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Abstract. Existing Video Object Segmentation (VOS) relies on explicit
user instructions, such as categories, masks, or short phrases, restricting
their ability to perform complex video segmentation requiring reasoning
with world knowledge. In this paper, we introduce a new task, Reasoning
Video Object Segmentation (ReasonVOS). This task aims to generate a
sequence of segmentation masks in response to implicit text queries that
require complex reasoning abilities based on world knowledge and video
contexts, which is crucial for structured environment understanding and
object-centric interactions, pivotal in the development of embodied AI.
To tackle ReasonVOS, we introduce VISA (Video-based large language
Instructed Segmentation Assistant), to leverage the world knowledge rea-
soning capabilities of multi-modal LLMs while possessing the ability to
segment and track objects in videos with a mask decoder. Moreover, we
establish a comprehensive benchmark consisting of 35,074 instruction-
mask sequence pairs from 1,042 diverse videos, which incorporates com-
plex world knowledge reasoning into segmentation tasks for instruction-
tuning and evaluation purposes of ReasonVOS models. Experiments con-
ducted on 8 datasets demonstrate the effectiveness of VISA in tackling
complex reasoning segmentation and vanilla referring segmentation in
both video and image domains. The code and dataset are available at
https://github.com/cilinyan/VISA.

Keywords: reasoning video object segmentation · video-based instructed
segmentation assistant · dataset collection

1 Introduction

Existing video object segmentation relies on explicit queries, such as pre-defined
categories [3, 41, 45], masks of certain frames [5, 47], or explicit short phrases
describing intuitive features [2,34,44]. Such systems lack the capacity to reason
and infer users’ intentions based on implicit instructions. For instance, it is more
intuitive for the users to give instructions like “Find my favorite cup” instead
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(a)

(b)

(c)

ASSISTANT: Sure, it is <SEG>. 

ASSISTANT: <SEG>.

ASSISTANT: It is <SEG>. 

USER: What is the dog afraid of?

USER: Which aircraft will have increased fuel?

USER: Can you segment the vehicle with highest passenger capacity?

Fig. 1: We enable the reasoning video object segmentation capabilities for current
multi-modal LLMs. The proposed VISA is capable of segmenting and tracking ob-
jects given text descriptions involving: (a) complex reasoning of world knowledge; (b)
inference of upcoming events; and (c) comprehensive understanding of video content.

of “Find the red cup located second to the left on the table”. To accomplish
the first instruction, the model needs to understand that “favorite” means “most
frequently used” to some degree, and callback the history temporal information
to localize the cup.

In this work, we propose Reasoning Video Object Segmentation (Reason-
VOS), which aims to generate a binary mask sequence given complex and im-
plicit text instruction in videos. Notably, the text instruction is not limited to
a straightforward reference (e.g., the running car), but a more complex descrip-
tion including reasoning of world knowledge (e.g., the car powered by electricity).
This task requires the integration of reasoning ability with long-term video un-
derstanding to accurately localize target objects in videos, which is a crucial
ability for Embodied AI systems that enable robots to fulfill effective interaction
with objects in dynamic environments given user instructions.
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To tackle Reasoning Segmentation in images, recent work LISA [16] lever-
ages the language generation prowess of multi-modal LLMs, complemented by
a mask decoder for generating segmentation results. However, the Reasoning
Segmentation in videos demands temporal information for comprehensive video
understanding and spatial details for producing high-quality segmentation mask
sequences. Therefore, the multi-modal LLMs need to simultaneously process
multiple frames with a substantial number of tokens for each frame. Considering
the numerous visual tokens to be processed simultaneously, it is computationally
intractable to directly broadcast an image reasoning segmentation model to the
video domain.

To this end, we introduce VISA (Video-based large language Instructed Seg-
mentation Assistant), designed to efficiently encode long-term video features
while preserving spatial details to enable reasoning in video object segmenta-
tion. Specifically, we start by designing a Text-guided Frame Sampler (TFS) to
select frames that are most relevant to the task based on textual instructions, fo-
cusing the model on the most significant moments for object identification. TFS
reduces the requirement of visual token numbers to be handled, enabling VISA to
process long-term videos. These selected frames, along with the text queries, are
tokenized and processed concurrently by a multi-modal Large Language Model
(LLM), enabling sophisticated reasoning over video content and facilitating the
generation of precise textual outputs. To equip VISA with robust segmentation
capabilities, we incorporate a special token <Seg> in the output text, inspired
by the approach in LISA [16]. The hidden embedding of <Seg> is leveraged
to produce segmentation masks of selected frames using a SAM [15] decoder.
The segmentation process is completed by deriving the masks for the remaining
frames with an object tracker [4]. As illustrated in Fig. 1, VISA demonstrates
remarkable proficiency in handling complex segmentation tasks that require: (a)
reasoning based on world knowledge; (b) inference of future events; and (c) a
comprehensive understanding of video content.

