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We discuss the implementation details in Supplement A, additional results in
Supplement B, limitations in Supplement C and the broader impact in Supple-
ment D.

A Implementation Details

Model Card. Our best model is trained for 100k iterations on COCO with mixed
precision training on 8 × 40GB NVIDIA A100 GPUs using Google Cloud. We
rely on the pretrained Stable Diffusion [16] weights provided by Hugging Face [4].
We also adopt its settings for the noise scheduler. The code is developed in
Pytorch [14] and will be made available as well as our models.

Multi-Task Setup. This section provides additional information on the multi-
task extension for dense prediction, with minor adaptations. Consider the three
fundamental vision tasks: instance segmentation, semantic segmentation and
depth prediction. The instance and semantic tasks both utilize the same shallow
autoencoder to generate continuous latent codes. Similarly, to compress the depth
maps, we rely on the same shallow autoencoder architecture as its segmentation
counterpart. We only change the input and output channels to one channel. As
COCO does not contain depth annotations, we rely on the predictions from
MiDaS [1] to obtain pseudo ground truth. Note that this model predicts relative
depth. All tasks use the same set of augmentations and scaling factors, as
discussed in the main paper. To enable multi-tasking, we introduce learnable
task embedding (786-dimensional) via the cross-attention layers of the UNet.
This allows us to query the model for a specific task. Figure S1 visualizes the
results for each task by only changing the task embedding. We observe that the
model can predict accurate instance, semantic and depth maps for a given image.
Finally, given our shallower encoder and task embeddings, a comparison with
Marigold [7], a concurrent work on depth estimation, could be insightful.

Mask2Former Baselines. Mask2Former [2] is a specialized segmentation frame-
work that produces excellent results for panoptic segmentation. We follow the
training recipe from ViTDet [10] and SAM [8] to leverage plain ViT backbones [3]

⋆ This work was done while the author was at Segments.ai, and the final training run
was conducted at INSAIT. The author is now affiliated with Google DeepMind.
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Fig. S1: Multi-Task Setup - Qualitative Results. The figure displays the results
for several images in the COCO val set. We can query the model for multiple tasks as
it has learned their respective task embeddings.

with MAE pretrained weights [5]. Specifically, the model consists of the vision
transformer backbone, a shallow neck, and a mask decoder. The latter contains 6
masked attention decoder layers and 128 object queries, following [2]. The loss
requires Hungarian matching [9] to handle the permutation invariance of the
predictions during training. To report the results, we follow its post-processing
strategy to combine the classification and mask branches. We adopt the same
augmentations as in the main paper, i.e., square resizing and random horizontal
flipping. This baseline strikes a good balance between performance, complexity,
and training speed. Additionally, we provide results by relying on the backbone
and pretrained weights of DINOv2 [13], as we found this to outperform MAE
pretrained weights for a ViT-B backbone. We train the models with a batch size
of 32 and a learning rate of 1.5e−4 for 50k iterations on 8 × 16GB V100 GPUs.

Evaluation Procedure. Our model produces excellent predictions when only relying
on the argmax operator. No additional processing is used for the visualizations
(see row 3 in figures S3 and S4). To report the final PQ metric, however, we
eliminate noise by thresholding the predictions at 0.5 (after applying softmax)
and filtering out segments with an area smaller than 512. These results are
shown in the last row of figures S3 and S4. Notice that Mask2Former’s training
objective does not impose exclusive pixel assignments, hence it needs additional
post-processing steps.

Simple Post-Processing. Panoptic segmentation combines instance and semantic
segmentation. After efficiently decoding the latents, we will obtain the panoptic
mask by starting from the instances. We subsequently take a majority vote using
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the predicted semantic mask for each instance. We carry out the following steps
and refer to Supplement B for more information on the inference time:

1 def postprocess_panoptic(mask_logits , semantic_logits):
2 """
3 Convert predictions to panoptic masks.
4

5 Inputs:
6 mask_logits: np.array of size [N, H, W]
7 semantic_logits: np.array of size [N, H, W]
8 Outputs:
9 panoptic_seg: np.array of size [H, W]

10 segments_to_categories: dict
11 """
12

13 panoptic_seg = np.argmax(mask_logits , axis =0)
14 semantic_seg = np.argmax(class_logits , axis =0)
15

