised from their ground-truth alignments4. While the alignment and reconstruction accuracy of
ScanNotate [1] is better than ours (because the objects are initialised from ground-truth poses), we
find that the shape accuracy, focusing only on the quality of the retrieved CAD model but not their
alignment, is similar to ours. This is a significant achievement given that [1] exhaustively renders
all CAD models in the database, leading to run-times that are more than four orders of magnitude
larger than ours. In the video setting, FastCAD achieves better shape accuracies than Vid2CAD
[26] even when Vid2CAD [26] limits its CAD retrievals to the ground-truth scene pool. When using
the same retrieval setup as Vid2CAD [26], FastCAD achieves significantly better reconstruction
accuracy (29.6% vs. 22.9%) and shape accuracy (87.7% vs. 76.6%).
To evaluate the quality of the embedding space, we compute the shape accuracy not just for the
nearest neighbour retrieval, but also when retrieving instead the second, third or N-th nearest neigh-
bour (see Fig 5). Here, we find that the shape accuracy remains high even when retrieving just the
10th closest CAD model. This demonstrates that geometrically similar CAD models are close to
each other in the learned embedding space. This is desirable as it makes our CAD retrieval robust;
even if the retrieved CAD model is not optimal, it will still closely match the observed object. Even
retrieving the 100th closest CAD model from the learned embedding space is substantially more
accurate than retrieving a random CAD model of the predicted category.

4 We exclude ScanNotate predictions for those objects that FastCAD did not detect to partially mitigate
the effect of ScanNotate having access to perfect object detections.
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Scan Ours - 1st Ours – 2nd Ours – 3rd ScanNotate GT

Fig. 5. CAD retrieval from the learned embedding space. Left: Qualitative visualisation of the
retrieved CAD model for a given object in a scene. Note that the input to FastCAD from which a shape
embedding ŵ is predicted is the scan of the entire scene. However, for clearer visualisation, we only show
the cropped part of the scan for which a CAD model is retrieved. Across different object categories, our
CAD retrievals are of similar high quality as the ones from the pseudo-labelling method ScanNotate [1] and
the ground-truth CAD models from Scan2CAD [3]. Right: Our shape accuracy as a function of the N-th
nearest CAD model retrieved from the embedding space. The shape accuracy remains high even as CAD
models of increasingly worse rank are retrieved, which is a characteristic of a well-structured embedding
space.

5.3 Incremental Evaluation for Online Setting

When predicting CAD alignment from an RGB video, we can evaluate the different metrics at
various stages of the video sequence (see Fig 6). This is important for assessing the performance of
our method for realistic applications in online settings, such as AR or robotics, where one requires
not just an accurate final output but good performance throughout the sequence. Note that for
computing the metrics, only those ground-truth CAD models whose centre has already appeared in
the field of view of at least one seen frame are considered. Here, we find that the investigated metrics
show good performance even early on (ca. 30% of the sequence). Nevertheless, we see a continuous
improvement in all metrics as more parts of the video sequence are seen. We find that this is mainly
because the output of the reconstruction method [18] improves continuously as parts of the scene
that previously appeared far away are observed from up close. This improved quality of the scene
mesh leads to more accurate CAD predictions by FastCAD. Another reason for the improvements
over time is simply occlusion. Some centres of ground-truth objects may have appeared in the field
of view but have not been observed as they were hidden behind other objects. This means that [18]
can not reconstruct them, and consequently, FastCAD can not make predictions for those, reducing
the accuracy.

5.4 Ablations

We ablate various design choices of FastCAD in the lower part of Tab. 2.
Embedding distillation. We investigate splitting bounding box detection and CAD retrieval into
two successive steps. For this ablation, a detected bounding box is used to crop part of the input
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Fig. 6. Incremental evaluation of CAD predictions in an online setting. Left: Various metrics
are investigated when only parts of the RGB video sequence have been seen. Right: Visualisation of the
incremental evaluation for one scene. The reconstructed scene mesh, our CAD alignments and the considered
ground-truth CAD alignments are visualised at various stages of the RGB video sequence.

point cloud, which then serves as the input to the encoder to produce the shape embedding. This
is the only experiment where the encoder is used at test time. We observe poor reconstruction and
shape accuracy (15.6% and 51.0%). This is due to a distribution shift in the input to the encoder,
which was trained on object point clouds cropped with ground-truth bounding boxes but now re-
ceives point clouds cropped with predicted bounding boxes. However, even when using the nearest
ground-truth bounding box to crop the input for the encoder, the final reconstruction accuracy and
shape accuracy are significantly worse compared to using FastCAD to directly predict shape em-
beddings (41.7% vs 30.6% and 83.1% vs. 78.1%). We hypothesise that such notable improvements
in the one-stage model are due to the significant mutual information between the shapes of the
objects within the same environment, e.g. identical chairs around a table. The end-to-end shape
embedding extraction, together with a large receptive field of the model, enables capturing such
correlations.
Auxiliary tasks for training encoder. We analyse the effect of training our encoder network
with the two proposed auxiliary tasks. Here, we observe improvements in the reconstruction accu-
racy and shape accuracy for training by predicting the Chamfer distance between the positive and
the negative CAD model as well as performing foreground/background classification of the input
point cloud (41.7% vs 38.3% and 83.1% vs. 81.1%). These metrics are computed from FastCAD,
which was trained to regress the shape embeddings but not directly trained with the additional
losses. Better training of the encoder leads to improved embeddings, which, even after distilling
those into FastCAD, leads to notably better reconstruction and shape accuracies.
Encoder architecture. Testing different encoder architectures, we find that using a powerful en-
coder is crucial for obtaining high-quality shape embeddings. Compared to a standard PointNet++
[30] network, using a Perceiver [17] increases the reconstruction accuracy from 29.6% to 38.3% and
the shape accuracy from 74.0% to 81.1%.
Different input sources. The output of [18] does not contain colour. To disentangle the effects
of geometry and colour we input the point cloud from the RGB-D scan from ScanNet [12] without
any colour information. Comparing the alignment, reconstruction and shape accuracy, we observe
that while the significantly noisier inputs affect the performance, the achieved outputs are still of
high quality (see also Fig. 3). Comparing the experiments for the RGB-D scans without colour
information to the main experiment, we also find that colour adds only very little information, and
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almost all information is contained in the geometry.

6 Conclusion

We propose FastCAD, which can retrieve and align CAD models to an input scene scan in just
50 ms due to its efficient design. By applying FastCAD to the output of online 3D reconstruction
techniques, we can obtain precise CAD-model-based reconstruction from videos running in real-
time at 10 FPS. We train and validate our system on Scan2CAD [3] which provides CAD model
annotations for ScanNet [12]. Compared to competing works operating on scans, we reduce the run-
time by a factor of 50 while slightly outperforming them regarding alignment accuracy. Compared
to methods using videos as input, we improve the alignment accuracy from 43.0% to 48.2% while at
least three times faster, thereby enabling real-time CAD-based reconstruction from videos. Despite
those advances FastCAD is not free of errors. Typical errors include small misalignments of CAD
models or over-detections of the same objects as different categories. These could be addressed
through iterative refinement methods (at the cost of larger inference time) or by enforcing physicality
constraints (e.g. plausible alignment with predicted scene lay-out elements like floor and walls and
no 3D collisions between objects). Furthermore, in the online video setting FastCAD is applied anew
to every updated input point-cloud. This can lead to some jittering of object shape and alignment.
Future work could entail developing a mechanism to better ensure temporal consistency in this
setting.
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