To evaluate the effectiveness of the proposed VISA, we create a benchmark
dataset named ReVOS. This dataset comprises 35,074 pairs of instruction-mask
sequences derived from 1,042 diverse videos. In contrast to traditional refer-
ring video segmentation datasets, such as Ref-YouTube-VOS [34] and MeViS [8],
which primarily contain explicit short phrases, ReVOS includes text instructions
that necessitate a sophisticated understanding of both video content and gen-
eral world knowledge. We carry out comprehensive experiments on the ReVOS
dataset as well as on seven existing segmentation datasets. The results in Fig. 2
demonstrate that VISA not only facilitates advanced reasoning segmentation in
both video and image domains but also achieves competitive performance on
referring segmentation tasks.

Our main contributions could be summarized as follows: (i) We introduce a
new task ReasonVOS (Reasoning Video Object Segmentation), which aims to
segment and track objects in videos given implicit texts. ReasonVOS empha-
sizes the requirements of reasoning, summary, and inference ability based on
video content and world knowledge, crucial for an intelligent perception sys-
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Fig. 2: Our proposed VISA consistently achieves state-of-the-art performances on video
and image datasets over reasoning and referring segmentation tasks. J is region simi-
larity [34], F is contour accuracy [34], and R is robustness score [19].

tem to interact with dynamic environments. (ii) We propose VISA (Video-based
large language Instructed Segmentation Assistant), which efficiently integrates
long-term video features and complex text queries to enable the reasoning video
object segmentation ability. (iii) We collect a large-scale dataset ReVOS, com-
prising 1,042 videos and 35,074 object descriptions for instruction tuning and
evaluation purposes of ReasonVOS models. The experiments on ReVOS and ex-
isting datasets show that our proposed VISA performs robustly in reasoning
segmentation tasks of both image and video domains.

2 Related Work

Video Object Segmentation. Video Object Segmentation (VOS) is designed
to segment and track objects in videos based on specific references, including
categories [3, 41, 45, 52–55], segmentation masks [4, 6, 28, 30], or explicit text de-
scriptions [2,8,21,34,44]. VOS plays a critical role in structured video represen-
tation learning and Embodied AI. Category-based VOS methods (or Video In-
stance Segmentation), such as Mask2Former [3], SeqFormer [45], and VisTR [41],
segment and associate objects in videos given a pre-defined category list. Mask-
based VOS methods (or semi-supervised VOS), such as STM [28] and XMem [4],
segment and track objects in videos based on the segmentation mask given in
certain frames. The utility of the aforementioned approaches is constrained by
their reliance on structured and straightforward input, resulting in limited gener-
alizability in real-world scenarios that necessitate complex reasoning and flexible
input formulation.
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In contrast, the text-based VOS (Referring VOS) [2, 8, 34], aims to segment
objects in videos given text description. However, the text descriptions in Refer-
ring VOS fall into short phrases indicating the explicit object information, such
as action, localization, and appearance. This system lacks the ability to han-
dle complex sentences that involve common sense reasoning or inference based
on video content. In this work, we introduce ReasonVOS, extending the short
phrases to complex sentences requiring reasoning and the inference of world
knowledge alongside video content. This advancement significantly enhances the
practical utility of VOS across various tasks.
Multi-Modal Large Language Model. Inspired by the impressive reason-
ing capabilities of Large Language Models (LLMs), researchers are investigating
methods to transpose these abilities into the vision domain, leading to the devel-
opment of multi-modal LLMs [1, 38, 51]. Flamingo [1] utilizes a cross-attention
structure to attend to visual contexts, facilitating visual in-context learning.
Meanwhile, models like BLIP-2 [18] and mPLUG-OWL [48] propose the encod-
ing of image features using a visual encoder, which are subsequently integrated
into the LLM along with text embeddings. Otter [17] further incorporates ro-
bust few-shot capabilities through in-context instruction tuning on the proposed
MIMIC-IT dataset. LLaVA [23] and MiniGPT-4 [56] first conduct image-text
feature alignment followed by instruction tuning and also investigate image re-
trieval for LLMs.