16 segments_ids = {}
17 for segment_id in np.unique(panoptic_seg):
18 instance_mask = panoptic_seg == segment_id
19 if not_confident_or_small(instance_mask):
20 panoptic_seg[instance_mask] = VOID_id
21 continue
22 counts = np.bincount(semantic_seg[instance_mask ]])
23 class_id = np.argmax(counts)
24 segments_to_categories[segments_id] = class_id
25

26 return panoptic_seg , segments_ids

B Additional Results

More Segmentation Results. We show the panoptic segmentation results with
50 timesteps on COCO val2017 [11] in Figure S2. Additionally, we show (class-
agnostic) masks in Figures S3 and S4. The input images are resized to 3×512×512
during training and the diffusion process acts on latents of size 4× 64× 64. To
visualize the masks, we assign each segment to a random color. Overall, the
model is capable of generating high-quality panoptic masks.

Number of Denoising Steps. Figure S5 displays the results for different timesteps
during the denoising process. Longer sampling benefits the generation of details,
such as capturing small objects in the background or an object’s edges. This
approach necessitates 10 - 50 iterations to produce high-quality segmentation
masks, which is in line with latent diffusion models for images [16]. Furthermore,
as the model was forced to distinguish between different instances during training,
it’s unlikely that different instances will be grouped during inference. Interestingly,
the model iteratively improves the predictions while not reinforcing mistakes
during the generative process.
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Fig. S2: Panoptic Segmentation - Qualitative Results. The figure displays the
panoptic segmentation for several images in the COCO val set.
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Fig. S3: Examples on COCO (1). The figure displays the generated masks on the
COCO val set.
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Fig. S4: Examples on COCO (2). The figure displays more generated masks on
the COCO val set.

Inference Time. Table S2 provides the inference times for different sampling
durations. In comparison, Painter requires approximately 0.5 and 0.7 seconds to
post-process an image at a resolution of 448 and 560 respectively on our machine.
Our post-processing method is significantly faster, taking up only about 0.024
seconds. Importantly, the performance will vary based on hardware and system
specifications. Our relatively simple post-processing is explained in Supplement A
(final paragraph). Finally, recent research [18] on Consistency Models looks
promising to generate high-quality masks in a single step.

Encoding Panoptic Maps. Table S1 verifies our hypothesis w.r.t. the encoding
scheme, as discussed in Sec. 3.1 (main paper). In particular, we test 3 encoding
schemes: color (RGB) encoding vs. bit encoding vs. positional encoding:

– Colors: we generate 256 equidistant colors within the RGB space.
– Bits: we employ 8 channels to represent integers from [0, 255] using bits.
– Positional: we map integers from [0, 255] to an 8-dimensional embedding

following [12].

The mIoU and class-agnostic PQ are adopted to measure the reconstruction
quality of the autoencoder. We hypothesize that the mapping from color to
instance is sub-optimal as this scheme is sensitive to the chosen color palette
(89.9 vs. 89.1% PQ). In contrast, bit encoding is a general way to represent
discrete panoptic maps, which also outperforms positional encoding (89.9 vs.
88.2% PQ).
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Fig. S5: Results for different timesteps. The figure visualizes the image-conditioned
samples for the timesteps 1, 5, 10, 20, and 50 in the diffusion process. Longer sampling
is required to capture more details, which is beneficial for complex scenes (e.g., cars in
the background in column 4).
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Tokenizers and Component Analysis. Table S3 shows that image tokenizers with
more semantically meaningful image features can boost the results. In addition,
we show the impact of employing different schedulers and an exponential moving
average of the model weights. Note that the results are provided with 50 timesteps
during inference. All components further enhance the performance of LDMSeg.
To summarize, our best results are obtained with a ViT-B [3] architecture and
DINOv2 [13] weights as the image encoder, the DDPM scheduler [6] and an
exponential moving average of the model weights during training (weight of
0.999).

Loss Weights. Finally, we note that lowering the loss for small timesteps (e.g.,
j < 25%) is not crucial, but speeds-up training by 0.3 to 0.5% PQ. We aim to
remove this in future work.

Table S1: Encoding. Reconstruction quality for different encoding schemes.

Encoding mIoU PQ [%]

bit encoding 97.3 89.9
color encoding 97.0 89.1
positional encoding 96.7 88.2

Table S2: Inference time. We report the average time to generate a single panoptic
mask on COCO with a 4090 GPU. The table provides the results for various denoising
steps.