Recent studies have delved into the confluence of multi-modal Large Lan-
guage Models (LLMs) and vision tasks. VisionLLM [40] provides a versatile
interface for engaging with various vision-centric tasks through instruction tun-
ing but fails to fully exploit LLMs for complex reasoning. Kosmos-2 [29] builds
a large-scale dataset of grounded image-text pairs, thereby injecting grounding
capabilities into LLMs. DetGPT [31] connects the multi-modal LLMs and open-
vocabulary detectors, facilitating detection tasks based on user instructions.
GPT4RoI [50] innovates by incorporating spatial boxes as input and training
the model on region-text pairings. LISA [16] efficiently enables segmentation ca-
pabilities of multi-modal LLMs in the image domain by introducing a special
<Seg> token. All the above-mentioned methods focus on downstream tasks in
the image domain. The concurrent work TrackGPT [35], made the first attempt
to tackle reasoning segmentation in videos. However, TrackGPT processes single
frames at one time and segments the objects frame-by-frame without any tem-
poral correspondence, which falls in complex scenarios requiring long-term video
understanding. On the contrary, our proposed VISA handles multiple frames at
one time to obtain long-term awareness.
Video Multi-Modal Large Language Model. To support video understand-
ing in LLMs, Video-LLaMA [49] attempts to utilize BLIP-2 for video embedding
extraction, while Video-ChatGPT [25] proposes spatial and temporal pooling
for video features. However, given the substantial number of tokens required
for each frame, LLMs encounter significant challenges when processing exten-
sive video sequences. It prevents previous work [25, 49] from representing long
video sequences that exceed a duration of one hour in LLMs. To solve the issue,
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LLaMA-VID [20] proposes to efficiently encode each frame with only 2 tokens,
which supports long video understanding in existing LLMs. Those works either
use pooling or projection to abstract each frame into a few visual tokens, which
is inadequate to provide detailed spatial information for segmentation. In this
work, we first select significant frames for identifying the target objects and si-
multaneously process the selected frames with a large number of visual tokens,
avoiding the spatial pooling or projection and thus benefiting the segmentation
tasks.

3 Method

3.1 Task Setting

In this section, we start by defining the task of interest, termed ReasonVOS.
Specifically, given a high-level query text instruction xt for which reasoning with
world knowledge is required, and an input video xv, we aim to build a model
φθ(·) that outputs a binary mask sequence M representing the described object
in the input video:

M = φθ(xt,xv), (1)

where the input video xv = {ft}Tt=1 ∈ RT×H×W×3 contains T frames, and each
frame ft has a size of H×W . The output binary mask sequence M = {mt}Tt=1 ∈
RT×H×W has the same frame number and size.

ReasonVOS shares a similar formulation of input and output with the Refer-
ring VOS [34] but is far more challenging. The principal difference stems from the
complexity of the query text in ReasonVOS. Unlike simple phrases in Referring
VOS that directly describe the appearance, action, or localization characteristics
(e.g., “the running car”), the query texts in ReasonVOS involve more complex ex-
pressions that require world knowledge and common sense (e.g., “the car powered
by electricity”) or expressions that require complex understanding and inference
about video content and upcoming events (e.g., “Which car is most likely to win
the race?”).

3.2 Architecture of VISA

Overview. As shown in Fig. 3, VISA consists of three main components, namely
Text-guided Frame Sampler, multi-modal Large Language Model (LLM), and
Object Tracker. Specifically, (a) the input video xv is fed to the Text-guided
Frame Sampler (TFS), which outputs a target frame ftgt for segmentation and
Tr corresponding reference frames xr to gain long-term information, guided by
the text instructions xt. (b) Then the selected frames are fed into the multi-modal
LLM, generating text output including a special token <Seg> for segmentation
of the target frame ftgt. (c) Finally, an Object Tracker is utilized to generate the
segmentation masks of all frames M via bi-directional mask propagation.
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Fig. 3: Overview of VISA. (a) Given a video xv and a text description xt, a Text-
guided Frame Sampler (TFS) is proposed to sample the most distinguishing frame
ftgt as the target to be segmented and corresponding reference frames xr. (b) Then
ftgt, xr, and xt are tokenized and fed to a Multi-Modal LLM to generate text output,
including a special token <Seg>. The last-layer embedding of <Seg> token hseg is
then decoded into the segmentation mask mtgt of frame ftgt via the mask decoder. (c)
Finally, the segmentation masks of all frames M are generated by propagation with an
Object Tracker. The modules in blue are frozen during the training, while the modules
in pink are trainable.

Text-guided Frame Sampler. Given input video xv comprising T frames
where each frame is represented by L visual tokens, the total number of tokens
to be processed by the multi-modal LLM is T × L. For segmentation purposes,
L should be large enough to maintain spatial details, instead of pooling into a
few tokens such as in Video-ChatGPT [25]. Consequently, it is computationally
intractable to directly feed such numerous visual tokens to the multi-modal LLM.

As shown in Fig. 3, the text query “Which person will take the baton?” could
be answered within the last few frames of the video, while the rest frames are
irrelevant to the question. Inspired by this, we adopt LLaMA-VID [20], a multi-
modal LLM that abstracts each input frame into two visual tokens and enables
long video processes, to serve as a Text-guided Frame Sampler (TFS). TFS
generates the most distinguishing frame ftgt and corresponding reference frames
xr for identifying the described object. Specifically, a task-specific template is
designed: “<Video> To find {description}, which percentage mark of the video
should I check? Please respond with a number between 0% and 100%.” We extract
the percentage values pi in the top K responses and use the average value to
obtain the target frame ftgt = fT/K

∑
pi

. K is set to 10 in this work. Based on
ftgt, Tr frames are sampled as reference frames xr to obtain long-term temporal
correspondence and help with the segmentation of the described object in frame
ftgt. We adopt multiple reference sampling strategies in this work, such as Local
sampling and Global sampling. The details and ablation studies of different
reference sampling strategies are shown in Ablation Study Sec. 4.3.
Multi-Modal Large Language Model. Each frame in xr and ftgt are encoded
via ViT [12] and tokenized into L visual embeddings by Spatial Merging [13],
yielding visual tokens <xr> and <ftgt>. Then, the concatenated visual and text
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tokens are fed to a Multi-Modal LLM to generate the text output containing a
special token <Seg>. The task-specific template is designed as: “USER: <ftgt>
<xr> Can you segment the {description}? ASSISTANT: Yes, it is <Seg>.”,
where {description} will be replaced by the text description, and the text will be
tokenized before being fed to multi-modal LLMs. We extract the last-layer em-
bedding corresponding to the <Seg> token and apply an MLP projection layer
to generate hseg, which serves as the prompt embedding in SAM decoder [15].

Simultaneously, the vision backbone Ev extracts the visual features of target
frame ftgt, which is utilized along with the prompt embedding hseg to produce
the segmentation mask mtgt:

mtgt = SAM(Ev(ftgt), hseg). (2)

Finally, an Object Tracking method [4] is adopted to propagate mtgt bidirec-
tionally to all rest frames and obtain the mask sequence M:

M = {mt}Tt=1 = OT(mtgt,xv). (3)

Training. Following LISA [16], our model is trained end-to-end using the stan-
dard text generation loss Ltxt and the segmentation mask loss Lmask. The overall
objective L is the weighted sum of Ltxt and Lmask:

L = λtxtLtxt + λmaskLmask. (4)

Specifically, Ltxt is the auto-regressive cross-entropy loss for text generation,
and Lmask is the combination of per-pixel binary cross-entropy (BCE) loss and
DICE loss [27], with corresponding loss weights λbce and λdice. Given the ground-
truth targets (ŷtxt, m̂tgt) and the predictions (ytxt, mtgt), Ltxt and Lmask can
be formulated as:

Ltxt = CE(ŷtxt,ytxt),Lmask = λbceBCE(m̂tgt,mtgt) + λdiceDICE(m̂tgt,mtgt).
(5)