Class-agn. Panoptic Seg. Sem. Seg. Panoptic Seg.
# Iters PQ [%] SQ [%] RQ [%] mIoU [%] PQ [%] SQ [%] RQ [%] Time [s]

1 8.4 76.0 11.1 18.2 8.1 68.9 10.8 0.115
2 35.5 83.9 42.3 21.3 19.8 78.4 24.8 0.160
3 42.4 84.3 50.4 42.1 35.5 79.6 43.8 0.207
4 45.5 84.2 54.0 51.8 39.3 80.3 48.2 0.259
5 47.3 84.1 56.2 55.1 41.3 80.6 50.3 0.320
10 50.2 83.5 60.1 58.6 43.4 80.4 52.6 0.575
15 51.0 83.3 61.2 58.8 43.7 81.3 53.0 0.815
20 51.4 83.2 61.8 59.1 44.1 81.2 53.4 1.071
25 51.7 83.1 62.2 59.6 44.3 81.3 53.7 1.336
30 51.8 83.0 62.4 59.5 44.1 81.0 53.7 1.585
40 52.0 82.9 62.7 59.3 44.3 81.1 53.8 2.062
50 51.9 82.9 62.6 59.9 44.3 81.1 53.8 2.548
60 52.2 82.8 62.8 59.3 44.4 81.2 53.7 3.074
70 52.2 82.7 63.1 59.4 44.3 81.1 53.7 3.564
80 52.2 82.6 63.1 59.3 44.3 80.5 53.8 4.024
90 52.2 82.6 63.1 59.5 44.3 80.5 53.7 4.550
100 52.1 82.7 63.1 59.1 44.3 81.2 53.7 5.030
200 52.1 82.5 63.2 59.1 44.3 80.5 53.7 10.050
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Table S3: Component Analysis.

Setup Image Encoder Scheduler EMA PQ [%]

1 SD VAE [16] DDIM [17] ✗ 40.3
2 SD VAE [16] DDIM [17] ✓ 40.6
3 ViT-B/14 [3] DDIM [17] ✓ 43.7
4 ViT-B/14 [3] DDPM [6] ✓ 44.3

C Limitations and Future Work

Undoubtedly, our model has several limitations despite its general design. We
discuss two limitations: (i) the model can miss small background objects due
to the projection to latent space; (ii) the model is slower during inference
than specialized segmentation models due to the adoption of a diffusion prior.
In exchange, our method is simple, general and unlocks out-of-the-box mask
inpainting. Moreover, the approach can be extended to a multi-task setting. As
we rely on plain diffusion models, new innovations (e.g., architectural, noise
scheduler, tokenization, number of inference steps etc.) in image generation are
directly applicable to the presented framework. Finally, increasing the dataset’s
size, increasing the latents’ resolution, enabling open-vocabulary [15] detection,
and including more dense prediction tasks are exciting directions to explore
further.

D Broader Impact

The presented approach relies on pretrained weights from Stable Diffusion [16].
Consequently, our model is subject to the same dataset and architectural biases.
The user should be aware of these biases and their impact on the generated
masks. For instance, these types of (foundation) models can hallucinate content.

References

1. Birkl, R., Wofk, D., Müller, M.: Midas v3. 1–a model zoo for robust monocular
relative depth estimation. arXiv preprint arXiv:2307.14460 (2023)

2. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. In: International Conference on
Learning Representations (ICLR) (2021)

4. Face, H.: Compvis/stable-diffusion-v1-4 (2023), https://huggingface.co/
CompVis/stable-diffusion-v1-4, retrieved September 15, 2023

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4


A Simple Latent Diffusion Approach for Panoptic Segmentation 9

5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2022)

6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances
in Neural Information Processing Systems (NeurIPS) (2020)

7. Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Re-
purposing diffusion-based image generators for monocular depth estimation. In:
Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

8. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

9. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2), 83–97 (1955)

10. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones
for object detection. In: European Conference on Computer Vision (ECCV) (2022)

11. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference
on Computer Vision (ECCV) (2014)

12. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.:
Nerf: Representing scenes as neural radiance fields for view synthesis. In: European
Conference on Computer Vision (ECCV) (2020)

13. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

14. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

15. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning
(ICML) (2021)

16. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Conference on Computer Vision
and Pattern Recognition (CVPR) (2022)

17. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International
Conference on Learning Representations (ICLR) (2021)

18. Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models. In: International
Conference on Machine Learning (ICML) (2023)


	A Simple Latent Diffusion Approach for Panoptic Segmentation and Mask Inpainting: Supplementary Materials