3.3 ReVOS Dataset

For the quantitative evaluation of ReasonVOS, it is essential to establish a bench-
mark characterized by implicit object descriptions and high-quality mask se-
quences. To this end, we collect ReVOS, a dataset containing complex text in-
structions and corresponding high-quality masks in videos for both instruction
tuning and evaluation of ReasonVOS. To guarantee reliable assessment, we col-
lect a diverse set of videos from LV-VIS [36,37], MOSE [9], OVIS [33], TAO [7]
and UVO [39]. Subsequently, we annotate the objects in the videos with com-
plex text instructions and match these instructions with the corresponding target
mask sequences.
Dataset Statistics Overall, our dataset comprises a total of 35,074 object-
instruction pairs from 1,042 videos. All the videos are divided into a training (in-
struction tuning) set and a validation set containing 626 videos and 416 videos re-
spectively. The text instructions consist of (1) 14,678 implicit descriptions requir-
ing world knowledge and video content reasoning and inference to evaluate the
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ReasonVOS; (2) 20,071 explicit descriptions to evaluate the generalization abil-
ity in traditional Referring VOS task; (3) 325 descriptions of nonexistent objects
for the hallucination evaluation. Check https://github.com/cilinyan/ReVOS-
api for more detailed dataset information.
Evaluation Metrics We follow most previous works on Referring VOS [8, 34]
to adopt J&F as the main evaluation metric, which is the average of region
similarity J and contour accuracy F . As for the evaluation of hallucination, we
adopt the robustness score R introduced in R2VOS [19].

4 Experiments

4.1 Dataset

Training Dataset. Our training data consists of vanilla Referring VOS datasets,
Video Question-Answering datasets, Image datasets, and the ReVOS dataset.
The details are as follows: (1) Referring VOS datasets. We use Ref-YouTube-
VOS [34], MeViS [8], and Ref-DAVIS17 [32] during training to learn the pro-
jections between objects in videos and text expressions. Those Referring VOS
datasets provide input videos, explicit short descriptions, and corresponding ob-
ject masks. (2) Video Question-Answering datasets. To achieve better reasoning
and question-answering ability in videos of the multi-modal LLM, we include
the video instruction data from Video-ChatGPT [25]. The answer template “It’s
<Seg>” is replaced by the original annotated answers in those datasets, and the
corresponding segmentation loss is ignored during training. (3) Image datasets.
Images could be regarded as one-frame videos. Thereby, we adopt all the vanilla
datasets used by LISA [16] in our work to achieve more stable training. (4)
ReVOS dataset. The above-mentioned training datasets contain no ReasonVOS
samples. Therefore, we include the ReVOS dataset during training to achieve
more comprehensive reasoning and object segmentation ability in videos. The
implementation details are shown in Supplementary Material.
Evaluation Dataset We evaluate VISA on both Video datasets and Image
datasets. (1) Video datasets. We use the ReVOS dataset to evaluate the per-
formance of ReasonVOS; we use Ref-YouTube-VOS [34], MeViS [8], and Ref-
DAVIS17 [32] to evaluate the performance of vanilla Referring VOS. (2) Im-
age datasets. We use ReasonSeg [16], refCOCO [14], refCOCO+ [14], and ref-
COCOg [26] to evaluate the generalization ability of VISA on image-level seg-
mentation tasks.

4.2 Comparison

ReVOS. The results comparison on ReVOS are shown in Tab. 1. Compared
with traditional methods (even with extremely large visual backbones), our pro-
posed VISA(IT)-7B generally achieves over 20 J&F improvements in terms of
reasoning. Those traditional works are limited to short explicit references and
have no capability of reasoning and understanding the implicit text queries.

https://github.com/cilinyan/ReVOS-api
https://github.com/cilinyan/ReVOS-api
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water transportation that requires paddles for movement. the source of power for the boat. individual paddling a boat.

the person operating the organ. What is the object on the ground used to prevent pants from getting dirty?
the persons who are appreciating music. percussion instruments mainly used for rhythm and beat.
What is the object that produces sound by air supply through a bellows?

notebook. the marker pen capable of drawing the broadest line. object holding a marker.
Which marker can draw the thickest line..

Which species of dog has higher IQ? Which species of dog has lower IQ?

Which person brings something in case of fire emergency? What could be operated by wireless remote equipment?

(a
)

(b
)

(c
)

(e
)

(d
)

Fig. 4: Visualizations of VISA on ReVOS dataset.

VISA(IT)-7B outperforms the single frame method LISA-7B [16] by 6.0 J&F
in terms of overall performance, which indicates the ability of VISA to conduct
video-level segmentation. Recent work TrackGPT [35] incorporates tracking with
LLMs, yet the multi-modal LLMs in TrackGPT only process a single frame at
one time, leading to poor temporal information gathering. As a consequence,
VISA(IT)-7B outperforms TrackGPT(IT)-7B by 3.3 J&F overall. Moreover, as
we include plenty of negative samples (text queries of nonexistent objects) in the
ReVOS training set, the hallucination of VITA is much lower than in existing
methods. As shown, the robustness scores R of VISA are much higher than
existing methods.

VQA+RerferringVOS could serve as a baseline model, but can not solve
ReasonVOS well. As suggested in Tab. 1, we use LLaMA-VID, a Video-VQA
method, to transfer the complex questions (e.g., scared dog) into low-level de-
scriptions (e.g., dog on left), and then employ LMPM, a RerferringVOS method,
to segment the described objects. As shown below, LLaMA-VID + LMPM per-
forms worse than LMPM on ReVOS reasoning set. That is because the existing
video-VQA methods take only a few visual tokens per frame, which is too vague
to localize the described objects and brings mistakes when converting complex
questions into low-level expressions.

Note that VISA with LLaVA-7B [23] and Chat-UniVi-7B [13] achieve similar
performance. Chat-UniVi could process a flexible number of visual tokens via
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Table 1: Performance comparison on ReVOS dataset. ∗ means the method is repro-
duced in this work. (IT) means instruction tuning with the ReVOS training set. R is
the robustness score.

Method Backbone referring reasoning overall R
J F J&F J F J&F J F J&F

ReferFormer [44] Resnet50 16.6 17.1 16.9 11.9 13.8 12.8 14.3 15.4 14.9 4.9
MTTR [2] Video-Swin-T 29.8 30.2 30.0 20.4 21.5 21.0 25.1 25.9 25.5 5.6
LMPM [8] Swin-T 29.0 39.1 34.1 13.3 24.3 18.8 21.2 31.7 26.4 3.2
ReferFormer [44] Video-Swin-B 31.2 34.3 32.7 21.3 25.6 23.4 26.2 29.9 28.1 8.8
LLaMA-VID [20]+LMPM Swin-T 29.0 39.1 34.1 12.8 23.7 18.2 20.9 31.4 26.1 3.4

LISA [16] LLaVA-7B 44.3 47.1 45.7 33.8 38.4 36.1 39.1 42.7 40.9 9.3
LISA* [16] LLaVA-13B 45.2 47.9 46.6 34.3 39.1 36.7 39.8 43.5 41.6 8.6
TrackGPT(IT)* [35] LLaVA-7B 46.7 49.7 48.2 36.8 41.2 39.0 41.8 45.5 43.6 11.6
TrackGPT(IT)* [35] LLaVA-13B 48.3 50.6 49.5 38.1 42.9 40.5 43.2 46.8 45.0 12.8

VISA Chat-UniVi-7B 51.1 54.7 52.9 36.7 41.7 39.2 43.9 48.2 46.1 7.9
VISA Chat-UniVi-13B 52.3 55.8 54.1 38.3 43.5 40.9 45.3 49.7 47.5 8.3
VISA(IT) LLaVA-7B 49.4 52.6 51.0 40.5 45.8 43.2 44.9 49.2 47.1 15.3
VISA(IT) LLaVA-13B 55.7 59.0 57.4 41.9 46.5 44.2 48.8 52.8 50.8 15.1
VISA(IT) Chat-UniVi-7B 49.2 52.6 50.9 40.6 45.4 43.0 44.9 49.0 46.9 15.5
VISA(IT) Chat-UniVi-13B 55.6 59.1 57.4 42.046.7 44.3 48.852.9 50.9 14.5

Table 2: Performance comparison on Referring VOS datasets. The results on MeViS
above the horizontal line are provided in LMPM [8], which are all obtained with the
Swin-T backbone. The results of TrackGPT on MeVIS are generated by our reproduced
model.

Methods Backbone MeViS Ref-YT-VOS Ref-DAVIS17

J F J&F J F J&F J F J&F

URVOS [34] ResNet50 25.7 29.9 27.8 45.3 49.2 47.2 47.3 56.0 51.6
LBDT [11] ResNet50 27.8 30.8 29.3 48.2 50.6 49.4 - - 54.1
MTTR [2] Video-Swin-T 28.8 31.2 30.0 54.0 56.6 55.3 - - -
ReferFormer [44] Video-Swin-B 29.8 32.2 31.0 61.3 64.6 62.9 58.1 64.1 61.1
LMPM [8] Swin-T 34.2 40.2 37.2 - - - - - -
OnlineRefer [43] Swin-L - - - 61.6 65.5 63.5 61.6 67.7 64.8

LISA [16] LLaVA-7B 35.1 39.4 37.2 53.4 54.3 53.9 62.2 67.3 64.8
LISA [16] LLaVA-13B 35.8 40.0 37.9 54.0 54.8 54.4 63.2 68.8 66.0
TrackGPT [35] LLaVA-7B 37.6 42.6 40.1 55.3 57.4 56.4 59.4 67.0 63.2
TrackGPT [35] LLaVA-13B 39.2 43.1 41.2 58.1 60.8 59.5 62.7 70.4 66.5
VISA (Ours) Chat-UniVi-7B 40.7 46.3 43.5 59.8 63.2 61.5 66.3 72.5 69.4
VISA (Ours) Chat-UniVi-13B 41.8 47.1 44.5 61.4 64.7 63.0 67.0 73.8 70.4

spatial merging, thus we chose it in this work. We visualize the results of VISA
on the ReVOS dataset in Fig. 4.
Referring VOS. To demonstrate that VISA generalizes well in the vanilla
Referring VOS task, we compare VISA with the existing methods in Tab. 2. As
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Table 3: Performance comparison on Image Segmentation datasets. † denotes the
results obtained from the model we trained via LISA’s official GitHub repository.

Methods Backbone refCOCO refCOCO+ refCOCOg ReasonSeg

val testA testB val testA testB val(U) test(U) gIoU cIoU

MCN [24] Darknet53 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4 - -
VLT [10] Darknet53 65.7 68.3 62.7 55.5 59.2 49.4 53.0 56.7 - -
CRIS [42] ResNet101 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4 - -
LAVT [46] Swin-B 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1 - -
ReLA [22] Swin-B 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 - -
X-Decoder [57] DaViT-L - - - - - - 64.6 - 22.6 17.9
SEEM [58] DaViT-L - - - - - - 65.7 - 25.5 21.2

LISA [16] LLaVA-7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 52.9 54.0
LISA† LLaVA-7B 70.8 73.7 66.3 58.1 63.2 51.2 63.8 64.8 48.1 53.7
VISA (Ours) Chat-UniVi-7B 72.4 75.5 68.1 59.8 64.8 53.1 65.5 66.4 52.7 57.8

Table 4: Performance on ReVOS validation set with different training datasets. The
columns with ✓ mean the corresponding datasets are adopted during training.

ReferringVOS VQA Image ReVOS referring reasoning

J F J&F J F J&F

✓ ✓ ✓ 45.9 49.3 47.6 37.4 42.3 39.9
✓ ✓ ✓ 48.6 52.1 50.3 38.9 43.9 41.4
✓ ✓ ✓ 32.3 36.2 34.2 30.9 36.1 33.5
✓ ✓ ✓ 51.1 54.7 52.9 36.7 41.7 39.2
✓ ✓ ✓ ✓ 49.2 52.6 50.9 40.6 45.4 43.0

shown, VISA achieves the SOTA results over three widely used Referring VOS
datasets.
Image Datasets. Images could be regarded as single-frame videos. Therefore,
VISA could be directly applied to image datasets without any modification. As
shown in Tab. 3, VISA achieves comparable performance with LISA on three
referring image segmentation datasets, while significantly outperforming tradi-
tional methods by over 20% on the ReasonSeg [16] dataset. The results indicate
that VISA has a strong generalization ability on vanilla referring image segmen-
tation and reasoning image segmentation.

4.3 Ablation Studies

Training Datasets In Tab. 4, we show the contribution of each type of dataset
during training. As shown, without Referring VOS datasets, the performance
drops by 3.3% J&F and 3.1% J&F in terms of referring and reasoning seg-
mentation, respectively. That is because Referring VOS datasets provide text
expressions and mask sequence pairs in videos, aligning the video domain and
linguistic domain, thus generally helping with the vanilla referring segmenta-
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Which animal is lying on the grass?

Which card in the person‘s hand has been played in this video?

Which car is most likely to win?

0 1

Fig. 5: Heatmaps of the target frame ftgt. To draw the heatmap, we generate 10
responses with the Text-guided Frame Sampler (TFS) and obtain the normalized dis-
tribution. As shown, the highlighted frames are related to the text queries.

tion and reasoning segmentation tasks in videos. Without Image datasets, the
performance of VISA significantly drops by 16.7% and 9.5%. Generally, image
datasets have much larger scales than video datasets, leading to more robust
feature alignment and stronger generalization ability. The models tend to be
overfitting during training without image datasets. By instruction tuning on
ReVOS, VISA further gains 3.8% J&F performance improvements of reasoning
segmentation, while the performance of referring segmentation barely changes,
which shows the effectiveness of our collected ReVOS dataset to improve the
complex video reasoning ability.

Table 5: Overall J&F on ReVOS with
different number Tr of reference frames
xr and different sampling strategies.

Tr w/o Sample Global Local Global-Local

f0

0 42.6 - - -
6 - 43.9 44.5 44.6
12 - 44.5 44.9 45.0

ftgt

0 44.3 - - -
6 - 46.0 46.1 46.3
12 - 46.7 46.3 46.9

Table 6: The performance comparison on
ReVOS with different number L of visual to-
kens per frame.

L backbone referring reasoning

J F J&F J F J&F

256 LLaVA-7B 49.4 52.6 51.0 40.5 45.8 43.2
112 Chat-UniVi-7B 49.2 52.6 50.9 40.6 45.4 43.0
56 Chat-UniVi-7B 44.9 48.5 46.7 36.5 41.5 39.0

Target Frame ftgt. We visualize the heatmaps of the target frame ftgt in
Fig. 5. As shown in the figure, the frames related to given text expressions are
highlighted. We show the ablation of ftgt in Tab. 5. f0 means we directly segment
the object in the first frame and propagate to the rest frames, while ftgt means
we use TFS to obtain the target frame ftgt and segment ftgt in consequence.
As shown, the performance with ftgt generally outperforms f0 by around 2%
under different settings, which indicates the effectiveness of TFS in obtaining
the significant moments related to described objects.
Reference Sampling Strategies. In Tab. 5, Global means we uniformly sam-
ple frames through the whole video as reference frames xr, while Local means
we sample contiguous frames centered by ftgt as reference frames. Global-Local
means the combination of Tr/2 frames from Global and Tr/2 frames from Local.
As shown, Global-Local sampling slightly outperforms the separate ones, thus
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we adopt it in VISA. As the number Tr of reference frames xr increases, the per-
formance gradually improves. To keep feasible training and inference, we adopt
Tr=12 in VISA. Overall, with ftgt and Global-Local sampling, VISA achieves
4.3% J&F improvements on the ReVOS dataset.
Number L of visual tokens. The performance comparison under different
numbers L of visual tokens per frame is shown in Tab 6. For L=256, we adopt
LLaVA-7B [23] as the backbone, which takes 256 visual tokens for the input
image. For L=112 and L=52, we use Chat-UniVi-7B [13] as the backbone, and
utilize the Spatial Merging [13] to project visual tokens to corresponding num-
bers. As shown, VISA with 256 tokens and 112 tokens per frame achieves com-
parable performance on ReVOS. When L is set to 52, the performance of VISA
significantly drops. Therefore, we adopt L=112 in this work.

4.4 Limitations

Small Objects Limited by the number of visual tokens per frame (for instance,
256 in LISA [23], and 112 in VISA), the current methods have a poor ability to
capture very small objects. As shown in Fig. 4 (d), the small paddles are not
segmented. A multi-modal LLM with more input visual tokens could relieve this
issue, but will lead to more computational burden and complex training process.
Temporal Information Gathering In this work, we intuitively adopt a Text-
guided Frame Sampler to select a feasible number of important frames for the
multi-modal LLM. The performance highly relies on the accuracy of located
frames. Some objects may only appear in a few frames, which is hard to locate.
As shown in Fig. 4 (e), the person with a fire tank only appears in one frame,
while VISA falls to locate this frame and segment another person in consequence.
Moreover, the text description could require extremely long temporal correspon-
dence, but VISA could only handle a few selected frames at the same time. To
this end, a more effective way to gather long-term temporal information while
maintaining spatial details is required. We leave those issues to our future work.

5 Conclusion

In this work, we propose a new task, ReasonVOS, which aims to generate object
mask sequences in response to text queries that require complex reasoning and
inference abilities within video contexts. To tackle ReasonVOS, we design VISA
(Video-based large language Instructed Segmentation Assistant), to leverage the
world knowledge and reasoning capabilities of multi-modal LLMs while possess-
ing the ability to segment and track objects in videos. Moreover, we collect a
large-scale dataset ReVOS, containing 35,074 expression-mask pairs from 1,042
videos for the instruction tuning and evaluation of ReasonVOS methods. Exper-
iments on eight various datasets show that our proposed VISA not only enables
the reasoning segmentation ability in videos but also generally provides SOTA
performance on traditional video and image segmentation tasks.
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